I have used the dataset who shows different incidents and accidents happended in different airlines betwen 1980s to 2010s.

# dataset from url
airline <- read.csv("https://raw.githubusercontent.com/fivethirtyeight/data/master/airline-safety/airline-safety.csv", header = TRUE)
airline
##                       airline avail_seat_km_per_week incidents_85_99
## 1                  Aer Lingus              320906734               2
## 2                   Aeroflot*             1197672318              76
## 3       Aerolineas Argentinas              385803648               6
## 4                 Aeromexico*              596871813               3
## 5                  Air Canada             1865253802               2
## 6                  Air France             3004002661              14
## 7                  Air India*              869253552               2
## 8            Air New Zealand*              710174817               3
## 9            Alaska Airlines*              965346773               5
## 10                   Alitalia              698012498               7
## 11         All Nippon Airways             1841234177               3
## 12                  American*             5228357340              21
## 13          Austrian Airlines              358239823               1
## 14                    Avianca              396922563               5
## 15           British Airways*             3179760952               4
## 16            Cathay Pacific*             2582459303               0
## 17             China Airlines              813216487              12
## 18                     Condor              417982610               2
## 19                       COPA              550491507               3
## 20         Delta / Northwest*             6525658894              24
## 21                   Egyptair              557699891               8
## 22                      El Al              335448023               1
## 23         Ethiopian Airlines              488560643              25
## 24                    Finnair              506464950               1
## 25           Garuda Indonesia              613356665              10
## 26                   Gulf Air              301379762               1
## 27          Hawaiian Airlines              493877795               0
## 28                     Iberia             1173203126               4
## 29             Japan Airlines             1574217531               3
## 30              Kenya Airways              277414794               2
## 31                       KLM*             1874561773               7
## 32                 Korean Air             1734522605              12
## 33               LAN Airlines             1001965891               3
## 34                 Lufthansa*             3426529504               6
## 35          Malaysia Airlines             1039171244               3
## 36     Pakistan International              348563137               8
## 37        Philippine Airlines              413007158               7
## 38                    Qantas*             1917428984               1
## 39            Royal Air Maroc              295705339               5
## 40                       SAS*              682971852               5
## 41              Saudi Arabian              859673901               7
## 42         Singapore Airlines             2376857805               2
## 43              South African              651502442               2
## 44         Southwest Airlines             3276525770               1
## 45      Sri Lankan / AirLanka              325582976               2
## 46                     SWISS*              792601299               2
## 47                       TACA              259373346               3
## 48                        TAM             1509195646               8
## 49         TAP - Air Portugal              619130754               0
## 50               Thai Airways             1702802250               8
## 51           Turkish Airlines             1946098294               8
## 52      United / Continental*             7139291291              19
## 53 US Airways / America West*             2455687887              16
## 54           Vietnam Airlines              625084918               7
## 55            Virgin Atlantic             1005248585               1
## 56            Xiamen Airlines              430462962               9
##    fatal_accidents_85_99 fatalities_85_99 incidents_00_14
## 1                      0                0               0
## 2                     14              128               6
## 3                      0                0               1
## 4                      1               64               5
## 5                      0                0               2
## 6                      4               79               6
## 7                      1              329               4
## 8                      0                0               5
## 9                      0                0               5
## 10                     2               50               4
## 11                     1                1               7
## 12                     5              101              17
## 13                     0                0               1
## 14                     3              323               0
## 15                     0                0               6
## 16                     0                0               2
## 17                     6              535               2
## 18                     1               16               0
## 19                     1               47               0
## 20                    12              407              24
## 21                     3              282               4
## 22                     1                4               1
## 23                     5              167               5
## 24                     0                0               0
## 25                     3              260               4
## 26                     0                0               3
## 27                     0                0               1
## 28                     1              148               5
## 29                     1              520               0
## 30                     0                0               2
## 31                     1                3               1
## 32                     5              425               1
## 33                     2               21               0
## 34                     1                2               3
## 35                     1               34               3
## 36                     3              234              10
## 37                     4               74               2
## 38                     0                0               5
## 39                     3               51               3
## 40                     0                0               6
## 41                     2              313              11
## 42                     2                6               2
## 43                     1              159               1
## 44                     0                0               8
## 45                     1               14               4
## 46                     1              229               3
## 47                     1                3               1
## 48                     3               98               7
## 49                     0                0               0
## 50                     4              308               2
## 51                     3               64               8
## 52                     8              319              14
## 53                     7              224              11
## 54                     3              171               1
## 55                     0                0               0
## 56                     1               82               2
##    fatal_accidents_00_14 fatalities_00_14
## 1                      0                0
## 2                      1               88
## 3                      0                0
## 4                      0                0
## 5                      0                0
## 6                      2              337
## 7                      1              158
## 8                      1                7
## 9                      1               88
## 10                     0                0
## 11                     0                0
## 12                     3              416
## 13                     0                0
## 14                     0                0
## 15                     0                0
## 16                     0                0
## 17                     1              225
## 18                     0                0
## 19                     0                0
## 20                     2               51
## 21                     1               14
## 22                     0                0
## 23                     2               92
## 24                     0                0
## 25                     2               22
## 26                     1              143
## 27                     0                0
## 28                     0                0
## 29                     0                0
## 30                     2              283
## 31                     0                0
## 32                     0                0
## 33                     0                0
## 34                     0                0
## 35                     2              537
## 36                     2               46
## 37                     1                1
## 38                     0                0
## 39                     0                0
## 40                     1              110
## 41                     0                0
## 42                     1               83
## 43                     0                0
## 44                     0                0
## 45                     0                0
## 46                     0                0
## 47                     1                3
## 48                     2              188
## 49                     0                0
## 50                     1                1
## 51                     2               84
## 52                     2              109
## 53                     2               23
## 54                     0                0
## 55                     0                0
## 56                     0                0
names(airline)
## [1] "airline"                "avail_seat_km_per_week"
## [3] "incidents_85_99"        "fatal_accidents_85_99" 
## [5] "fatalities_85_99"       "incidents_00_14"       
## [7] "fatal_accidents_00_14"  "fatalities_00_14"
#get only certain columns for linear regression
library(dplyr)
## Warning: package 'dplyr' was built under R version 3.5.1
## 
## Attaching package: 'dplyr'
## The following objects are masked from 'package:stats':
## 
##     filter, lag
## The following objects are masked from 'package:base':
## 
##     intersect, setdiff, setequal, union
# lets see if there is relationship between fatalities and fatal_accidents increment or decrement within these years

