library(psych)
library(ISLR)
library(dplyr)
##
## Attaching package: 'dplyr'
## The following objects are masked from 'package:stats':
##
## filter, lag
## The following objects are masked from 'package:base':
##
## intersect, setdiff, setequal, union
library(ggplot2)
##
## Attaching package: 'ggplot2'
## The following objects are masked from 'package:psych':
##
## %+%, alpha
library(fpp2)
## Loading required package: forecast
## Loading required package: fma
## Loading required package: expsmooth
library(tidyr)
library(seasonal)
##
## Attaching package: 'seasonal'
## The following object is masked from 'package:psych':
##
## outlier
#read the data
Sales_Transaction<-read.csv(file="/Users/luyunliang/Downloads/Sales_Transactions_Dataset_Weekly.csv",header = TRUE,sep = ",",stringsAsFactors = TRUE)
#Exploratory data analysis
str(Sales_Transaction)
## 'data.frame': 811 obs. of 107 variables:
## $ Product_Code : Factor w/ 811 levels "P1","P10","P100",..: 1 112 223 332 443 554 663 770 801 2 ...
## $ W0 : int 11 7 7 12 8 3 4 8 14 22 ...
## $ W1 : int 12 6 11 8 5 3 8 6 9 19 ...
## $ W2 : int 10 3 8 13 13 2 3 10 10 19 ...
## $ W3 : int 8 2 9 5 11 7 7 9 7 29 ...
## $ W4 : int 13 7 10 9 6 6 8 6 11 20 ...
## $ W5 : int 12 1 8 6 7 3 7 8 15 16 ...
## $ W6 : int 14 6 7 9 9 8 2 7 12 26 ...
## $ W7 : int 21 3 13 13 14 6 3 5 7 20 ...
## $ W8 : int 6 3 12 13 9 6 10 10 13 24 ...
## $ W9 : int 14 3 6 11 9 3 3 10 12 20 ...
## $ W10 : int 11 2 14 8 11 1 5 8 15 31 ...
## $ W11 : int 14 2 9 4 18 1 2 8 15 22 ...
## $ W12 : int 16 6 4 5 8 5 3 15 16 23 ...
## $ W13 : int 9 2 7 4 4 4 4 9 10 19 ...
## $ W14 : int 9 0 12 15 13 3 5 5 9 15 ...
## $ W15 : int 9 6 8 7 8 5 3 11 9 19 ...
## $ W16 : int 14 2 7 11 10 3 7 10 13 22 ...
## $ W17 : int 9 7 11 9 15 5 10 7 8 23 ...
## $ W18 : int 3 7 10 15 6 10 0 13 10 20 ...
## $ W19 : int 12 9 7 4 13 8 3 9 18 33 ...
## $ W20 : int 5 4 7 6 11 4 7 12 18 16 ...
## $ W21 : int 11 7 13 7 6 9 5 11 17 23 ...
## $ W22 : int 7 2 11 11 10 7 1 5 10 23 ...
## $ W23 : int 12 4 8 7 9 5 5 11 16 16 ...
## $ W24 : int 5 5 10 9 8 4 7 11 14 25 ...
## $ W25 : int 9 3 8 6 12 2 5 12 10 27 ...
## $ W26 : int 7 5 14 10 8 1 2 3 4 12 ...
## $ W27 : int 10 8 5 10 9 3 4 10 7 15 ...
## $ W28 : int 5 5 3 2 13 2 3 12 7 15 ...
## $ W29 : int 11 5 13 6 3 4 1 9 10 11 ...
## $ W30 : int 7 3 11 7 5 0 3 9 3 14 ...
## $ W31 : int 10 1 9 2 3 3 2 10 13 29 ...
## $ W32 : int 12 3 7 5 5 2 2 8 9 23 ...
## $ W33 : int 6 2 8 12 5 11 4 9 7 12 ...
## $ W34 : int 5 3 7 5 9 2 2 8 9 16 ...
## $ W35 : int 14 10 9 19 7 1 6 9 8 9 ...
## $ W36 : int 10 5 6 8 4 4 4 15 7 23 ...
## $ W37 : int 9 2 12 6 8 4 5 6 9 22 ...
## $ W38 : int 12 7 12 8 8 3 1 7 15 15 ...
## $ W39 : int 17 3 9 8 5 2 3 8 8 18 ...
## $ W40 : int 7 2 3 12 5 5 5 3 9 13 ...
## $ W41 : int 11 5 5 6 8 4 8 9 8 17 ...
## $ W42 : int 4 2 6 9 7 4 2 10 11 14 ...
## $ W43 : int 7 4 14 10 11 2 3 14 5 17 ...
## $ W44 : int 8 5 5 3 7 4 3 4 13 11 ...
## $ W45 : int 10 1 5 4 12 3 6 8 3 24 ...
## $ W46 : int 12 1 7 6 6 6 2 8 7 13 ...
## $ W47 : int 3 4 8 8 6 5 6 6 7 16 ...
## $ W48 : int 7 5 14 14 5 3 2 7 10 18 ...
## $ W49 : int 6 1 8 8 11 3 4 4 12 23 ...
## $ W50 : int 5 6 8 7 8 10 2 9 7 18 ...
## $ W51 : int 10 0 7 8 9 6 1 9 13 20 ...
## $ MIN : int 3 0 3 2 3 0 0 3 3 9 ...
## $ MAX : int 21 10 14 19 18 11 10 15 18 33 ...
## $ Normalized.0 : num 0.44 0.7 0.36 0.59 0.33 0.27 0.4 0.42 0.73 0.54 ...
## $ Normalized.1 : num 0.5 0.6 0.73 0.35 0.13 0.27 0.8 0.25 0.4 0.42 ...
## $ Normalized.2 : num 0.39 0.3 0.45 0.65 0.67 0.18 0.3 0.58 0.47 0.42 ...
## $ Normalized.3 : num 0.28 0.2 0.55 0.18 0.53 0.64 0.7 0.5 0.27 0.83 ...
## $ Normalized.4 : num 0.56 0.7 0.64 0.41 0.2 0.55 0.8 0.25 0.53 0.46 ...
## $ Normalized.5 : num 0.5 0.1 0.45 0.24 0.27 0.27 0.7 0.42 0.8 0.29 ...
## $ Normalized.6 : num 0.61 0.6 0.36 0.41 0.4 0.73 0.2 0.33 0.6 0.71 ...
## $ Normalized.7 : num 1 0.3 0.91 0.65 0.73 0.55 0.3 0.17 0.27 0.46 ...
## $ Normalized.8 : num 0.17 0.3 0.82 0.65 0.4 0.55 1 0.58 0.67 0.63 ...
## $ Normalized.9 : num 0.61 0.3 0.27 0.53 0.4 0.27 0.3 0.58 0.6 0.46 ...
## $ Normalized.10: num 0.44 0.2 1 0.35 0.53 0.09 0.5 0.42 0.8 0.92 ...
## $ Normalized.11: num 0.61 0.2 0.55 0.12 1 0.09 0.2 0.42 0.8 0.54 ...
## $ Normalized.12: num 0.72 0.6 0.09 0.18 0.33 0.45 0.3 1 0.87 0.58 ...
## $ Normalized.13: num 0.33 0.2 0.36 0.12 0.07 0.36 0.4 0.5 0.47 0.42 ...
## $ Normalized.14: num 0.33 0 0.82 0.76 0.67 0.27 0.5 0.17 0.4 0.25 ...
## $ Normalized.15: num 0.33 0.6 0.45 0.29 0.33 0.45 0.3 0.67 0.4 0.42 ...
## $ Normalized.16: num 0.61 0.2 0.36 0.53 0.47 0.27 0.7 0.58 0.67 0.54 ...
## $ Normalized.17: num 0.33 0.7 0.73 0.41 0.8 0.45 1 0.33 0.33 0.58 ...
## $ Normalized.18: num 0 0.7 0.64 0.76 0.2 0.91 0 0.83 0.47 0.46 ...
## $ Normalized.19: num 0.5 0.9 0.36 0.12 0.67 0.73 0.3 0.5 1 1 ...
## $ Normalized.20: num 0.11 0.4 0.36 0.24 0.53 0.36 0.7 0.75 1 0.29 ...
## $ Normalized.21: num 0.44 0.7 0.91 0.29 0.2 0.82 0.5 0.67 0.93 0.58 ...
## $ Normalized.22: num 0.22 0.2 0.73 0.53 0.47 0.64 0.1 0.17 0.47 0.58 ...
## $ Normalized.23: num 0.5 0.4 0.45 0.29 0.4 0.45 0.5 0.67 0.87 0.29 ...
## $ Normalized.24: num 0.11 0.5 0.64 0.41 0.33 0.36 0.7 0.67 0.73 0.67 ...
## $ Normalized.25: num 0.33 0.3 0.45 0.24 0.6 0.18 0.5 0.75 0.47 0.75 ...
## $ Normalized.26: num 0.22 0.5 1 0.47 0.33 0.09 0.2 0 0.07 0.13 ...
## $ Normalized.27: num 0.39 0.8 0.18 0.47 0.4 0.27 0.4 0.58 0.27 0.25 ...
## $ Normalized.28: num 0.11 0.5 0 0 0.67 0.18 0.3 0.75 0.27 0.25 ...
## $ Normalized.29: num 0.44 0.5 0.91 0.24 0 0.36 0.1 0.5 0.47 0.08 ...
## $ Normalized.30: num 0.22 0.3 0.73 0.29 0.13 0 0.3 0.5 0 0.21 ...
## $ Normalized.31: num 0.39 0.1 0.55 0 0 0.27 0.2 0.58 0.67 0.83 ...
## $ Normalized.32: num 0.5 0.3 0.36 0.18 0.13 0.18 0.2 0.42 0.4 0.58 ...
## $ Normalized.33: num 0.17 0.2 0.45 0.59 0.13 1 0.4 0.5 0.27 0.13 ...
## $ Normalized.34: num 0.11 0.3 0.36 0.18 0.4 0.18 0.2 0.42 0.4 0.29 ...
## $ Normalized.35: num 0.61 1 0.55 1 0.27 0.09 0.6 0.5 0.33 0 ...
## $ Normalized.36: num 0.39 0.5 0.27 0.35 0.07 0.36 0.4 1 0.27 0.58 ...
## $ Normalized.37: num 0.33 0.2 0.82 0.24 0.33 0.36 0.5 0.25 0.4 0.54 ...
## $ Normalized.38: num 0.5 0.7 0.82 0.35 0.33 0.27 0.1 0.33 0.8 0.25 ...
## $ Normalized.39: num 0.78 0.3 0.55 0.35 0.13 0.18 0.3 0.42 0.33 0.38 ...
## $ Normalized.40: num 0.22 0.2 0 0.59 0.13 0.45 0.5 0 0.4 0.17 ...
## $ Normalized.41: num 0.44 0.5 0.18 0.24 0.33 0.36 0.8 0.5 0.33 0.33 ...
## $ Normalized.42: num 0.06 0.2 0.27 0.41 0.27 0.36 0.2 0.58 0.53 0.21 ...
## $ Normalized.43: num 0.22 0.4 1 0.47 0.53 0.18 0.3 0.92 0.13 0.33 ...
## [list output truncated]
summary(Sales_Transaction)
