Load in and read the data
rm(list = ls())
library(readr)
Data <- read_csv("C:/Users/buffe/Documents/Forecasting Principles/Sales_Transactions_Dataset_Weekly-1.csv")
## Parsed with column specification:
## cols(
## .default = col_integer(),
## Product_Code = col_character(),
## `Normalized 0` = col_double(),
## `Normalized 1` = col_double(),
## `Normalized 2` = col_double(),
## `Normalized 3` = col_double(),
## `Normalized 4` = col_double(),
## `Normalized 5` = col_double(),
## `Normalized 6` = col_double(),
## `Normalized 7` = col_double(),
## `Normalized 8` = col_double(),
## `Normalized 9` = col_double(),
## `Normalized 10` = col_double(),
## `Normalized 11` = col_double(),
## `Normalized 12` = col_double(),
## `Normalized 13` = col_double(),
## `Normalized 14` = col_double(),
## `Normalized 15` = col_double(),
## `Normalized 16` = col_double(),
## `Normalized 17` = col_double(),
## `Normalized 18` = col_double()
## # ... with 33 more columns
## )
## See spec(...) for full column specifications.
View(Data)
Find top 10 products based on highest average for the 52 weeks
#Only raw data
library(fpp2)
## Warning: package 'fpp2' was built under R version 3.4.4
## Loading required package: ggplot2
## Warning: package 'ggplot2' was built under R version 3.4.3
## Loading required package: forecast
## Warning: package 'forecast' was built under R version 3.4.4
## Loading required package: fma
## Warning: package 'fma' was built under R version 3.4.4
## Loading required package: expsmooth
## Warning: package 'expsmooth' was built under R version 3.4.4
raw <- Data[,c(1:55)]
raw$Total <- raw$W0 + raw$W1 + raw$W2 + raw$W3 + raw$W4 + raw$W5 + raw$W6 + raw$W7 + raw$W8 + raw$W9 + raw$W10 + raw$W11 + raw$W12 + raw$W13 + raw$W14 + raw$W15 + raw$W16 + raw$W17 + raw$W18 + raw$W19 + raw$W20 + raw$W21 + raw$W22 + raw$W23 + raw$W24 + raw$W25 + raw$W26 + raw$W27 + raw$W28 + raw$W29 + raw$W30 + raw$W31 + raw$W32 + raw$W33 + raw$W34 + raw$W35 + raw$W36 + raw$W37 + raw$W38 + raw$W39 + raw$W40 + raw$W41 + raw$W42 + raw$W43 + raw$W44 + raw$W45 + raw$W46 + raw$W47 + raw$W48 + raw$W49 + raw$W50 + raw$W51
raw$Average <- raw$Total/52
print(raw$Average)
## [1] 9.63461538 3.98076923 8.69230769 8.26923077 8.46153846
## [6] 4.23076923 4.09615385 8.65384615 10.36538462 19.42307692
## [11] 11.55769231 3.90384615 9.03846154 11.82692308 34.71153846
## [16] 36.05769231 33.94230769 32.34615385 32.44230769 8.94230769
## [21] 8.88461538 9.36538462 4.13461538 36.09615385 30.80769231
## [26] 10.28846154 34.69230769 32.61538462 12.07692308 32.50000000
## [31] 8.50000000 9.09615385 11.61538462 37.15384615 34.71153846
## [36] 35.44230769 35.73076923 36.38461538 33.76923077 35.84615385
## [41] 34.96153846 32.11538462 36.78846154 32.53846154 31.75000000
## [46] 33.00000000 33.42307692 34.69230769 34.55769231 8.82692308
## [51] 17.92307692 32.98076923 4.50000000 35.76923077 31.57692308
## [56] 32.71153846 33.15384615 33.42307692 8.96153846 32.98076923
## [61] 32.13461538 16.03846154 35.05769231 31.71153846 9.40384615
## [66] 35.42307692 32.53846154 8.50000000 33.57692308 32.07692308
## [71] 