pre.sourceCode { color: inherit; background-color: transparent; }

Load the the given data file :

library(sna)
library(igraph)
library(network)
(sort(mydata))
##  [1] "alc.att" "alc.beh" "fem"     "fri"     "hob"     "res.act" "res.pas"
##  [8] "sch.att" "sch.beh" "spo.att" "spo.beh" "str.abs" "tob.att" "tob.beh"

Social Network Graph at Wave V

fri_mat = matrix(fri)
fri_V = fri_mat[,1][[1]]
omitted_V_nodes = c(-23, -24,-25) 
fri_V_final  = fri_V[omitted_V_nodes , omitted_V_nodes ] 

igraph_fV_directed = graph.adjacency(as.matrix(fri_V_final),mode = "directed",weighted = NULL)
mynet_V = igraph_fV_directed
mean(degree(mynet_V ))
sd(degree(mynet_V, mode = "in"))
sd(degree(mynet_V, mode = "out"))
reciprocity(mynet_V)
transitivity(mynet_V)
Raw data : Adjacency matrix
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 10 10 10
0 0 1 0 1 0 0 0 1 0 0 1 0 1 0 0 0 0 0 0 0 1 10 10 10
0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 10 10 10
1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 10 10 10
0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 10 10 10
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 1 0 10 10 10
1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 10 10 10
0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 1 10 10 10
0 1 1 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 10 10 10
1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 10 10 10
0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 10 10 10
0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 10 10 10
1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 10 10 10
0 1 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 10 10 10
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 10 10 10
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 10 10 10
0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 10 10 10
0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 10 10 10
0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 10 10 10
0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 10 10 10
0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 10 10 10
0 1 0 0 0 0 0 1 1 0 0 1 0 1 0 0 0 0 0 0 0 0 10 10 10
10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10
10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10
10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10
Remove isolated : Adjacency matrix
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22
0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0
0 0 1 0 1 0 0 0 1 0 0 1 0 1 0 0 0 0 0 0 0 1
0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 1 0
1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 1
0 1 1 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1
1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1
1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0
0 1 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1
0 1 0 0 0 0 0 1 1 0 0 1 0 1 0 0 0 0 0 0 0 0

Social Network Graph at Wave W

fri_W =fri_mat[,1][[2]]
fri_W[is.na(fri_W )] = 0
omitted_W_nodes = c(-15, -23, -24,-25)
fri_W_final = fri_W[omitted_W_nodes , omitted_W_nodes]
igraph_fW_directed = graph.adjacency(as.matrix(fri_W_final),mode = "directed",weighted = NULL)
mynet_W = igraph_fW_directed
mean(degree(mynet_W ))
sd(degree(mynet_W, mode = "in"))
sd(degree(mynet_W, mode = "out"))
reciprocity(mynet_W)
transitivity(mynet_W)
Raw data : Adjacency matrix
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
0 0 0 0 0 0 0 0 0 0 0 1 1 0 10 1 0 0 0 0 0 0 10 10 10
0 0 1 0 1 0 1 0 1 0 0 0 0 1 10 0 0 0 0 0 0 1 10 10 10
0 0 0 0 0 0 0 0 0 0 0 0 0 0 10 0 0 0 0 0 0 0 10 10 10
0 1 1 0 1 0 1 0 1 0 0 1 0 1 10 0 0 0 0 0 0 1 10 10 10
0 0 0 0 0 0 0 0 1 0 0 0 0 0 10 0 0 0 0 0 0 0 10 10 10
0 0 0 0 0 0 0 0 0 0 0 0 0 0 10 0 0 1 0 1 1 0 10 10 10
0 0 0 0 0 0 0 0 0 0 0 1 0 1 10 0 0 0 0 0 0 1 10 10 10
0 0 0 0 0 0 0 0 0 0 1 0 0 0 10 0 0 0 1 1 0 0 10 10 10
0 0 0 0 1 0 0 0 0 0 0 1 0 1 10 0 0 0 0 0 0 1 10 10 10
0 0 1 1 0 0 1 0 0 0 0 0 0 0 10 0 1 0 0 0 0 0 10 10 10
0 0 0 0 0 0 0 1 0 0 0 0 0 0 10 0 0 0 0 1 0 0 10 10 10
0 0 0 0 0 0 1 0 1 0 0 0 0 1 10 0 0 0 0 0 0 1 10 10 10
1 0 0 0 0 0 0 0 0 0 0 0 0 0 10 1 0 0 0 0 0 0 10 10 10
0 0 0 0 0 0 1 0 0 0 0 1 0 0 10 0 0 0 0 0 0 1 10 10 10
10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10
1 0 0 0 0 0 0 0 0 0 0 0 1 0 10 0 0 0 0 0 0 0 10 10 10
0 0 0 1 1 0 0 0 0 0 0 0 0 0 10 0 0 0 0 0 0 0 10 10 10
0 0 0 0 0 1 0 0 0 0 0 0 0 0 10 0 0 0 0 1 1 0 10 10 10
0 0 0 0 0 0 0 1 0 0 0 0 0 0 10 0 0 0 0 0 0 0 10 10 10
0 0 0 0 0 0 0 0 0 0 0 0 0 0 10 0 0 0 0 0 0 0 10 10 10
0 0 0 0 0 1 0 0 0 0 0 0 0 0 10 0 0 1 0 0 0 0 10 10 10
0 1 0 0 0 0 1 0 0 0 0 1 0 1 10 0 0 0 0 0 0 0 10 10 10
10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10
10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10
10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10
Remove isolated : Adjacency matrix
1 2 3 4 5 6 7 8 9 10 11 12 13 14 16 17 18 19 20 21 22
1 0 0 0 0 0 0 0 0 0 0 0 1 1 0 1 0 0 0 0 0 0
2 0 0 1 0 1 0 1 0 1 0 0 0 0 1 0 0 0 0 0 0 1
3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
4 0 1 1 0 1 0 1 0 1 0 0 1 0 1 0 0 0 0 0 0 1
5 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0
6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 1 0
7 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 1
8 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 1 0 0
9 0 0 0 0 1 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 1
10 0 0 1 1 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0
11 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0
12 0 0 0 0 0 0 1 0 1 0 0 0 0 1 0 0 0 0 0 0 1
13 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0
14 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 1
16 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0
17 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
18 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0
19 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
20 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
21 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0
22 0 1 0 0 0 0 1 0 0 0 0 1 0 1 0 0 0 0 0 0 0