## Product_Code W0 W1 W2
## P1 : 1 Min. : 0.000 Min. : 0.000 Min. : 0.00
## P10 : 1 1st Qu.: 0.000 1st Qu.: 0.000 1st Qu.: 0.00
## P100 : 1 Median : 3.000 Median : 3.000 Median : 3.00
## P101 : 1 Mean : 8.903 Mean : 9.129 Mean : 9.39
## P102 : 1 3rd Qu.:12.000 3rd Qu.:12.000 3rd Qu.:12.00
## P103 : 1 Max. :54.000 Max. :53.000 Max. :56.00
## (Other):805
## W3 W4 W5 W6
## Min. : 0.000 Min. : 0.000 Min. : 0.000 Min. : 0.00
## 1st Qu.: 0.000 1st Qu.: 0.000 1st Qu.: 0.000 1st Qu.: 0.00
## Median : 4.000 Median : 4.000 Median : 3.000 Median : 4.00
## Mean : 9.718 Mean : 9.575 Mean : 9.466 Mean : 9.72
## 3rd Qu.:13.000 3rd Qu.:13.000 3rd Qu.:12.500 3rd Qu.:13.00
## Max. :59.000 Max. :61.000 Max. :52.000 Max. :56.00
##
## W7 W8 W9 W10
## Min. : 0.000 Min. : 0.000 Min. : 0.000 Min. : 0.00
## 1st Qu.: 0.000 1st Qu.: 0.000 1st Qu.: 0.000 1st Qu.: 0.00
## Median : 4.000 Median : 4.000 Median : 4.000 Median : 4.00
## Mean : 9.586 Mean : 9.784 Mean : 9.682 Mean : 9.79
## 3rd Qu.:12.500 3rd Qu.:13.000 3rd Qu.:13.000 3rd Qu.:13.00
## Max. :62.000 Max. :63.000 Max. :52.000 Max. :56.00
##
## W11 W12 W13 W14
## Min. : 0.000 Min. : 0.000 Min. : 0.000 Min. : 0.000
## 1st Qu.: 0.000 1st Qu.: 0.000 1st Qu.: 0.000 1st Qu.: 0.000
## Median : 4.000 Median : 3.000 Median : 4.000 Median : 4.000
## Mean : 9.678 Mean : 9.827 Mean : 9.687 Mean : 9.908
## 3rd Qu.:13.000 3rd Qu.:13.000 3rd Qu.:13.000 3rd Qu.:13.000
## Max. :57.000 Max. :61.000 Max. :55.000 Max. :57.000
##
## W15 W16 W17 W18
## Min. : 0.00 Min. : 0.00 Min. : 0.000 Min. : 0.00
## 1st Qu.: 0.00 1st Qu.: 0.00 1st Qu.: 0.000 1st Qu.: 0.00
## Median : 4.00 Median : 4.00 Median : 4.000 Median : 4.00
## Mean :10.05 Mean :10.03 Mean : 9.905 Mean :10.01
## 3rd Qu.:14.00 3rd Qu.:13.00 3rd Qu.:13.000 3rd Qu.:13.00
## Max. :59.00 Max. :62.00 Max. :67.000 Max. :57.00
##
## W19 W20 W21 W22
## Min. : 0.000 Min. : 0.00 Min. : 0.00 Min. : 0.000
## 1st Qu.: 0.000 1st Qu.: 0.00 1st Qu.: 0.00 1st Qu.: 0.000
## Median : 4.000 Median : 4.00 Median : 4.00 Median : 4.000
## Mean : 9.645 Mean : 9.85 Mean : 9.71 Mean : 9.903
## 3rd Qu.:13.000 3rd Qu.:13.00 3rd Qu.:13.00 3rd Qu.:13.000
## Max. :56.000 Max. :64.00 Max. :58.00 Max. :51.000
##
## W23 W24 W25 W26
## Min. : 0.000 Min. : 0.00 Min. : 0.000 Min. : 0.000
## 1st Qu.: 0.000 1st Qu.: 1.00 1st Qu.: 1.000 1st Qu.: 0.000
## Median : 4.000 Median : 5.00 Median : 5.000 Median : 3.000
## Mean : 9.862 Mean :10.17 Mean : 8.893 Mean : 6.951
## 3rd Qu.:14.000 3rd Qu.:16.00 3rd Qu.:15.000 3rd Qu.: 9.000
## Max. :72.000 Max. :64.00 Max. :64.000 Max. :46.000
##
## W27 W28 W29 W30
## Min. : 0.000 Min. : 0.000 Min. : 0.000 Min. : 0.000
## 1st Qu.: 0.000 1st Qu.: 0.000 1st Qu.: 0.000 1st Qu.: 0.000
## Median : 3.000 Median : 3.000 Median : 3.000 Median : 3.000
## Mean : 7.194 Mean : 7.383 Mean : 7.339 Mean : 7.608
## 3rd Qu.:10.000 3rd Qu.: 9.000 3rd Qu.:10.000 3rd Qu.:10.000
## Max. :47.000 Max. :44.000 Max. :42.000 Max. :48.000
##
## W31 W32 W33 W34
## Min. : 0.00 Min. : 0.00 Min. : 0.000 Min. : 0.000
## 1st Qu.: 0.00 1st Qu.: 0.00 1st Qu.: 0.000 1st Qu.: 0.000
## Median : 3.00 Median : 3.00 Median : 3.000 Median : 3.000
## Mean : 7.61 Mean : 7.76 Mean : 7.906 Mean : 7.993
## 3rd Qu.:10.00 3rd Qu.:10.00 3rd Qu.:10.000 3rd Qu.:10.500
## Max. :47.00 Max. :49.00 Max. :46.000 Max. :46.000
##
## W35 W36 W37 W38
## Min. : 0.000 Min. : 0.000 Min. : 0.000 Min. : 0.000
## 1st Qu.: 0.000 1st Qu.: 0.000 1st Qu.: 0.000 1st Qu.: 0.000
## Median : 3.000 Median : 3.000 Median : 3.000 Median : 3.000
## Mean : 7.998 Mean : 8.015 Mean : 8.074 Mean : 8.252
## 3rd Qu.:10.000 3rd Qu.:10.000 3rd Qu.:11.000 3rd Qu.:11.000
## Max. :46.000 Max. :55.000 Max. :47.000 Max. :52.000
##
## W39 W40 W41 W42
## Min. : 0.000 Min. : 0.000 Min. : 0.00 Min. : 0.000
## 1st Qu.: 0.000 1st Qu.: 0.000 1st Qu.: 0.00 1st Qu.: 0.000
## Median : 3.000 Median : 4.000 Median : 3.00 Median : 4.000
## Mean : 7.965 Mean : 8.182 Mean : 8.24 Mean : 8.395
## 3rd Qu.:10.000 3rd Qu.:10.000 3rd Qu.:11.00 3rd Qu.:10.000
## Max. :47.000 Max. :48.000 Max. :50.00 Max. :52.000
##
## W43 W44 W45 W46
## Min. : 0.000 Min. : 0.000 Min. : 0.000 Min. : 0.00
## 1st Qu.: 0.000 1st Qu.: 0.000 1st Qu.: 1.000 1st Qu.: 1.00
## Median : 4.000 Median : 4.000 Median : 4.000 Median : 4.00
## Mean : 8.318 Mean : 8.434 Mean : 8.556 Mean : 8.72
## 3rd Qu.:11.000 3rd Qu.:11.000 3rd Qu.:11.000 3rd Qu.:11.00
## Max. :50.000 Max. :46.000 Max. :46.000 Max. :55.00
##
## W47 W48 W49 W50
## Min. : 0.000 Min. : 0.000 Min. : 0.000 Min. : 0.000
## 1st Qu.: 0.000 1st Qu.: 1.000 1st Qu.: 1.000 1st Qu.: 1.000
## Median : 4.000 Median : 4.000 Median : 4.000 Median : 5.000
## Mean : 8.671 Mean : 8.674 Mean : 8.895 Mean : 8.862
## 3rd Qu.:12.000 3rd Qu.:12.000 3rd Qu.:12.000 3rd Qu.:13.000
## Max. :49.000 Max. :50.000 Max. :52.000 Max. :57.000
##
## W51 MIN MAX Normalized.0
## Min. : 0.000 Min. : 0.000 Min. : 1.00 Min. :0.0000
## 1st Qu.: 1.000 1st Qu.: 