9.50000000 34.86538462 32.82692308 9.01923077 35.28846154
## [76] 32.36538462 4.50000000 31.94230769 32.34615385 30.73076923
## [81] 8.90384615 8.53846154 34.84615385 33.69230769 31.69230769
## [86] 32.76923077 31.59615385 31.26923077 32.21153846 32.86538462
## [91] 8.78846154 36.46153846 8.71153846 8.78846154 12.30769231
## [96] 34.67307692 31.61538462 4.03846154 9.28846154 11.13461538
## [101] 35.55769231 31.59615385 8.25000000 3.96153846 3.75000000
## [106] 10.71153846 17.71153846 2.84615385 9.40384615 8.86538462
## [111] 4.57692308 34.76923077 31.00000000 9.36538462 10.98076923
## [116] 9.32692308 4.34615385 9.65384615 33.15384615 33.19230769
## [121] 8.86538462 8.92307692 3.59615385 4.61538462 8.36538462
## [126] 4.32692308 2.25000000 35.09615385 35.23076923 33.94230769
## [131] 33.55769231 34.98076923 34.25000000 35.40384615 36.92307692
## [136] 35.75000000 36.42307692 31.98076923 32.88461538 33.36538462
## [141] 32.23076923 31.98076923 32.57692308 9.48076923 9.03846154
## [146] 8.44230769 9.19230769 3.86538462 9.34615385 3.94230769
## [151] 4.25000000 9.11538462 9.34615385 8.34615385 3.92307692
## [156] 3.59615385 8.26923077 3.46153846 4.07692308 9.09615385
## [161] 4.38461538 8.63461538 3.92307692 8.94230769 9.84615385
## [166] 9.65384615 33.30769231 34.34615385 31.09615385 32.90384615
## [171] 8.61538462 34.69230769 36.48076923 36.26923077 35.07692308
## [176] 32.92307692 33.07692308 37.01923077 36.61538462 35.63461538
## [181] 32.78846154 31.48076923 31.09615385 34.28846154 34.00000000
## [186] 34.59615385 30.36538462 32.26923077 32.26923077 36.76923077
## [191] 35.65384615 32.38461538 35.75000000 31.01923077 4.34615385
## [196] 32.63461538 9.61538462 10.23076923 3.32692308 17.40384615
## [201] 3.78846154 15.48076923 6.07692308 2.34615385 12.15384615
## [206] 2.63461538 5.65384615 31.63461538 9.90384615 12.55769231
## [211] 11.32692308 0.42307692 0.23076923 0.25000000 0.01923077
## [216] 0.19230769 0.13461538 0.09615385 0.30769231 0.25000000
## [221] 0.28846154 0.21153846 0.19230769 0.46153846 0.23076923
## [226] 0.17307692 0.11538462 0.03846154 0.17307692 0.03846154
## [231] 0.17307692 0.05769231 0.11538462 0.07692308 0.15384615
## [236] 0.09615385 0.09615385 0.26923077 0.21153846 0.21153846
## [241] 0.25000000 0.23076923 0.07692308 0.17307692 0.26923077
## [246] 0.13461538 0.36538462 0.23076923 0.07692308 0.03846154
## [251] 0.01923077 0.15384615 0.03846154 0.01923077 1.05769231
## [256] 0.07692308 0.65384615 0.09615385 0.01923077 0.09615385
## [261] 20.55769231 32.32692308 18.05769231 9.42307692 1.98076923
## [266] 9.46153846 9.34615385 18.46153846 12.30769231 19.80769231
## [271] 3.48076923 0.40384615 0.19230769 0.13461538 0.07692308
## [276] 0.05769231 0.26923077 0.13461538 0.03846154 0.13461538
## [281] 0.96153846 0.63461538 0.51923077 17.88461538 9.19230769
## [286] 18.46153846 1.17307692 0.84615385 0.40384615 0.26923077
## [291] 3.51923077 3.71153846 3.78846154 9.32692308 4.44230769
## [296] 4.21153846 3.92307692 3.94230769 9.11538462 4.28846154
## [301] 4.07692308 4.17307692 3.84615385 8.26923077 4.92307692
## [306] 4.07692308 