Social Network Graph at Wave X

fri_X =fri_mat[,1][[3]]
omitted_X_nodes = c(-15,-17,-18, -23, -24,-25)
fri_X_final = fri_X[omitted_X_nodes , omitted_X_nodes]
igraph_fX_directed = graph.adjacency(as.matrix(fri_X_final),mode = "directed",weighted = NULL)
mynet_X = igraph_fX_directed

mean(degree(mynet_X ))
sd(degree(mynet_X, mode = "in"))
sd(degree(mynet_X, mode = "out"))
reciprocity(mynet_X)
transitivity(mynet_X)
Raw data : Adjacency matrix
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
0 0 0 0 0 0 0 0 0 0 0 0 1 0 10 1 0 10 0 0 0 0 10 10 10
0 0 1 0 0 0 0 0 0 0 0 0 0 1 10 0 0 10 0 0 0 1 10 10 10
0 1 0 1 1 0 1 0 1 0 0 0 0 1 10 0 0 10 1 0 0 1 10 10 10
0 1 1 0 0 0 0 0 1 0 0 0 0 1 10 0 0 10 0 0 0 1 10 10 10
0 1 1 1 0 0 0 0 1 0 0 0 0 1 10 0 0 10 0 0 0 1 10 10 10
0 0 0 0 0 0 0 0 0 0 0 0 0 0 10 0 0 10 0 0 1 0 10 10 10
0 0 0 0 0 0 0 0 0 0 0 1 0 0 10 0 0 10 0 0 0 1 10 10 10
0 0 0 0 0 0 0 0 0 0 1 0 0 0 10 0 0 10 0 1 0 1 10 10 10
0 0 0 0 1 0 0 0 0 0 0 0 0 1 10 0 0 10 0 0 0 1 10 10 10
0 0 1 1 0 0 0 0 0 0 0 0 0 0 10 0 0 10 0 0 0 0 10 10 10
0 0 0 0 0 0 0 1 0 0 0 0 0 0 10 0 0 10 1 1 0 0 10 10 10
1 0 0 0 0 0 1 0 1 0 0 0 0 1 10 0 0 10 0 0 0 1 10 10 10
1 0 0 0 0 0 0 0 0 0 0 0 0 0 10 1 0 10 0 0 0 0 10 10 10
0 1 1 1 1 0 1 0 1 0 0 1 0 0 10 0 0 10 0 0 0 1 10 10 10
10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10
1 0 0 0 0 0 0 0 0 0 0 0 1 0 10 0 0 10 0 0 0 0 10 10 10
0 0 0 0 0 0 0 0 0 0 0 0 0 0 10 0 0 10 0 0 0 0 10 10 10
10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10
0 0 0 0 0 0 0 0 0 0 1 0 0 0 10 0 0 10 0 1 0 0 10 10 10
0 0 0 0 0 0 0 0 0 0 1 0 0 0 10 0 0 10 0 0 0 0 10 10 10
0 0 0 0 0 1 0 0 0 0 0 0 0 0 10 0 0 10 0 0 0 0 10 10 10
0 0 0 1 0 0 0 0 0 0 0 0 0 1 10 0 0 10 0 0 0 0 10 10 10
10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10
10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10
10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10
Remove isolated : Adjacency matrix
1 2 3 4 5 6 7 8 9 10 11 12 13 14 16 19 20 21 22
1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0
2 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1
3 0 1 0 1 1 0 1 0 1 0 0 0 0 1 0 1 0 0 1
4 0 1 1 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1
5 0 1 1 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1
6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0
7 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1
8 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 1
9 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 1
10 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
11 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 1 0 0
12 1 0 0 0 0 0 1 0 1 0 0 0 0 1 0 0 0 0 1
13 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0
14 0 1 1 1 1 0 1 0 1 0 0 1 0 0 0 0 0 0 1
16 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0
19 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0
20 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0
21 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
22 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0