0.000 1st Qu.: 3.00 1st Qu.:0.0000
## Median : 5.000 Median : 0.000 Median : 9.00 Median :0.2500
## Mean : 8.889 Mean : 3.781 Mean :16.31 Mean :0.2894
## 3rd Qu.:14.000 3rd Qu.: 4.000 3rd Qu.:21.00 3rd Qu.:0.5000
## Max. :73.000 Max. :24.000 Max. :73.00 Max. :1.0000
##
## Normalized.1 Normalized.2 Normalized.3 Normalized.4
## Min. :0.0000 Min. :0.0000 Min. :0.0000 Min. :0.0000
## 1st Qu.:0.0000 1st Qu.:0.0000 1st Qu.:0.0000 1st Qu.:0.0000
## Median :0.2800 Median :0.2900 Median :0.2900 Median :0.3100
## Mean :0.2991 Mean :0.3067 Mean :0.3199 Mean :0.3269
## 3rd Qu.:0.5000 3rd Qu.:0.5000 3rd Qu.:0.5350 3rd Qu.:0.5500
## Max. :1.0000 Max. :1.0000 Max. :1.0000 Max. :1.0000
##
## Normalized.5 Normalized.6 Normalized.7 Normalized.8
## Min. :0.0000 Min. :0.0000 Min. :0.0000 Min. :0.0000
## 1st Qu.:0.0000 1st Qu.:0.0000 1st Qu.:0.0000 1st Qu.:0.0000
## Median :0.3000 Median :0.3100 Median :0.3300 Median :0.3200
## Mean :0.3194 Mean :0.3328 Mean :0.3266 Mean :0.3243
## 3rd Qu.:0.5200 3rd Qu.:0.5300 3rd Qu.:0.5400 3rd Qu.:0.5350
## Max. :1.0000 Max. :1.0000 Max. :1.0000 Max. :1.0000
##
## Normalized.9 Normalized.10 Normalized.11 Normalized.12
## Min. :0.0000 Min. :0.0000 Min. :0.0000 Min. :0.0000
## 1st Qu.:0.0000 1st Qu.:0.0000 1st Qu.:0.0000 1st Qu.:0.0000
## Median :0.3300 Median :0.3100 Median :0.3100 Median :0.3300
## Mean :0.3268 Mean :0.3311 Mean :0.3315 Mean :0.3389
## 3rd Qu.:0.5300 3rd Qu.:0.5400 3rd Qu.:0.5500 3rd Qu.:0.5600
## Max. :1.0000 Max. :1.0000 Max. :1.0000 Max. :1.0000
##
## Normalized.13 Normalized.14 Normalized.15 Normalized.16
## Min. :0.0000 Min. :0.0000 Min. :0.0000 Min. :0.0000
## 1st Qu.:0.0000 1st Qu.:0.0000 1st Qu.:0.0000 1st Qu.:0.0000
## Median :0.3300 Median :0.3600 Median :0.3300 Median :0.3300
## Mean :0.3316 Mean :0.3558 Mean :0.3448 Mean :0.3359
## 3rd Qu.:0.5300 3rd Qu.:0.5600 3rd Qu.:0.5800 3rd Qu.:0.5600
## Max. :1.0000 Max. :1.0000 Max. :1.0000 Max. :1.0000
##
## Normalized.17 Normalized.18 Normalized.19 Normalized.20
## Min. :0.0000 Min. :0.000 Min. :0.0000 Min. :0.0000
## 1st Qu.:0.0000 1st Qu.:0.000 1st Qu.:0.0000 1st Qu.:0.0000
## Median :0.3300 Median :0.350 Median :0.3100 Median :0.3300
## Mean :0.3453 Mean :0.355 Mean :0.3302 Mean :0.3403
## 3rd Qu.:0.5600 3rd Qu.:0.560 3rd Qu.:0.5400 3rd Qu.:0.5600
## Max. :1.0000 Max. :1.000 Max. :1.0000 Max. :1.0000
##
## Normalized.21 Normalized.22 Normalized.23 Normalized.24
## Min. :0.0000 Min. :0.000 Min. :0.0000 Min. :0.0000
## 1st Qu.:0.0000 1st Qu.:0.000 1st Qu.:0.0000 1st Qu.:0.1300
## Median :0.3600 Median :0.360 Median :0.3800 Median :0.4400
## Mean :0.3536 Mean :0.366 Mean :0.3706 Mean :0.4177
## 3rd Qu.:0.5500 3rd Qu.:0.580 3rd Qu.:0.5800 3rd Qu.:0.6350
## Max. :1.0000 Max. :1.000 Max. :1.0000 Max. :1.0000
##
## Normalized.25 Normalized.26 Normalized.27 Normalized.28
## Min. :0.0000 Min. :0.0000 Min. :0.000 Min. :0.0000
## 1st Qu.:0.0600 1st Qu.:0.0000 1st Qu.:0.000 1st Qu.:0.0000
## Median :0.3500 Median :0.1800 Median :0.200 Median :0.2100
## Mean :0.3896 Mean :0.2076 Mean :0.223 Mean :0.2296
## 3rd Qu.:0.6000 3rd Qu.:0.3300 3rd Qu.:0.365 3rd Qu.:0.3600
## Max. :1.0000 Max. :1.0000 Max. :1.000 Max. :1.0000
##
## Normalized.29 Normalized.30 Normalized.31 Normalized.32
## Min. :0.0000 Min. :0.0000 Min. :0.0000 Min. :0.0000
## 1st Qu.:0.0000 1st Qu.:0.0000 1st Qu.:0.0000 1st Qu.:0.0000
## Median :0.1900 Median :0.2100 Median :0.2200 Median :0.2200
## Mean :0.2244 Mean :0.2405 Mean :0.2504 Mean :0.2483
## 3rd Qu.:0.3800 3rd Qu.:0.3900 3rd Qu.:0.4000 3rd Qu.:0.4000
## Max. :1.0000 Max. :1.0000 Max. :1.0000 Max. :1.0000
##
## Normalized.33 Normalized.34 Normalized.35 Normalized.36
## Min. :0.0000 Min. :0.0000 Min. :0.0000 Min. :0.0000
## 1st Qu.:0.0000 1st Qu.:0.0000 1st Qu.:0.0000 1st Qu.:0.0000
## Median :0.2300 Median :0.2500 Median :0.2500 Median :0.2400
## Mean :0.2594 Mean :0.2623 Mean :0.2689 Mean :0.2702
## 3rd Qu.:0.4150 3rd Qu.:0.4300 3rd Qu.:0.4500 3rd Qu.:0.4200
## Max. :1.0000 Max. :1.0000 Max. :1.0000 Max. :1.0000
##
## Normalized.37 Normalized.38 Normalized.39 Normalized.40
## Min. :0.0000 Min. :0.0000 Min. :0.000 Min. :0.0000
## 1st Qu.:0.0000 1st Qu.:0.0000 1st Qu.:0.000 1st Qu.:0.0000
## Median :0.2500 Median :0.2500 Median :0.250 Median :0.2500
## Mean :0.2731 Mean :0.2775 Mean :0.265 Mean :0.2864
## 3rd Qu.:0.4400 3rd Qu.:0.4500 3rd Qu.:0.430 3rd Qu.:0.4700
## Max. :1.0000 Max. :1.0000 Max. :1.000 Max. :1.0000
##
## Normalized.41 Normalized.42 Normalized.43 Normalized.44
## Min. :0.0000 Min. :0.0000 Min. :0.0000 Min. :0.0000
## 1st Qu.:0.0000 1st Qu.:0.0000 1st Qu.:0.0000 1st Qu.:0.0000
## Median :0.2600 Median :0.2800 Median :0.2700 Median :0.3000
## Mean :0.2794 Mean :0.2991 Mean :0.2876 Mean :0.3048
## 3rd Qu.:0.4400 3rd Qu.:0.4900 3rd Qu.:0.4500 3rd Qu.:0.5000
## Max. :1.0000 Max. :1.0000 Max. :1.0000 Max. :1.0000
##
## Normalized.45 Normalized.46 Normalized.47 Normalized.48
## Min. :0.000 Min. :0.0000 Min. :0.0000 Min. :0.0000
## 1st Qu.:0.020 1st Qu.:0.0850 1st Qu.:0.0000 1st Qu.:0.1050
## Median :0.310 Median :0.3300 Median :0.3100 Median :0.3300
## Mean :0.316 Mean :0.3348 Mean :0.3146 Mean :0.3382
## 3rd Qu.:0.500 3rd Qu.:0.5000 3rd Qu.:0.5000 3rd Qu.:0.5000
## Max. :1.000 Max. :1.0000 Max. :1.0000 Max. :1.0000
##
## Normalized.49 Normalized.50 Normalized.51
## Min. :0.0000 Min. :0.000 Min. :0.0000
## 1st Qu.:0.1000 1st Qu.:0.110 1st Qu.:0.0900
## Median :0.3300 Median :0.350 Median :0.4300
## Mean :0.3589 Mean :0.373 Mean :0.4279
## 3rd Qu.:0.5500 3rd Qu.:0.560 3rd Qu.:0.6700
## Max. :1.0000 Max. :1.000 Max. :1.0000
##
#811 observations and 107 variables
#52-Column Weekly Sales Transaction
#52-Column Normalized Weekly Sales Transaction
View(Sales_Transaction)
#Exploratory data analysis
describe(Sales_Transaction)