4.36538462 3.98076923 9.26923077 4.46153846
## [311] 4.34615385 4.07692308 4.23076923 9.69230769 3.98076923
## [316] 4.21153846 4.34615385 3.67307692 9.11538462 4.21153846
## [321] 4.15384615 3.71153846 4.05769231 9.07692308 4.11538462
## [326] 4.07692308 3.88461538 4.01923077 4.44230769 4.01923077
## [331] 4.73076923 8.84615385 9.09615385 9.86538462 3.25000000
## [336] 3.50000000 3.86538462 2.61538462 1.21153846 0.57692308
## [341] 3.23076923 2.30769231 1.98076923 1.57692308 2.55769231
## [346] 0.32692308 0.38461538 0.44230769 0.30769231 0.15384615
## [351] 0.05769231 0.11538462 0.07692308 0.07692308 3.78846154
## [356] 2.19230769 1.23076923 5.09615385 0.98076923 2.53846154
## [361] 1.15384615 0.51923077 12.61538462 3.67307692 3.05769231
## [366] 2.25000000 5.38461538 3.92307692 3.55769231 2.19230769
## [371] 2.13461538 1.44230769 1.13461538 0.57692308 0.59615385
## [376] 0.59615385 0.38461538 0.25000000 0.05769231 0.03846154
## [381] 0.03846154 0.03846154 0.30769231 0.05769231 3.21153846
## [386] 2.94230769 2.48076923 2.67307692 2.59615385 5.36538462
## [391] 1.34615385 2.50000000 2.34615385 2.34615385 9.65384615
## [396] 12.00000000 12.69230769 15.73076923 3.80769231 3.26923077
## [401] 15.82692308 9.07692308 18.57692308 13.28846154 18.42307692
## [406] 12.01923077 42.69230769 16.53846154 17.01923077 3.50000000
## [411] 9.15384615 3.21153846 3.38461538 1.09615385 0.48076923
## [416] 0.30769231 0.23076923 0.09615385 0.03846154 0.78846154
## [421] 0.25000000 0.30769231 0.07692308 0.11538462 0.17307692
## [426] 0.03846154 8.78846154 12.36538462 6.13461538 7.96153846
## [431] 4.07692308 2.61538462 16.67307692 8.88461538 6.11538462
## [436] 0.44230769 0.42307692 0.28846154 0.26923077 0.40384615
## [441] 0.30769231 0.07692308 0.23076923 0.23076923 0.26923077
## [446] 0.48076923 0.40384615 0.32692308 0.28846154 0.28846154
## [451] 0.19230769 0.15384615 0.46153846 0.48076923 0.07692308
## [456] 0.25000000 0.26923077 0.36538462 0.21153846 0.13461538
## [461] 0.11538462 0.13461538 0.11538462 0.05769231 0.03846154
## [466] 0.03846154 0.01923077 0.13461538 0.03846154 0.23076923
## [471] 0.05769231 0.05769231 2.55769231 1.13461538 0.76923077
## [476] 1.05769231 0.90384615 0.40384615 1.32692308 0.63461538
## [481] 0.32692308 4.38461538 9.61538462 18.17307692 12.01923077
## [486] 10.75000000 4.42307692 8.32692308 17.82692308 10.69230769
## [491] 10.71153846 11.78846154 15.88461538 8.98076923 4.46153846
## [496] 3.82692308 8.78846154 6.23076923 5.09615385 12.51923077
## [501] 15.59615385 11.19230769 15.32692308 12.13461538 16.82692308
## [506] 8.76923077 5.65384615 7.28846154 24.78846154 18.51923077
## [511] 17.73076923 11.42307692 9.19230769 18.63461538 11.57692308
## [516] 9.67307692 18.59615385 12.17307692 10.11538462 10.67307692
## [521] 11.36538462 9.86538462 12.21153846 15.69230769 10.86538462
## [526] 10.88461538 12.65384615 15.76923077 4.88461538 9.09615385
## [531] 24.09615385 9.07692308 18.25000000 11.59615385 17.69230769
## [536] 12.67307692 9.26923077 17.46153846 10.69230769 10.73076923
## [541] 10.32692308 11.53846154 15.94230769 11.57692308 