x1 <- lm(fatal_accidents_85_99 ~ fatalities_85_99, data = airline)
summary(x1)
## 
## Call:
## lm(formula = fatal_accidents_85_99 ~ fatalities_85_99, data = airline)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -5.4783 -0.9927 -0.6522  0.2725 11.6570 
## 
## Coefficients:
##                  Estimate Std. Error t value Pr(>|t|)    
## (Intercept)      0.992742   0.410248   2.420   0.0189 *  
## fatalities_85_99 0.010549   0.002232   4.725 1.68e-05 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 2.429 on 54 degrees of freedom
## Multiple R-squared:  0.2925, Adjusted R-squared:  0.2794 
## F-statistic: 22.33 on 1 and 54 DF,  p-value: 1.681e-05
qqnorm(resid(x1))
qqline(resid(x1))

#get only certain columns for linear regression
library(dplyr)

# lets see if there is relationship between fatalities and fatal_accidents increment or decrement within these years

x2 <- lm(fatal_accidents_00_14 ~ fatalities_00_14, data = airline)
summary(x2)
## 
## Call:
## lm(formula = fatal_accidents_00_14 ~ fatalities_00_14, data = airline)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -1.2449 -0.3628 -0.3628  0.2450  1.5192 
## 
## Coefficients:
##                   Estimate Std. Error t value Pr(>|t|)    
## (Intercept)      0.3627478  0.0931025   3.896 0.000272 ***
## fatalities_00_14 0.0053670  0.0007538   7.120 2.63e-09 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.6224 on 54 degrees of freedom
## Multiple R-squared:  0.4842, Adjusted R-squared:  0.4747 
## F-statistic:  50.7 on 1 and 54 DF,  p-value: 2.628e-09
qqnorm(resid(x2))
qqline(resid(x2))

According to the relationship, there is an increment in the fatalities after the accidents from 80s to 2010s.