## vars n mean sd median trimmed mad min max range
## Product_Code* 1 811 406.00 234.26 406.00 406.00 300.97 1 811 810
## W0 2 811 8.90 12.07 3.00 6.46 4.45 0 54 54
## W1 3 811 9.13 12.56 3.00 6.52 4.45 0 53 53
## W2 4 811 9.39 13.05 3.00 6.62 4.45 0 56 56
## W3 5 811 9.72 13.55 4.00 6.86 5.93 0 59 59
## W4 6 811 9.57 13.10 4.00 6.87 5.93 0 61 61
## W5 7 811 9.47 12.82 3.00 6.84 4.45 0 52 52
## W6 8 811 9.72 13.35 4.00 6.93 5.93 0 56 56
## W7 9 811 9.59 13.05 4.00 6.84 5.93 0 62 62
## W8 10 811 9.78 13.55 4.00 6.94 5.93 0 63 63
## W9 11 811 9.68 13.14 4.00 7.02 5.93 0 52 52
## W10 12 811 9.79 13.58 4.00 6.91 5.93 0 56 56
## W11 13 811 9.68 13.01 4.00 7.07 5.93 0 57 57
## W12 14 811 9.83 13.37 3.00 7.10 4.45 0 61 61
## W13 15 811 9.69 13.21 4.00 6.99 5.93 0 55 55
## W14 16 811 9.91 13.39 4.00 7.13 5.93 0 57 57
## W15 17 811 10.05 13.74 4.00 7.19 5.93 0 59 59
## W16 18 811 10.03 13.89 4.00 7.13 5.93 0 62 62
## W17 19 811 9.91 13.36 4.00 7.22 5.93 0 67 67
## W18 20 811 10.01 13.56 4.00 7.18 5.93 0 57 57
## W19 21 811 9.64 13.13 4.00 6.95 5.93 0 56 56
## W20 22 811 9.85 13.47 4.00 7.10 5.93 0 64 64
## W21 23 811 9.71 12.83 4.00 7.17 5.93 0 58 58
## W22 24 811 9.90 13.00 4.00 7.36 5.93 0 51 51
## W23 25 811 9.86 12.62 4.00 7.47 5.93 0 72 72
## W24 26 811 10.17 12.30 5.00 8.04 7.41 0 64 64
## W25 27 811 8.89 10.02 5.00 7.35 7.41 0 64 64
## W26 28 811 6.95 9.45 3.00 4.98 4.45 0 46 46
## W27 29 811 7.19 9.73 3.00 5.18 4.45 0 47 47
## W28 30 811 7.38 10.19 3.00 5.24 4.45 0 44 44
## W29 31 811 7.34 10.16 3.00 5.17 4.45 0 42 42
## W30 32 811 7.61 10.60 3.00 5.33 4.45 0 48 48
## W31 33 811 7.61 10.39 3.00 5.41 4.45 0 47 47
## W32 34 811 7.76 10.71 3.00 5.50 4.45 0 49 49
## W33 35 811 7.91 10.84 3.00 5.62 4.45 0 46 46
## W34 36 811 7.99 10.82 3.00 5.74 4.45 0 46 46
## W35 37 811 8.00 10.77 3.00 5.76 4.45 0 46 46
## W36 38 811 8.01 10.95 3.00 5.70 4.45 0 55 55
## W37 39 811 8.07 10.85 3.00 5.81 4.45 0 47 47
## W38 40 811 8.25 11.27 3.00 5.86 4.45 0 52 52
## W39 41 811 7.97 10.76 3.00 5.70 4.45 0 47 47
## W40 42 811 8.18 11.08 4.00 5.86 5.93 0 48 48
## W41 43 811 8.24 11.14 3.00 5.94 4.45 0 50 50
## W42 44 811 8.39 11.35 4.00 6.03 5.93 0 52 52
## W43 45 811 8.32 11.25 4.00 5.96 5.93 0 50 50
## W44 46 811 8.43 11.22 4.00 6.12 5.93 0 46 46
## W45 47 811 8.56 11.38 4.00 6.19 5.93 0 46 46
## W46 48 811 8.72 11.62 4.00 6.31 5.93 0 55 55
## W47 49 811 8.67 11.44 4.00 6.34 5.93 0 49 49
## W48 50 811 8.67 11.22 4.00 6.45 5.93 0 50 50
## W49 51 811 8.90 10.94 4.00 6.88 5.93 0 52 52
## W50 52 811 8.86 10.49 5.00 7.04 7.41 0 57 57
## W51 53 811 8.89 9.56 5.00 7.48 7.41 0 73 73
## MIN 54 811 3.78 6.40 0.00 2.29 0.00 0 24 24
## MAX 55 811 16.31 17.15 9.00 13.50 10.38 1 73 72
## Normalized.0 56 811 0.29 0.27 0.25 0.26 0.37 0 1 1
## Normalized.1 57 811 0.30 0.28 0.28 0.27 0.42 0 1 1
## Normalized.2 58 811 0.31 0.28 0.29 0.28 0.43 0 1 1
## Normalized.3 59 811 0.32 0.30 0.29 0.29 0.43 0 1 1
## Normalized.4 60 811 0.33 0.30 0.31 0.30 0.46 0 1 1
## Normalized.5 61 811 0.32 0.29 0.30 0.29 0.43 0 1 1
## Normalized.6 62 811 0.33 0.30 0.31 0.30 0.46 0 1 1
## Normalized.7 63 811 0.33 0.30 0.33 0.30 0.44 0 1 1
## Normalized.8 64 811 0.32 0.29 0.32 0.30 0.44 0 1 1
## Normalized.9 65 811 0.33 0.29 0.33 0.30 0.40 0 1 1
## Normalized.10 66 811 0.33 0.30 0.31 0.30 0.46 0 1 1
## Normalized.11 67 811 0.33 0.30 0.31 0.30 0.46 0 1 1
## Normalized.12 68 811 0.34 0.30 0.33 0.31 0.43 0 1 1
## Normalized.13 69 811 0.33 0.29 0.33 0.31 0.40 0 1 1
## Normalized.14 70 811 0.36 0.30 0.36 0.33 0.39 0 1 1
## Normalized.15 71 811 0.34 0.31 0.33 0.32 0.49 0 1 1
## Normalized.16 72 811 0.34 0.30 0.33 0.31 0.43 0 1 1
## Normalized.17 73 811 0.35 0.30 0.33 0.32 0.44 0 1 1
## Normalized.18 74 811 0.35 0.30 0.35 0.33 0.39 0 1 1
## Normalized.19 75 811 0.33 0.30 0.31 0.30 0.44 0 1 1
## Normalized.20 76 811 0.34 0.30 0.33 0.31 0.43 0 1 1
## Normalized.21 77 811 0.35 0.29 0.36 0.33 0.36 0 1 1
## Normalized.22 78 811 0.37 0.30 0.36 0.34 0.39 0 1 1
## Normalized.23 79 811 0.37 0.30 0.38 0.35 0.37 0 1 1
## Normalized.24 80 811 0.42 0.32 0.44 0.40 0.36 0 1 1
## Normalized.25 81 811 0.39 0.32 0.35 0.36 0.40 0 1 1
## Normalized.26 82 811 0.21 0.21 0.18 0.18 0.27 0 1 1
## Normalized.27 83 811 0.22 0.23 0.20 0.19 0.30 0 1 1
## Normalized.28 84 811 0.23 0.23 0.21 0.20 0.31 0 1 1
## Normalized.29 85 811 0.22 0.23 0.19 0.19 0.28 0 1 1
## Normalized.30 86 811 0.24 0.24 0.21 0.21 0.31 0 1 1
## Normalized.31 87 811 0.25 0.25 0.22 0.22 0.33 0 1 1
## Normalized.32 88 811 0.25 0.24 0.22 0.22 0.33 0 1 1
## Normalized.33 89 811 0.26 0.25 0.23 0.23 0.34 0 1 1
## Normalized.34 90 811 0.26 0.25 0.25 0.23 0.37 0 1 1
## Normalized.35 91 811 0.27 0.25 0.25 0.24 0.37 0 1 1
## Normalized.36 92 811 0.27 0.26 0.24 0.24 0.34 0 1 1
## Normalized.37 93 811 0.27 0.25 0.25 0.25 0.37 0 1 1
## Normalized.38 94 811 0.28 0.25 0.25 0.25 0.37 0 1 1
## Normalized.39 95 811 0.26 0.25 0.25 0.24 0.37 0 1 1
## Normalized.40 96 811 0.29 0.26 0.25 0.26 0.37 0 1 1
## Normalized.41 97 811 0.28 0.25 0.26 0.25 0.36 0 1 1
## Normalized.42 98 811 0.30 0.27 0.28 0.27 0.33 0 1 1
## Normalized.43 99 811 0.29 0.26 0.27 0.26 0.34 0 1 1
## Normalized.44 100 811 0.30 0.26 0.30 0.28 0.30 0 1 1
## Normalized.45 101 811 0.32 0.26 0.31 0.29 0.28 0 1 1
## Normalized.46 102 811 0.33 0.28 0.33 0.31 0.30 0 1 1
## Normalized.47 103 811 0.31 0.27 0.31 0.29 0.30 0 1 1
## Normalized.48 104 811 0.34 0.28 0.33 0.31 0.28 0 1 1
## Normalized.49 105 811 0.36 0.29 0.33 0.33 0.33 0 1 1
## Normalized.50 106 811 0.37 0.30 0.35 0.35 0.33 0 1 1
## Normalized.51 107 811 0.43 0.34 0.43 0.41 0.44 0 1 1
## skew kurtosis se
## Product_Code* 0.00 -1.20 8.23
## W0 1.49 1.13 0.42
## W1 1.54 1.26 0.44
## W2 1.58 1.38 0.46
## W3 1.57 1.32 0.48
## W4 1.56 1.41 0.46
## W5 1.51 1.18 0.45
## W6 1.56 1.35 0.47
## W7 1.58 1.52 0.46
## W8 1.58 1.42 0.48
## W9 1.49 0.99 0.46
## W10 1.57 1.34 0.48
## W11 1.48 1.12 0.46
## W12 1.52 1.21 0.47
## W13 1.51 1.12 0.46
## W14 1.56 1.35 0.47
## W15 1.53 1.24 0.48
## W16 1.57 1.40 0.49
## W17 1.52 1.35 0.47
## W18 1.57 1.42 0.48
## W19 1.53 1.30 0.46
## W20 1.55 1.36 0.47
## W21 1.46 1.03 0.45
## W22 1.45 0.99 0.46
## W23 1.48 1.42 0.44
## W24 1.31 0.85 0.43
## W25 