Social Network Graph at Wave Y

fri_Y =fri_mat[,1][[4]]
omitted_Y_nodes = c(-1, -14,-15, -18)
fri_Y_final = fri_Y[omitted_Y_nodes  , omitted_Y_nodes  ]
igraph_fY_directed = graph.adjacency(as.matrix(fri_Y_final),mode = "directed",weighted = NULL)
mynet_Y = igraph_fY_directed
mean(degree(mynet_Y ))
sd(degree(mynet_Y, mode = "in"))
sd(degree(mynet_Y, mode = "out"))
reciprocity(mynet_Y)
transitivity(mynet_Y)
Raw data : Adjacency matrix
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10
10 0 1 0 0 0 1 0 1 0 0 1 0 10 10 0 0 10 0 0 0 1 0 0 0
10 1 0 0 0 0 1 1 1 1 0 0 0 10 10 0 0 10 0 0 0 1 0 0 0
10 1 1 0 0 0 0 0 0 0 0 0 0 10 10 0 0 10 0 0 0 1 0 0 0
10 1 1 1 0 0 0 0 1 0 0 0 0 10 10 0 1 10 0 0 0 1 0 0 0
10 0 0 0 0 0 0 0 0 0 0 0 0 10 10 0 0 10 0 0 1 0 1 1 1
10 0 0 0 0 0 0 0 0 0 0 1 1 10 10 1 0 10 0 0 0 1 0 0 0
10 0 0 0 0 0 0 0 0 0 1 0 0 10 10 0 0 10 1 1 0 1 0 0 0
10 0 0 0 1 0 0 0 0 0 0 0 0 10 10 0 1 10 0 0 0 0 0 0 0
10 0 1 1 0 0 1 0 0 0 0 0 0 10 10 0 1 10 0 0 0 0 0 0 0
10 0 0 0 0 0 0 1 0 0 0 0 0 10 10 0 0 10 0 1 0 0 0 0 0
10 0 0 0 0 0 1 0 0 0 0 0 0 10 10 1 0 10 0 0 0 0 0 0 0
10 0 0 0 0 0 0 0 0 0 0 0 0 10 10 1 0 10 0 0 0 0 0 0 0
10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10
10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10
10 0 0 0 0 0 0 0 0 0 0 0 1 10 10 0 0 10 0 0 0 0 0 0 0
10 0 0 0 1 0 0 0 0 0 0 0 0 10 10 0 0 10 0 0 0 1 0 0 0
10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10
10 0 0 0 0 0 0 1 0 0 0 0 0 10 10 0 0 10 0 0 0 0 0 0 0
10 0 0 0 0 0 0 0 0 0 1 0 0 10 10 0 0 10 0 0 0 0 0 0 0
10 0 0 0 0 1 0 0 0 0 0 0 0 10 10 0 0 10 0 0 0 0 1 1 0
10 1 0 1 0 0 0 0 0 0 0 0 0 10 10 0 0 10 0 0 0 0 0 0 0
10 0 0 0 0 1 0 0 0 0 0 0 0 10 10 0 0 10 0 0 1 0 0 1 1
10 0 0 0 0 1 0 0 0 0 0 0 0 10 10 0 0 10 0 0 0 0 1 0 1
10 0 0 0 0 1 0 0 0 0 0 0 0 10 10 0 0 10 0 0 1 0 1 1 0
Remove isolated : Adjacency matrix
2 3 4 5 6 7 8 9 10 11 12 13 16 17 19 20 21 22 23 24 25
2 0 1 0 0 0 1 0 1 0 0 1 0 0 0 0 0 0 1 0 0 0
3 1 0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0 1 0 0 0
4 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0
5 1 1 1 0 0 0 0 1 0 0 0 0 0 1 0 0 0 1 0 0 0
6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 1 1
7 0 0 0 0 0 0 0 0 0 0 1 1 1 0 0 0 0 1 0 0 0
8 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 1 0 1 0 0 0
9 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0
10 0 1 1 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0
11 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0
12 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0
13 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0
16 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0
17 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0
19 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
20 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
21 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0
22 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
23 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 1
24 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1
25 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 1 1 0