10.09615385
## [546] 32.51923077 31.44230769 9.19230769 9.15384615 8.69230769
## [551] 3.88461538 18.38461538 10.32692308 15.11538462 25.28846154
## [556] 11.90384615 11.26923077 9.59615385 3.90384615 4.23076923
## [561] 8.65384615 9.23076923 8.48076923 18.19230769 3.82692308
## [566] 3.23076923 2.67307692 2.51923077 5.32692308 1.38461538
## [571] 3.25000000 0.53846154 0.44230769 0.28846154 0.75000000
## [576] 0.26923077 0.15384615 3.30769231 3.13461538 2.38461538
## [581] 2.69230769 3.07692308 1.32692308 6.03846154 3.55769231
## [586] 2.09615385 1.48076923 3.61538462 2.67307692 1.21153846
## [591] 3.34615385 3.28846154 2.65384615 5.48076923 1.30769231
## [596] 12.23076923 3.82692308 2.19230769 1.67307692 0.78846154
## [601] 0.55769231 0.26923077 1.21153846 0.84615385 0.25000000
## [606] 0.44230769 3.44230769 3.75000000 3.55769231 13.09615385
## [611] 22.17307692 5.46153846 24.32692308 4.88461538 31.84615385
## [616] 34.26923077 32.15384615 30.63461538 32.65384615 32.55769231
## [621] 32.17307692 8.88461538 9.34615385 8.92307692 9.84615385
## [626] 8.40384615 9.26923077 8.65384615 8.84615385 10.00000000
## [631] 9.44230769 9.96153846 8.90384615 11.40384615 4.23076923
## [636] 12.82692308 0.19230769 16.67307692 2.50000000 3.40384615
## [641] 0.09615385 0.03846154 0.03846154 0.11538462 0.03846154
## [646] 0.05769231 0.36538462 0.19230769 0.25000000 0.03846154
## [651] 0.11538462 0.03846154 0.11538462 0.15384615 0.11538462
## [656] 0.13461538 0.05769231 0.07692308 0.73076923 0.42307692
## [661] 0.25000000 0.21153846 0.21153846 0.05769231 0.09615385
## [666] 0.75000000 0.34615385 0.21153846 3.07692308 7.32692308
## [671] 4.40384615 3.11538462 0.09615385 0.11538462 0.17307692
## [676] 0.01923077 0.13461538 0.07692308 0.07692308 0.01923077
## [681] 0.07692308 2.55769231 1.01923077 0.61538462 0.40384615
## [686] 0.44230769 0.26923077 2.26923077 2.55769231 0.30769231
## [691] 0.25000000 0.21153846 0.44230769 2.32692308 1.00000000
## [696] 0.88461538 3.03846154 5.78846154 3.01923077 0.75000000
## [701] 2.61538462 1.26923077 0.73076923 0.03846154 0.17307692
## [706] 0.05769231 0.07692308 0.13461538 0.07692308 0.05769231
## [711] 0.15384615 0.30769231 0.05769231 0.15384615 0.01923077
## [716] 0.03846154 0.09615385 1.11538462 3.03846154 0.78846154
## [721] 0.23076923 0.09615385 0.30769231 1.34615385 0.71153846
## [726] 0.42307692 0.34615385 1.19230769 2.78846154 0.67307692
## [731] 0.30769231 0.19230769 0.23076923 1.00000000 0.94230769
## [736] 0.17307692 5.23076923 1.21153846 2.90384615 0.67307692
## [741] 0.67307692 0.34615385 0.40384615 2.11538462 0.90384615
## [746] 0.94230769 0.42307692 0.32692308 0.28846154 0.23076923
## [751] 0.19230769 0.03846154 0.05769231 1.71153846 0.03846154
## [756] 3.17307692 0.78846154 0.48076923 1.28846154 3.96153846
## [761] 1.32692308 0.28846154 0.28846154 0.26923077 0.17307692
## [766] 0.11538462 0.07692308 0.30769231 0.21153846 0.15384615
## [771] 0.23076923 0.15384615 16.44230769 3.63461538 13.21153846
## [776] 3.38461538 2.13461538 2.26923077 1.30769231 3.40384615
## [781] 3.15384615 2.42307692 5.51923077 1.42307692 3.01923077
## [786] 0.65384615 0.44230769 3.32692308 2.94230769 2.28846154
## [791] 4.82692308 1.46153846 2.88461538 0.73076923 3.55769231
## [796] 2.92307692 2.65384615 5.17307692 1.30769231 3.11538462
## [801] 0.76923077 0.38461538 3.53846154 1.53846154 2.34615385
## [806] 5.11538462 0.44230769 2.73076923 0.50000000 0.32692308
## [811] 0.30769231
raw$Volatility <- raw$MAX - raw$MIN