1.26 1.31 0.35
## W26 1.65 1.92 0.33
## W27 1.57 1.51 0.34
## W28 1.62 1.62 0.36
## W29 1.60 1.51 0.36
## W30 1.67 1.86 0.37
## W31 1.65 1.82 0.36
## W32 1.64 1.78 0.38
## W33 1.61 1.51 0.38
## W34 1.56 1.35 0.38
## W35 1.56 1.36 0.38
## W36 1.68 2.03 0.38
## W37 1.58 1.45 0.38
## W38 1.63 1.67 0.40
## W39 1.59 1.49 0.38
## W40 1.60 1.49 0.39
## W41 1.59 1.53 0.39
## W42 1.62 1.62 0.40
## W43 1.61 1.57 0.40
## W44 1.55 1.31 0.39
## W45 1.56 1.26 0.40
## W46 1.62 1.59 0.41
## W47 1.55 1.36 0.40
## W48 1.51 1.25 0.39
## W49 1.39 0.89 0.38
## W50 1.33 0.91 0.37
## W51 1.34 2.39 0.34
## MIN 1.71 1.47 0.22
## MAX 1.23 0.29 0.60
## Normalized.0 0.57 -0.53 0.01
## Normalized.1 0.60 -0.55 0.01
## Normalized.2 0.54 -0.75 0.01
## Normalized.3 0.49 -0.87 0.01
## Normalized.4 0.50 -0.76 0.01
## Normalized.5 0.54 -0.68 0.01
## Normalized.6 0.51 -0.75 0.01
## Normalized.7 0.49 -0.79 0.01
## Normalized.8 0.47 -0.79 0.01
## Normalized.9 0.47 -0.77 0.01
## Normalized.10 0.50 -0.80 0.01
## Normalized.11 0.51 -0.82 0.01
## Normalized.12 0.43 -0.90 0.01
## Normalized.13 0.43 -0.80 0.01
## Normalized.14 0.37 -0.86 0.01
## Normalized.15 0.45 -0.95 0.01
## Normalized.16 0.47 -0.82 0.01
## Normalized.17 0.39 -0.92 0.01
## Normalized.18 0.37 -0.82 0.01
## Normalized.19 0.50 -0.74 0.01
## Normalized.20 0.45 -0.85 0.01
## Normalized.21 0.33 -0.85 0.01
## Normalized.22 0.35 -0.86 0.01
## Normalized.23 0.31 -0.89 0.01
## Normalized.24 0.19 -0.98 0.01
## Normalized.25 0.41 -0.93 0.01
## Normalized.26 1.05 1.00 0.01
## Normalized.27 0.98 0.76 0.01
## Normalized.28 0.93 0.47 0.01
## Normalized.29 0.98 0.68 0.01
## Normalized.30 0.92 0.60 0.01
## Normalized.31 0.94 0.40 0.01
## Normalized.32 0.83 0.28 0.01
## Normalized.33 0.84 0.24 0.01
## Normalized.34 0.73 -0.05 0.01
## Normalized.35 0.66 -0.24 0.01
## Normalized.36 0.88 0.27 0.01
## Normalized.37 0.68 -0.06 0.01
## Normalized.38 0.73 0.05 0.01
## Normalized.39 0.74 0.05 0.01
## Normalized.40 0.71 -0.12 0.01
## Normalized.41 0.72 -0.02 0.01
## Normalized.42 0.70 -0.06 0.01
## Normalized.43 0.67 -0.07 0.01
## Normalized.44 0.61 -0.20 0.01
## Normalized.45 0.57 -0.20 0.01
## Normalized.46 0.59 -0.25 0.01
## Normalized.47 0.52 -0.40 0.01
## Normalized.48 0.58 -0.24 0.01
## Normalized.49 0.47 -0.52 0.01
## Normalized.50 0.40 -0.71 0.01
## Normalized.51 0.25 -1.17 0.01
# we can see the mean, median, min, and max for each product for each week.
#exlporatory data analysis
#since the data is wide format, which is not easy to apply ggplot, so I can the wide format to long format
Sales<-gather(data = Sales_Transaction[1:53], key = Week, value = Sales, -Product_Code)
hist(Sales$Sales, main = "Sales",col = "yellow",xlab = "Number of Sales", ylab = "Count Number of Sales")
#It is seen that there are big number of products with a very small amount of sales, and the data skewed toward the left as well.
#based on the EDA, the data is very skewed, the price of each product is not given, I will only focus on the top 5 product with highest sales by adding the sales of 52 weeks.
Sales1<-Sales_Transaction[1:53]
df<-na.omit(Sales1)
df1<-cbind(df, Total_Sales=rowSums(df[2:53]))
df1 %>% arrange(-Total_Sales)
## Product_Code W0 W1 W2 W3 W4 W5 W6 W7 W8 W9 W10 W11 W12 W13 W14 W15 W16
## 1 P409 42 48 38 43 35 39 36 38 49 46 44 25 43 38 34 48 52
## 2 P34 47 42 24 55 42 23 41 51 45 29 51 40 28 48 35 40 38
## 3 P178 35 34 40 36 45 37 43 47 34 39 33 41 47 40 47 53 44
## 4 P135 38 32 36 37 42 33 56 37 39 31 43 45 39 55 43 45 47
## 5 P43 28 43 40 43 54 33 39 30 38 38 56 34 37 32 44 47 45
## 6 P190 54 41 51 45 51 46 31 37 38 35 43 36 41 54 47 30 47
## 7 P179 44 43 35 36 39 42 31 44 37 38 33 35 37 34 51 50 43
## 8 P173 34 25 42 47 37 40 30 44 37 38 41 38 42 40 44 41 54
## 9 P92 26 36 56 40 31 44 37 40 38 43 41 38 36 39 45 59 48
## 10 P137 37 41 43 41 40 47 54 30 43 40 33 45 35 43 41 44 34
## 11 P38 37 36 43 52 61 50 35 52 49 46 53 57 35 33 42 41 31
## 12 P174 37 42 30 43 48 44 47 27 43 41 34 53 33 35 40 52 47
## 13 P24 36 42 27 33 40 48 38 39 41 39 44 35 53 52 43 45 41
## 14 P16 30 27 27 43 29 32 49 41 49 38 42 30 43 43 54 48 34
## 15 P40 41 27 27 51 37 38 48 40 39 40 47 31 48 43 37 45 47
## 16 P54 41 42 37 40 29 52 43 40 41 38 33 52 37 43 47 33 34
## 17 P136 39 37 39 52 38 28 51 39 42 37 35 47 32 32 45 36 34
## 18 P193 36 22 32 45 35 44 39 41 33 43 49 41 45 45 43 35 46
## 19 P37 36 39 43 42 38 37 31 26 36 29 31 36 46 25 51 44 42
## 20 P191 48 36 42 35 44 39 37 45 42 40 40 42 57 46 38 35 31
## 21 P180 40 38 34 43 43 34 41 31 55 34 51 37 40 44 38 53 55
## 22 P101 26 51 45 47 40 36 38 28 38 45 52 37 49 36 37 40 52
## 23 P36 41 32 39 45 38 40 39 39 27 48 47 35 61 34 37 47 30
## 24 P66 35 41 45 34 50 40 41 39 36 45 48 27 35 34 44 27 48
## 25 P134 32 41 50 35 36 35 41 33 32 34 38 29 42 52 57 31 34
## 26 P75 34 45 37 27 40 22 28 44 38 45 52 41 45 44 45 28 33
## 27 P129 21 36 44 47 26 33 30 27 37 34 41 45 41 36 37 43 44
## 28 P128 36 43 28 39 41 37 41 45 43 40 46 40 40 33 35 31 35
## 29 P175 30 40 48 28 30 34 40 53 43 37 29 38 38 36 36 46 37
## 30 P63 37 39 54 44 30 36 48 39 40 34 50 40 40 41 55 34 42
## 31 P132 39 36 45 41 43 37 38 39 32 45 48 32 36 40 37 28 30
## 32 P41 35 27 26 43 44 38 40 38 47 48 32 37 35 36 50 41 50
## 33 P72 26 34 39 41 39 38 52 40 28 34 43 32 36 45 43 39 48
## 34 P83 46 40 34 38 36 45 48 37 63 37 30 37 44 31 41 37 46
## 35 P112 31 36 32 51 39 33 35 46 57 34 39 30 32 27 41 27 50
## 36 P15 19 45 47 42 29 44 43 36 25 52 39 42 43 42 43 51 40
## 37 P35 34 37 26 27 49 48 36 34 28 41 41 35 29 42 41 31 38
## 38 P27 44 34 33 39 34 30 47 27 45 39 47 39 35 47 29 45 52
## 39 P48 29 51 40 33 43 28 29 41 35 45 43 41 30 32 51 50 45
## 40 P172 32 48 44 40 31 40 30 45 40 29 45 32 37 36 43 36 34
## 41 P96 31 35 36 44 36 38 36 39 47 39 24 29 46 38 34 26 36
## 42 P186 36 34 37 36 41 33 51 43 21 44 35 50 39 37 26 41 48
## 43 P49 37 28 42 38 37 35 42 36 30 48 28 39 32 44 36 41 35
## 44 P168 34 29 34 59 27 39 34 49 35 45 39 28 43 40 37 33 42
## 45 P184 30 37 38 30 32 32 52 33 47 44 38 45 38 47 44 52 40
## 46 P618 40 35 49 31 34 45 40 42 42 41 42 34 37 39 37 29 51
## 47 P133 30 48 29 38 40 42 47 42 33 38 47 32 40 30 42 42 42
## 48 P185 32 28 36 40 40 50 43 