+ Make a table containing descriptive information for individual level variables

V W X Y
mean_active_response 0.880 0.800 0.800 0.840
mean_passive_response 0.880 0.840 0.840 0.920
avg_deg 5.182 5.714 6.421 6.095
sd_deg_In 1.869 1.852 2.226 1.322
sd_deg_Out 1.469 1.852 2.175 1.564
reciprocal 0.561 0.567 0.656 0.594
transitive 0.422 0.613 0.646 0.574
+ percentage of females
+  means and standard deviation of 
    + alcohol consumption
    + tobacco consumption
    + school engagement
    + sportivity
Social Network Structure at Wave V, W,X,Y
V W X Y
me_alc_att 1.880 1.600 1.680 2.000
sd_alc_att 1.130 1.190 1.215 1.384
me_alc_beh 1.636 1.158 1.200 1.524
sd_alc_beh 0.902 0.501 0.523 0.928
me_tob_att 1.273 1.517 1.250 1.667
sd_tob_att 0.420 0.721 0.388 0.624
me_tob_beh 1.136 1.158 1.050 1.286
sd_tob_beh 0.468 0.501 0.224 0.956
me_sch_att 4.709 4.730 4.640 4.562
sd_sch_att 0.379 0.345 0.572 0.450
me_sch_beh 4.352 3.992 4.150 3.964
sd_sch_beh 0.315 0.388 0.440 0.463
me_spo_att 3.773 3.750 3.900 3.619
sd_spo_att 1.020 0.910 0.912 1.024
me_spo_beh 2.905 3.211 3.400 3.143
sd_spo_beh 1.261 1.228 1.095 1.236
Female_Prop 0.600 0.600 0.600 0.600
Male_Prop 0.400 0.400 0.400 0.400

Run A Simple Model: Logit Regression Modeling at Wave V (Social Network)

indeg_V = degree(mynet_V, mode = "in")

alc.att[is.na(alc.att)] = 0
alc.beh[is.na(alc.beh)] = 0

alcatt_V = alc.att[omitted_V_nodes ,"V"]
alcbeh_V = alc.beh[omitted_V_nodes , "V"]
fem_V = fem[omitted_V_nodes]
model_V =  glm(factor(indeg_V) ~  factor(fem_V)+ factor(alcatt_V)  + factor(alcbeh_V),  family= "binomial"   )
summary(model_V)
## 
## Call:
## glm(formula = factor(indeg_V) ~ factor(fem_V) + factor(alcatt_V) + 
##     factor(alcbeh_V), family = "binomial")
## 
## Deviance Residuals: 
##      Min        1Q    Median        3Q       Max  
## -1.79412   0.00000   0.00001   0.50106   1.17741  
## 
## Coefficients:
##                    Estimate Std. Error z value Pr(>|z|)
## (Intercept)          40.089  13750.027   0.003    0.998
## factor(fem_V)1      -38.703  13750.027  -0.003    0.998
## factor(alcatt_V)2    -1.386      1.500  -0.924    0.355
## factor(alcatt_V)3   -20.899  10472.027  -0.002    0.998
## factor(alcatt_V)4   -38.379  34613.728  -0.001    0.999
## factor(alcbeh_V)2    19.856  12430.268   0.002    0.999
## factor(alcbeh_V)3    39.591  17398.971   0.002    0.998
## factor(alcbeh_V)4    41.079  31051.551   0.001    0.999
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 20.862  on 21  degrees of freedom
## Residual deviance: 10.549  on 14  degrees of freedom
## AIC: 26.549
## 
## Number of Fisher Scoring iterations: 20