results <- raw[,c(1,54,55,56,57,58)]
results
## # A tibble: 811 x 6
## Product_Code MIN MAX Total Average Volatility
## <chr> <int> <int> <int> <dbl> <int>
## 1 P1 3 21 501 9.634615 18
## 2 P2 0 10 207 3.980769 10
## 3 P3 3 14 452 8.692308 11
## 4 P4 2 19 430 8.269231 17
## 5 P5 3 18 440 8.461538 15
## 6 P6 0 11 220 4.230769 11
## 7 P7 0 10 213 4.096154 10
## 8 P8 3 15 450 8.653846 12
## 9 P9 3 18 539 10.365385 15
## 10 P10 9 33 1010 19.423077 24
## # ... with 801 more rows
results <- results[order(-results$Total),]
results
## # A tibble: 811 x 6
## Product_Code MIN MAX Total Average Volatility
## <chr> <int> <int> <int> <dbl> <int>
## 1 P409 23 73 2220 42.69231 50
## 2 P34 23 55 1932 37.15385 32
## 3 P178 19 53 1925 37.01923 34
## 4 P135 16 56 1920 36.92308 40
## 5 P43 20 61 1913 36.78846 41
## 6 P190 21 54 1912 36.76923 33
## 7 P179 19 55 1904 36.61538 36
## 8 P173 15 54 1897 36.48077 39
## 9 P92 19 59 1896 36.46154 40
## 10 P137 22 54 1894 36.42308 32
## # ... with 801 more rows
results.10 <- results[c(1:25),]
top10 <- results.10$Product_Code[c(1:10)]
top10
## [1] "P409" "P34" "P178" "P135" "P43" "P190" "P179" "P173" "P92" "P137"
full.top10 <- Data[Data$Product_Code %in% top10,]
colSums(raw[c(2:53)])
## W0 W1 W2 W3 W4 W5 W6 W7 W8 W9 W10 W11 W12 W13 W14
## 7220 7404 7615 7881 7765 7677 7883 7774 7935 7852 7940 7849 7970 7856 8035
## W15 W16 W17 W18 W19 W20 W21 W22 W23 W24 W25 W26 W27 W28 W29
## 8147 8137 8033 8116 7822 7988 7875 8031 7998 8245 7212 5637 5834 5988 5952
## W30 W31 W32 W33 W34 W35 W36 W37 W38 W39 W40 W41 W42 W43 W44
## 6170 6172 6293 6412 6482 6486 6500 6548 6692 6460 6636 6683 6808 6746 6840
## W45 W46 W47 W48 W49 W50 W51
## 6939 7072 7032 7035 7214 7187 7209
total <- ts(as.numeric(colSums(raw[c(2:53)])), start = c(2015,1), frequency = 52)
autoplot(total)
Time series for each of the top 10 products
full.top10$Product_Code
## [1] "P34" "P43" "P92" "P135" "P137" "P173" "P178" "P179" "P190" "P409"
p34 <- ts(as.numeric(full.top10[c(1),c(2:53)]), start = c(2015,1), frequency = 52)
p43 <- ts(as.numeric(full.top10[c(2),c(2:53)]), start = c(2015,1), frequency = 52)
p92 <- ts(as.numeric(full.top10[c(3),c(2:53)]), start = c(2015,1), frequency = 52)
p135 <- ts(as.numeric(full.top10[c(4),c(2:53)]), start = c(2015,1), frequency = 52)
p137 <- ts(as.numeric(full.top10[c(5),c(2:53)]), start = c(2015,1), frequency = 52)
p173 <- ts(as.numeric(full.top10[c(6),c(2:53)]), start = c(2015,1), frequency = 52)
p178 <- ts(as.numeric(full.top10[c(7),c(2:53)]), start = c(2015,1), frequency = 52)
p179 <- ts(as.numeric(full.top10[c(8),c(2:53)]), start = c(2015,1), frequency = 52)
p190 <- ts(as.numeric(full.top10[c(9),c(2:53)]), start = c(2015,1), frequency = 52)