40 38 35 43 41 29 34 37 33 25
## 49 P17 49 40 40 28 40 47 44 45 39 33 39 37 33 52 29 45 34
## 50 P130 19 53 43 41 39 46 45 31 50 46 39 35 38 29 37 28 32
## 51 P39 31 21 28 39 53 39 25 31 43 40 41 43 47 35 36 34 35
## 52 P84 29 26 31 39 28 44 32 42 41 42 46 35 42 35 56 34 62
## 53 P69 26 43 46 39 41 31 41 35 44 26 48 46 35 38 39 36 38
## 54 P131 29 32 32 35 49 38 34 43 39 31 45 38 40 40 42 45 34
## 55 P47 40 42 27 28 33 29 33 58 37 34 37 19 41 37 47 36 30
## 56 P58 32 34 38 41 24 29 34 47 41 42 28 35 26 32 36 41 35
## 57 P140 28 36 41 46 34 38 38 28 34 27 28 39 45 19 32 44 33
## 58 P167 33 45 42 41 32 45 43 45 45 36 48 46 33 42 34 37 41
## 59 P120 37 35 27 30 31 42 30 37 37 39 32 31 38 38 35 47 52
## 60 P57 38 26 37 43 51 39 42 27 36 45 27 39 37 41 28 45 39
## 61 P119 30 40 46 33 28 41 34 33 44 49 37 29 42 31 45 43 37
## 62 P177 25 38 37 48 34 40 30 29 39 40 36 35 30 44 43 46 29
## 63 P46 27 46 31 38 40 40 53 43 45 32 37 32 38 39 28 43 50
## 64 P52 40 44 37 48 28 40 35 32 41 36 44 39 31 32 43 39 46
## 65 P60 37 41 46 27 51 28 38 40 37 34 34 26 39 33 32 37 45
## 66 P176 38 44 41 26 28 36 29 38 45 32 45 53 44 31 35 37 35
## 67 P170 29 37 32 43 30 27 28 22 37 42 32 36 31 34 28 48 35
## 68 P139 32 36 32 38 47 31 48 27 41 36 31 34 47 39 38 38 47
## 69 P90 42 34 40 39 47 31 43 40 47 35 38 37 44 27 30 47 39
## 70 P73 35 30 36 46 34 29 34 41 56 33 44 36 36 44 37 39 22
## 71 P181 32 44 31 38 37 36 30 42 49 46 26 31 39 47 43 50 35
## 72 P86 37 33 33 32 36 26 45 37 43 36 36 46 32 46 29 39 30
## 73 P56 31 28 41 36 45 25 42 47 36 42 42 37 45 38 40 31 34
## 74 P621 31 33 29 38 36 27 38 62 39 39 38 34 33 36 35 35 52
## 75 P196 43 34 39 32 45 35 43 44 36 39 37 27 38 34 32 30 47
## 76 P28 34 32 36 41 31 31 32 29 43 33 37 44 37 27 36 38 24
## 77 P143 31 35 29 42 31 35 28 41 49 41 36 27 39 43 33 47 43
## 78 P622 29 33 39 40 40 37 37 37 26 42 34 32 25 36 46 41 35
## 79 P44 34 27 28 36 50 28 31 33 34 27 29 33 30 45 35 42 45
## 80 P67 36 30 38 44 47 37 38 31 47 37 42 34 33 42 33 42 30
## 81 P548 32 28 39 36 47 40 35 39 40 37 38 31 29 41 41 34 33
## 82 P30 46 36 45 34 35 36 43 28 26 33 46 42 41 42 37 38 40
## 83 P19 26 31 45 36 31 28 28 34 42 40 43 35 30 33 40 45 48
## 84 P192 24 33 30 35 36 43 43 31 31 39 26 33 39 39 29 43 40
## 85 P76 27 34 43 45 28 35 26 34 38 45 26 49 51 41 34 38 41
## 86 P18 40 38 39 38 39 33 28 44 36 36 23 38 38 41 43 27 38
## 87 P79 37 34 45 41 37 23 41 40 41 38 37 37 42 30 43 35 30
## 88 P262 25 31 33 23 38 34 31 31 38 34 28 25 29 31 33 53 41
## 89 P188 33 34 36 52 42 49 39 30 43 20 25 49 35 34 39 35 52
## 90 P189 32 34 46 30 39 51 28 25 30 32 38 23 41 29 39 38 35
## 91 P141 27 45 40 34 31 35 37 40 40 37 34 25 29 30 42 35 37
## 92 P89 24 26 44 31 37 37 38 30 35 49 49 41 45 41 31 27 32
## 93 P623 38 27 36 36 35 39 33 29 41 31 37 37 30 35 25 28 42
## 94 P619 38 31 31 41 41 36 37 27 40 34 45 33 22 37 43 32 52
## 95 P61 25 30 32 47 45 50 40 35 33 33 35 43 41 32 38 40 30
## 96 P42 42 27 40 27 32 42 31 37 22 38 33 39 37 45 48 31 45
## 97 P70 31 39 50 31 37 30 37 44 35 33 26 32 41 35 35 47 43
## 98 P138 36 44 22 35 34 34 38 34 26 36 33 28 43 38 19 40 41
## 99 P142 23 29 40 43 34 30 42 43 35 35 43 37 25 42 42 39 43
## 100 P78 39 40 31 39 44 34 31 32 47 36 44 34 31 39 32 44 44
## 101 P617 36 33 40 46 39 39 26 44 34 34 43 46 36 28 27 44 32
## 102 P45 40 29 39 34 37 23 33 26 34 41 33 29 54 37 37 27 33
## 103 P64 34 37 29 42 31 36 36 43 29 30 48 34 38 33 28 45 41
## 104 P85 39 34 28 38 33 37 52 28 31 27 35 41 43 36 28 40 29
## 105 P208 30 26 36 33 33 30 33 28 19 26 43 36 31 33 41 29 33
## 106 P97 29 37 36 40 33 29 27 49 38 43 35 37 46 44 30 41 28
## 107 P87 30 38 35 39 37 42 40 35 40 41 34 39 37 40 28 38 31
## 108 P102 34 41 22 32 36 27 44 33 22 38 33 33 39 31 28 37 44
## 109 P55 34 30 42 42 29 24 36 42 42 29 42 47 26 30 32 37 40
## 110 P182 42 28 34 28 26 35 29 36 44 37 47 29 43 37 36 31 39
## 111 P549 35 29 40 32 33 30 36 42 40 44 40 38 34 34 36 38 31
## 112 P88 41 28 32 30 33 41 42 35 45 38 28 43 38 37 32 35 34
## 113 P169 38 31 22 43 29 25 46 32 38 39 32 32 31 37 29 36 37
## 114 P183 25 37 42 50 18 32 38 37 33 30 37 20 41 40 39 38 34
## 115 P194 35 37 31 23 37 42 38 34 33 37 34 43 37 32 43 42 41
## 116 P113 22 26 31 37 32 25 28 33 40 27 38 40 31 32 29 34 34
## 117 P25 26 28 33 32 20 33 42 29 24 32 45 41 35 39 32 36 31
## 118 P80 38 29 32 40 29 36 47 24 36 31 39 35 40 37 51 46 21
## 119 P620 31 27 37 29 34 39 28 28 30 32 38 37 39 30 40 32 42
## 120 P187 31 38 47 36 36 27 28 19 40 38 28 31 34 38 36 30 33
## 121 P557 28 23 35 34 33 27 33 27 25 32 40 28 34 24 31 23 27
## 122 P511 25 23 30 33 20 27 31 26 21 42 22 30 33 27 28 32 31
## 123 P615 17 16 19 20 19 19 29 35 15 27 24 24 34 29 24 29 24
## 124 P533 28 33 21 37 20 28 29 23 27 23 23 24 29 37 41 26 29
## 125 P613 18 26 12 17 23 15 18 19 33 31 21 32 21 17 29 20 20
## 126 P261 20 36 17 19 16 23 28 19 22 19 21 18 27 24 24 24 26
## 127 P270 26 16 23 19 29 21 16 14 29 13 20 22 16 26 19 26 23
## 128 P10 22 19 19 29 20 16 26 20 24 20 31 22 23 19 15 19 22
## 129 P516 24 18 15 21 20 19 21 25 21 13 31 20 23 18 16 18 15
## 130 P519 30 26 16 16 23 30 21 18 27 23 16 24 22 27 8 26 27
## 131 P405 23 12 16 22 18 18 17 11 28 10 25 24 22 25 12 17 16
## 132 P512 17 17 16 16 27 18 17 17 16 20 21 14 19 10 18 26 20
## 133 P268 18 18 18 14 18 24 15 13 17 18 14 21 29 20 19 20 24
## 134 P286 17 19 13 15 16 23 18 16 15 19 14 22 18 18 24 26 33
## 135 P407 22 23 10 19 16 26 19 16 23 23 23 17 31 19 18 17 16
## 136 P554 24 15 32 28 22 21 19 23 17 17 31 23 18 12 22 22 21
## 137 P535 15 26 11 15 19 15 16 19 19 23 24 24 19 26 19 16 20
## 138 P566 24 26 22 24 20 13 17 21 18 18 21 30 22 24 15 22 28
## 139 P486 16 30 25 11 23 19 27 15 30 23 19 22 16 17 19 20 30
## 140 P263 18 12 20 21 12 24 13 13 23 18 19 19 16 12 23 14 16
## 141 P51 19 14 17 27 14 18 18 18 14 18 19 17 28 25 21 16 24
## 142 P284 26 17 17 22 23 24 26 15 18 19 16 14 20 29 17 21 17
## 143 P491 19 20 27 23 19 30 23 23 13 12 14 28 11 15 24 15 25
## 144 P513 22 23 25 21 25 17 10 23 24 21 18 24 16 18 22 23 27
## 145 P107 19 19 15 24 16 23 27 20 19 17 18 21 18 19 19 18 18
## 146 P537 20 16 17 20 19 20 24 20 16 19 18 24 15 10 16 26 17
## 147 P540 23 19 21 23 20 21 18 12 23 27 19 11 11 23 20 18 23
## 148 P200 18 14 21 17 26 14 15 20 17 12 14 22 18 16 16 16 16
## 149 P411 16 17 12 10 23 14 23 15 14 18 17 18 11 16 15 18 23
## 150 P507 11 27 11 22 9 15 18 21 18 18 20 19 18 24 17 16 20
## 151 P435 21 16 17 17 14 13 21 10 13 20 15 17 15 17 29 18 17
## 152 P640 14 20 15 11 10 20 18 12 18 11 17 18 13 24 11 18 21
## 153 P410 6 13 16 9 18 16 16 12 22 15 18 16 15 15 12 18 19
## 154 P781 9 13 15 15 16 17 14 15 15 19 19 16 13 16 19 22 18
## 155 P62 12 27 18 22 19 19 25 19 8 15 15 18 15 22 18 16 19
## 156 P545 13 13 15 14 13 22 17 26 11 22 13 25 11 12 20 18 19
## 157 P495 16 15 27 14 19 12 13 11 17 31 20 16 10 24 23 17 19
## 158 P403 12 8 12 9 12 18 17 18 17 14 13 20 17 20 21 9 17
## 159 P530 20 11 22 14 15 20 15 17 14 21 16 20 10 14 14 16 18
## 160 P400 20 11 19 16 22 20 15 11 12 20 8 11 11 13 14 17 14
## 161 P526 9 13 15 18 15 10 10 17 20 14 15 20 12 11 20 17 18
## 162 P503 13 19 15 13 22 23 10 12 14 12 23 14 12 23 13 14 7
## 163 P202 10 10 10 11 11 11 15 14 20 16 5 16 18 17 19 20 17
## 164 P505 23 4 16 24 19 15 16 17 18 17 16 13 18 17 16 16 20
## 165 P556 15 11 26 15 13 11 12 10 14 11 18 23 22 16 6 16 20
## 166 P406 6 12 17 15 14 18 11 17 14 12 13 11 20 6 15 15 14
## 167 P783 15 12 7 16 18 9 15 13 17 22 12 4 14 22 15 15 12
## 168 P612 14 11 13 9 13 14 12 26 20 13 11 14 16 8 9 15 16
## 169 P638 15 7 10 18 21 8 7 12 13 15 12 15 22 15 8 9 13
## 170 P399 17 11 8 9 8 5 18 15 12 21 15 10 13 13 15 14 6
## 171 P538 7 7 13 14 11 11 13 17 15 6 7 14 19 16 13 10 11
## 172 P529 13 17 15 11 13 14 13 10 15 7 16 16 19 15 16 14 9
## 173 P364 10 18 10 8 11 18 8 15 10 13 9 10 16 13 19 18 19
## 174 P210 16 12 9 14 7 11 16 23 9 11 13 14 15 14 20 10 10
## 175 P502 11 15 19 15 14 11 12 11 16 15 13 11 13 10 8 10 20
## 176 P430 13 8 14 12 15 12 14 11 12 13 10 16 16 5 9 8 9
## 177 P95 12 15 15 13 17 12 9 9 11 12 13 16 6 12 15 21 8
## 178 P269 7 11 6 12 15 11 10 15 12 7 10 12 12 12 7 13 15
## 179 P598 10 6 6 15 10 14 10 9 12 12 11 13 19 11 16 16 14
## 180 P525 15 12 15 15 5 7 14 10 21 16 11 12 10 14 13 17 11
## 181 P520 9 12 11 16 8 9 18 12 18 14 13 14 14 15 12 13 15
## 182 P205 11 7 7 13 8 6 15 9 14 11 12 12 12 9 16 13 13
## 183 P506 23 16 9 11 16 19 23 16 16 18 8 22 11 20 11 12 17
## 184 P29 13 10 12 17 17 11 15 16 10 12 18 6 14 12 11 10 19
## 185 P408 7 10 8 9 13 8 10 12 16 16 6 11 11 12 16 11 15
## 186 P487 7 10 15 12 14 10 9 12 15 11 10 16 19 10 14 13 18
## 187 P398 14 12 10 8 14 8 11 14 11 11 10 11 14 12 9 16 11
## 188 P558 15 10 15 13 16 8 8 16 14 9 9 13 18 10 13 12 15
## 189 P14 14 12 9 11 13 12 8 12 13 10 10 17 14 14 25 18 13
## 190 P494 6 13 12 15 16 19 9 18 11 12 8 8 19 11 11 21 13
## 191 P33 15 12 11 17 10 18 11 16 8 6 11 10 18 10 14 13 13
## 192 P536 14 9 13 13 3 21 12 11 12 9 6 12 11 13 9 14 18
## 193 P517 15 15 11 11 20 16 10 13 10 13 11 10 15 17 6 22 13
## 194 P546 10 14 13 11 9 13 19 10 11 12 8 9 18 16 12 8 14
## 195 P11 15 7 15 14 17 7 10 16 11 8 8 10 10 12 10 16 13
## 196 P544 15 10 14 7 12 13 12 10 16 16 14 8 15 17 14 10 10
## 197 P514 7 14 13 11 9 19 7 12 16 7 9 15 9 13 8 21 12
## 198 P636 6 15 9 14 18 7 11 9 14 8 11 7 15 9 13 19 12
## 199 P523 8 14 12 16 18 9 16 19 10 10 19 9 11 17 12 11 19
## 200 P211 15 12 9 12 14 14 17 14 10 11 19 12 6 12 14 11 9
## 201 P559 11 13 4 19 10 13 8 11 6 15 17 12 14 12 20 12 11
## 202 P504 10 13 11 5 13 12 16 12 15 12 11 13 13 8 11 21 7
## 203 P100 13 6 7 9 9 15 13 6 7 10 9 12 11 10 12 14 10
## 204 P115 9 9 12 13 14 13 10 6 10 11 16 10 11 17 14 17 11
## 205 P528 9 9 10 5 13 22 14 11 17 15 9 18 17 10 10 14 10
## 206 P527 7 18 11 14 9 16 15 17 8 17 13 11 7 16 16 8 11
## 207 P488 10 11 10 9 9 14 16 12 9 10 10 11 12 18 8 10 18
## 208 P542 12 14 7 13 11 13 11 8 13 12 9 12 12 9 14 12 9
## 209 P106 11 10 11 16 16 7 11 6 16 15 12 8 10 12 13 16 4
## 210 P493 9 9 12 5 11 10 12 10 12 17 12 11 9 17 11 15 9
## 211 P492 9 14 14 13 5 16 9 13 8 10 8 17 4 9 16 9 8
## 212 P541 11 17 5 14 10 10 9 10 13 8 16 11 8 10 9 19 4
## 213 P522 12 15 16 10 19 11 9 6 10 7 19 14 11 13 12 9 15
## 214 P9 14 9 10 7 11 15 12 7 13 12 15 15 16 10 9 9 13
## 215 P543 9 6 16 9 6 15 15 10 7 13 11 12 12 14 8 14 17
## 216 P555 10 16 17 8 11 12 9 6 14 9 8 7 15 14 10 15 14
## 217 P26 14 14 9 8 9 7 9 11 10 14 16 7 15 8 18 8 11
## 218 P198 7 19 4 9 8 12 11 10 8 16 10 9 14 12 15 15 7
## 219 P521 8 14 14 11 14 12 6 6 7 21 13 13 10 7 18 7 6
## 220 P547 9 6 11 5 9 17 9 9 13 17 11 11 15 9 11 17 7
## 221 P632 13 11 14 9 11 14 8 8 4 4 10 15 10 9 13 14 15
## 222 P634 6 8 13 10 11 12 9 8 10 9 16 14 12 12 16 10 7
## 223 P209 12 6 6 11 16 12 6 11 8 14 13 7 11 12 11 11 9
## 224 P334 11 13 15 8 16 16 10 10 10 12 11 14 8 5 9 5 12
## 225 P524 14 9 10 7 11 8 8 6 11 10 10 20 22 15 6 14 10
## 226 P165 9 13 9 16 12 9 13 14 6 16 10 8 11 11 6 15 10
## 227 P627 12 11 12 9 11 8 8 12 13 13 12 11 11 12 5 6 8
## 228 P314 6 17 9 14 10 8 13 18 10 13 16 11 14 12 9 10 11
## 229 P518 15 6 14 12 11 18 8 9 14 7 15 15 9 16 11 9 9
## 230 P118 16 13 10 10 16 15 9 5 13 13 8 11 8 11 10 8 14
## 231 P166 7 10 9 11 5 8 15 14 9 7 16 13 10 14 13 7 18
## 232 P397 10 7 8 13 7 10 12 11 11 8 7 11 6 16 12 8 10
## 233 P1 11 12 10 8 13 12 14 21 6 14 11 14 16 9 9 9 14
## 234 P197 6 8 8 16 8 11 9 18 10 12 12 6 9 15 15 4 9
## 235 P485 15 9 8 11 12 12 13 13 12 9 13 6 15 6 13 10 14
## 236 P560 9 9 3 7 11 8 10 11 11 9 11 16 10 14 9 10 12
## 237 P71 7 11 10 8 10 14 12 10 11 10 12 12 5 15 12 12 8
## 238 P144 9 13 17 12 8 21 12 9 6 5 6 18 13 6 11 12 11
## 239 P266 6 8 7 15 17 10 6 13 11 14 6 14 9 5 12 10 5
## 240 P633 5 7 16 16 11 12 8 5 9 12 7 7 9 15 11 12 13
## 241 P264 8 16 9 9 9 10 12 6 15 7 8 15 7 9 15 5 14
## 242 P65 14 10 9 10 11 9 9 7 12 5 16 17 7 7 12 5 15
## 243 P109 9 8 8 5 13 9 13 7 9 14 3 9 10 10 14 17 13
## 244 P22 8 14 8 9 17 6 17 15 11 13 9 18 5 8 12 6 17
## 245 P114 7 6 7 8 10 12 7 10 11 14 10 16 15 13 9 16 5
## 246 P149 11 9 9 6 13 8 11 14 14 11 9 10 13 4 10 13 10
## 247 P153 22 9 11 10 10 5 9 13 17 14 10 12 11 13 11 10 7
## 248 P267 8 14 14 5 8 5 4 8 8 12 13 16 14 10 9 9 7
## 249 P625 11 6 11 15 7 12 8 6 8 17 17 11 6 3 11 14 12
## 250 P116 13 7 8 8 7 12 9 11 11 9 7 13 8 10 12 16 9
## 251 P294 9 13 19 13 5 10 10 9 16 12 12 13 7 7 9 25 6
## 252 P99 16 11 9 21 9 5 12 15 11 9 7 8 