p409 <- ts(as.numeric(full.top10[c(10),c(2:53)]), start = c(2015,1), frequency = 52)
Number 1: P34
autoplot(p34)
autoplot(diff(p34))
fit34.auto <- auto.arima(p34, seasonal = FALSE)
fit34.auto
## Series: p34
## ARIMA(3,1,2)
##
## Coefficients:
## ar1 ar2 ar3 ma1 ma2
## -0.9397 -0.5901 -0.2055 -0.0596 -0.5850
## s.e. 0.3688 0.2525 0.2577 0.3408 0.2344
##
## sigma^2 estimated as 55.82: log likelihood=-173.4
## AIC=358.8 AICc=360.71 BIC=370.39
autoplot(forecast(fit34.auto, h=8))
checkresiduals(fit34.auto)
##
## Ljung-Box test
##
## data: Residuals from ARIMA(3,1,2)
## Q* = 7.9037, df = 5.4, p-value = 0.1932
##
## Model df: 5. Total lags used: 10.4
This product is really volitile with no trend. The ACF plot looks good
Number 2: P43
autoplot(p43)
autoplot(diff(p43))
fit43.auto <- auto.arima(p43, seasonal = FALSE)
fit43.auto
## Series: p43
## ARIMA(1,1,1)
##
## Coefficients:
## ar1 ma1
## 0.0796 -0.7157
## s.e. 0.2426 0.1910
##
## sigma^2 estimated as 68.48: log likelihood=-179.42
## AIC=364.85 AICc=365.36 BIC=370.64
autoplot(forecast(fit43.auto, h=8))
checkresiduals(fit43.auto)
##
## Ljung-Box test
##
## data: Residuals from ARIMA(1,1,1)
## Q* = 6.3172, df = 8.4, p-value = 0.6519
##
## Model df: 2. Total lags used: 10.4
The forecast for this product is a flat line. The ACF plot looks good.
Number 3: P92
autoplot(p92)
autoplot(diff(p92))
fit92.auto <- auto.arima(p92, seasonal = FALSE)
fit92.auto
## Series: p92
## ARIMA(2,1,0)
##
## Coefficients:
## ar1 ar2
## -0.5942 -0.5493
## s.e. 0.1244 0.1255
##
## sigma^2 estimated as 67.46: log likelihood=-179.18
## AIC=364.36 AICc=364.87 BIC=370.15
autoplot(forecast(fit92.auto, h=8))
checkresiduals(fit92.auto)
##
## Ljung-Box test
##
## data: Residuals from ARIMA(2,1,0)
## Q* = 9.3586, df = 8.4, p-value = 0.3492
##
## Model df: 2. Total lags used: 10.4
This product has a little volitility. The forecast looks good and ends on the upside.
Number 4: P135
autoplot(p135)
autoplot(diff(p135))
fit135.auto <- auto.arima(p135, seasonal = FALSE)
fit135.auto
## Series: p135
## ARIMA(0,1,1)
##
## Coefficients:
## ma1
## -0.7394
## s.e. 0.1240
##
## sigma^2 estimated as 56.83: log likelihood=-175.28
## AIC=354.56 AICc=354.81 BIC=358.42
autoplot(forecast(fit135.auto, h=8))
checkresiduals(fit135.auto)
##
## Ljung-Box test
##
## data: Residuals from ARIMA(0,1,1)
## Q* = 9.1443, df = 9.4, p-value = 0.462
##
## Model df: 1. Total lags used: 10.4
This product has high volitility. The forecast for this product is a flat line.
Number 5: P137
autoplot(p137)
autoplot(diff(p137))
fit137.auto <- auto.arima(p137, seasonal = FALSE)
fit137.auto
## Series: p137
## ARIMA(1,1,1)
##
## Coefficients:
## ar1 ma1
## -0.2454 -0.8096
## s.e. 0.1573 0.1099
##
## sigma^2 estimated as 48.26: log likelihood=-170.95
## AIC=347.89 AICc=348.4 BIC=353.69
autoplot(forecast(fit137.auto, h=8))
checkresiduals(fit137.auto)
##
## Ljung-Box test
##
## data: Residuals from ARIMA(1,1,1)
## Q* = 5.9723, df = 8.4, p-value = 0.6893
##
## Model df: 2. Total lags used: 10.4
This product has high volitility. The forecast for this product starts as a downward slop then goes into a flat line.
Number 6: P173
autoplot(p173)
autoplot(diff(p173))
fit173.auto <- auto.arima(p173, seasonal = FALSE)
fit173.auto
## Series: p173
## ARIMA(0,1,1)
##
## Coefficients:
## ma1
## -0.6073
## s.e. 0.1481
##
## sigma^2 estimated as 53.82: log likelihood=-173.72
## AIC=351.45 AICc=351.7 BIC=355.31
autoplot(forecast(fit173.auto, h=8))
checkresiduals(fit173.auto)
##
## Ljung-Box test
##
## data: Residuals from ARIMA(0,1,1)
## Q* = 3.7648, df = 9.4, p-value = 0.9404
##
## Model df: 1. Total lags used: 10.4
This product has medium volitility. The forecast for this product is a flat line.
Number 7: P178
autoplot(p178)
autoplot(diff(p178))
fit178.auto <- auto.arima(p178, seasonal = FALSE)
fit178.auto
## Series: p178
## ARIMA(0,1,1)
##
## Coefficients:
## ma1
## -0.7081
## s.e. 0.1116
##
## sigma^2 estimated as 55.12: log likelihood=-174.45
## AIC=352.9 AICc=353.15 BIC=356.77
autoplot(forecast(fit178.auto, h=8))
checkresiduals(fit178.auto)
##
## Ljung-Box test
##
## data: Residuals from ARIMA(0,1,1)
## Q* = 4.456, df = 9.4, p-value = 0.8993
##
## Model df: 1. Total lags used: 10.4
This product has medium volitility. The forecast for this product is a flat line.
Number 8: P179
autoplot(p179)
autoplot(diff(p179))
fit179.auto <- auto.arima(p179, seasonal = FALSE)
fit179.auto
## Series: p179
## ARIMA(0,0,0) with non-zero mean
##
## Coefficients:
## mean
## 36.6154
## s.e. 0.9461
##
## sigma^2 estimated as 47.46: log likelihood=-173.64
## AIC=351.27 AICc=351.52 BIC=355.17
autoplot(forecast(fit179.auto, h=8))
checkresiduals(fit179.auto)
##
## Ljung-Box test
##
## data: Residuals from ARIMA(0,0,0) with non-zero mean
## Q* = 14.308, df = 9.4, p-value = 0.1297
##
## Model df: 1. Total lags used: 10.4
This product has high volitility. The forecast for this product is a flat line and the CF is a rectangle.
Number 9: P190
autoplot(p190)
autoplot(diff(p190))
fit190.auto <- auto.arima(p190, seasonal = FALSE)
fit190.auto
## Series: p190
## ARIMA(0,1,1)
##
## Coefficients:
## ma1
## -0.7946
## s.e. 0.0902
##
## sigma^2 estimated as 46.61: log likelihood=-170.33
## AIC=344.65 AICc=344.9 BIC=348.52
autoplot(forecast(fit190.auto, h=8))
checkresiduals(fit190.auto)
##
## Ljung-Box test
##
## data: Residuals from ARIMA(0,1,1)
## Q* = 3.7511, df = 9.4, p-value = 0.9411
##
## Model df: 1. Total lags used: 10.4
This product has volitility with a slight downward trend. The forecast is a straight line. The ACF plot looks good.
Number 10: P409
autoplot(p409)
autoplot(diff(p409))
fit409.auto <- auto.arima(p409, seasonal = FALSE)
fit409.auto
## Series: p409
## ARIMA(1,0,0) with non-zero mean
##
## Coefficients:
## ar1 mean
## 0.5160 43.2755
## s.e. 0.1267 2.9042
##
## sigma^2 estimated as 110.2: log likelihood=-195.17
## AIC=396.34 AICc=396.84 BIC=402.2
autoplot(forecast(fit409.auto, h=8))
checkresiduals(fit409.auto)
##
## Ljung-Box test
##
## data: Residuals from ARIMA(1,0,0) with non-zero mean
## Q* = 13.541, df = 8.4, p-value = 0.1113
##
## Model df: 2. Total lags used: 10.4
The forecast for this product starts out with a decreasing slop and then levels out.