9 8 8 12 10
## 253 P309 9 5 8 8 14 7 12 10 5 16 11 5 9 11 5 10 16
## 254 P539 9 10 14 7 5 16 9 12 12 3 11 10 14 14 8 13 16
## 255 P629 10 9 11 12 6 11 7 18 8 15 6 4 6 12 9 9 11
## 256 P564 13 4 8 9 6 10 4 12 11 13 12 12 14 13 7 13 11
## 257 P147 10 4 9 9 15 7 10 14 10 9 12 11 8 16 8 13 10
## 258 P285 11 12 6 6 8 12 6 13 16 7 12 12 6 9 5 10 14
## 259 P515 10 15 15 14 12 8 8 9 6 11 11 10 6 6 17 11 17
## 260 P550 11 10 6 11 11 19 15 7 10 8 16 14 12 9 9 15 9
## 261 P413 4 6 8 7 12 11 10 6 7 4 9 9 12 9 10 14 12
## 262 P551 5 8 12 10 9 8 16 9 11 7 10 8 9 10 15 13 5
## 263 P152 11 10 8 8 13 4 10 10 6 12 16 7 13 8 10 5 12
## 264 P299 10 8 12 8 15 14 5 13 8 7 11 5 4 6 11 12 10
## 265 P319 5 4 11 8 10 12 11 10 15 5 12 9 13 9 13 13 14
## 266 P32 15 13 10 4 13 7 10 12 11 15 5 15 8 10 7 16 11
## 267 P160 9 8 10 13 14 10 15 9 6 6 7 16 14 5 9 9 8
## 268 P333 9 9 5 8 11 13 11 13 9 9 13 11 13 14 11 15 6
## 269 P532 15 5 10 8 12 8 8 6 15 4 9 7 7 18 14 6 9
## 270 P324 11 11 15 6 6 9 18 5 9 10 10 10 14 10 10 6 7
## 271 P404 11 8 7 9 11 6 10 13 8 11 18 7 10 6 10 9 8
## 272 P534 6 10 9 7 7 9 8 8 13 11 8 5 7 9 10 7 10
## 273 P13 12 10 9 6 10 11 18 8 10 17 11 12 11 13 10 8 9
## 274 P145 10 12 9 9 12 6 9 12 13 7 12 11 14 9 15 13 6
## 275 P74 8 9 6 15 4 12 4 9 10 11 10 15 15 17 10 11 9
## 276 P496 5 3 13 11 10 9 19 19 5 10 10 13 13 10 9 6 9
## 277 P59 5 13 10 11 10 11 10 8 9 13 11 12 8 7 8 7 11
## 278 P20 13 17 11 10 7 11 17 8 12 10 8 9 8 10 10 13 11
## 279 P164 9 5 8 9 14 10 8 11 8 7 8 13 7 2 9 12 14
## 280 P122 7 10 7 8 11 2 9 7 12 17 8 8 6 19 5 17 6
## 281 P626 10 6 8 13 9 16 11 5 8 12 12 10 13 7 11 6 9
## 282 P81 14 6 13 5 8 13 7 5 7 4 9 11 16 11 9 16 6
## 283 P635 14 8 11 10 6 9 15 13 14 9 14 13 13 6 16 8 11
## 284 P21 12 5 9 8 9 6 10 13 6 12 13 10 15 12 8 12 12
## 285 P436 14 5 6 12 10 6 9 14 6 9 12 3 4 13 12 14 11
## 286 P624 5 10 13 6 12 10 15 17 9 13 11 11 8 9 12 2 8
## 287 P110 9 12 12 6 15 10 9 10 10 9 13 11 8 3 5 10 13
## 288 P121 7 10 8 10 11 10 9 9 11 7 14 12 10 11 9 14 7
## 289 P332 10 14 8 12 6 10 13 11 10 10 11 15 11 11 12 6 12
## 290 P631 8 4 13 14 12 5 10 11 11 18 13 13 15 7 9 7 18
## 291 P50 12 3 15 8 12 7 9 10 12 8 13 11 9 9 11 7 12
## 292 P91 10 11 7 13 5 9 16 10 9 6 6 12 8 8 6 11 9
## 293 P94 14 9 10 9 5 11 6 6 6 9 9 5 8 9 11 8 11
## 294 P429 16 9 9 10 7 11 8 9 10 10 7 6 10 4 9 14 10
## 295 P499 11 13 12 18 8 9 14 9 8 6 10 13 8 7 9 6 14
## 296 P508 9 10 9 12 11 17 4 10 8 10 7 9 12 7 12 9 7
## 297 P93 11 9 10 13 5 11 1 11 12 9 10 13 12 6 7 7 12
## 298 P3 7 11 8 9 10 8 7 13 12 6 14 9 4 7 12 8 7
## 299 P552 15 9 10 8 11 15 11 12 9 9 8 12 10 10 13 10 5
## 300 P8 8 6 10 9 6 8 7 5 10 10 8 8 15 9 5 11 10
## 301 P563 5 19 5 11 10 15 10 6 9 7 11 11 11 7 8 10 17
## 302 P630 11 11 8 12 26 5 5 18 13 9 6 10 9 14 10 8 12
## 303 P162 13 9 12 9 11 11 9 11 9 9 18 5 8 10 11 12 10
## 304 P171 6 7 13 6 4 12 11 9 13 13 14 11 9 9 7 11 9
## 305 P82 10 12 17 13 14 8 7 10 4 7 8 16 6 8 5 6 6
## 306 P31 7 17 6 7 9 7 11 10 13 9 4 15 10 7 10 9 11
## 307 P68 14 11 9 9 5 19 3 8 10 19 7 8 6 16 10 10 12
## 308 P565 4 7 10 11 8 13 14 11 11 9 7 8 7 8 9 5 9
## 309 P5 8 5 13 11 6 7 9 14 9 9 11 18 8 4 13 8 10
## 310 P146 7 13 9 13 10 12 11 6 11 11 10 15 7 5 9 8 9
## 311 P628 7 6 13 9 11 5 14 10 7 4 7 12 14 9 7 10 9
## 312 P125 6 9 5 10 6 9 10 8 15 14 15 10 11 8 9 6 9
## 313 P154 12 14 11 6 8 7 16 4 11 5 8 5 10 4 11 2 9
## 314 P490 6 7 6 12 13 9 5 3 13 11 9 3 11 18 9 7 8
## 315 P4 12 8 13 5 9 6 9 13 13 11 8 4 5 4 15 7 11
## 316 P157 12 8 14 7 8 10 11 14 15 8 9 14 11 8 9 10 10
## 317 P304 7 6 6 8 9 9 15 7 14 8 5 6 13 7 9 9 13
## 318 P103 7 5 7 7 14 9 10 6 12 13 8 9 6 9 9 8 13
## 319 P432 6 7 6 5 6 5 2 9 8 8 6 8 10 7 11 7 4
## 320 P674 4 4 8 7 2 6 5 3 3 8 6 3 3 6 2 7 5
## 321 P510 9 4 10 6 5 11 10 6 6 9 9 8 11 7 7 8 7
## 322 P500 8 8 3 4 13 9 5 6 10 8 10 4 12 6 11 7 5
## 323 P431 3 6 4 2 5 6 8 8 8 7 8 7 13 4 1 5 6
## 324 P437 7 4 13 6 3 7 6 3 4 7 8 8 12 6 7 5 7
## 325 P203 9 7 3 6 6 9 7 6 5 3 5 8 3 5 8 8 4
## 326 P586 7 2 4 6 8 8 7 3 3 8 6 4 4 4 13 3 6
## 327 P702 3 1 4 4 4 6 7 5 5 5 7 5 6 7 6 5 9
## 328 P207 2 5 8 7 3 5 2 6 7 6 10 2 10 5 4 7 7
## 329 P509 9 5 5 2 9 3 13 4 5 7 4 6 7 6 7 4 7
## 330 P791 4 3 4 2 6 6 6 7 6 4 5 2 5 4 4 9 5
## 331 P596 2 3 5 4 3 3 7 3 3 4 5 4 9 7 5 11 5
## 332 P614 4 4 2 3 4 6 5 8 4 3 4 7 6 5 4 9 9
## 333 P368 0 5 5 3 2 2 6 5 7 2 7 2 9 6 3 4 4
## 334 P392 3 3 7 5 5 4 4 4 7 8 4 2 4 1 4 7 4
## 335 P571 4 3 6 6 4 6 8 10 4 2 2 10 2 7 3 5 8
## 336 P745 2 10 6 2 2 2 4 7 4 4 4 4 2 3 6 3 5
## 337 P806 4 5 7 4 7 2 7 4 5 7 3 2 4 6 5 5 3
## 338 P814 4 2 2 6 0 4 7 8 3 2 6 9 5 4 5 3 4
## 339 P359 3 5 3 5 4 5 2 7 6 4 9 3 6 6 4 3 6
## 340 P501 4 5 4 2 6 5 6 11 2 5 11 2 8 4 1 9 7
## 341 P305 8 7 3 1 3 2 6 8 12 2 10 5 8 3 5 12 6
## 342 P531 4 8 3 2 4 5 3 6 3 3 5 5 8 3 10 4 5
## 343 P616 6 6 3 2 6 2 3 5 5 6 4 1 7 6 5 6 2
## 344 P799 3 3 5 3 5 4 2 2 1 3 4 4 8 9 4 3 5
## 345 P331 7 6 6 4 5 2 6 6 4 10 9 1 5 8 5 6 6
## 346 P124 4 6 0 7 4 3 5 4 2 7 11 6 8 4 4 10 5
## 347 P111 5 4 7 4 4 5 4 4 2 6 3 2 3 14 3 2 3
## 348 P53 2 5 6 8 3 1 9 6 2 5 5 4 2 3 7 7 9
## 349 P77 7 7 6 2 7 5 7 4 1 6 8 3 2 3 7 2 4
## 350 P310 5 4 4 2 5 1 2 6 5 2 4 5 3 6 5 6 8
## 351 P497 5 4 4 3 2 2 2 6 5 4 4 8 7 9 3 7 6
## 352 P295 3 6 3 8 8 3 3 5 2 3 2 5 3 6 4 6 3
## 353 P329 2 6 4 9 3 7 7 7 6 6 3 10 4 1 1 4 5
## 354 P489 5 8 4 8 6 5 4 5 4 8 7 5 4 7 7 6 3
## 355 P675 2 1 4 0 2 5 5 1 3 2 1 1 1 1 8 5 0
## 356 P161 5 6 5 7 1 3 6 6 2 9 4 6 5 2 2 5 7
## 357 P484 3 5 3 6 10 5 2 1 4 1 5 8 10 4 7 2 8
## 358 P307 4 5 6 5 3 2 3 5 4 6 6 6 3 5 3 4 2
## 359 P117 6 2 3 3 3 2 5 2 4 4 3 10 3 5 6 7 5
## 360 P195 4 4 7 5 5 3 3 7 3 5 8 5 5 3 0 10 7
## 361 P311 8 6 1 9 5 1 3 5 12 4 7 3 3 6 2 3 2
## 362 P317 2 3 3 7 9 7 6 5 4 8 1 3 2 8 5 4 8
## 363 P126 3 8 8 3 5 3 6 3 5 6 6 2 5 3 9 2 4
## 364 P300 6 7 3 1 8 9 2 6 4 3 2 8 5 0 9 3 4
## 365 P151 3 7 8 8 6 8 2 12 1 3 8 3 6 8 6 4 1
## 366 P6 3 3 2 7 6 3 8 6 6 3 1 1 5 4 3 5 3
## 367 P313 10 1 6 5 4 7 5 6 4 4 2 7 5 4 4 3 3
## 368 P562 6 5 0 4 4 4 5 7 5 9 2 7 0 4 2 6 5
## 369 P637 2 4 3 7 4 4 4 5 2 2 2 1 2 5 3 2 6
## 370 P296 7 5 6 4 6 3 2 2 4 4 4 6 2 2 5 1 3
## 371 P316 4 5 9 2 1 8 4 4 10 9 4 5 4 8 5 3 6
## 372 P320 2 5 8 7 2 6 6 4 6 5 2 9 2 6 1 3 4
## 373 P302 4 2 5 2 4 7 7 8 4 3 4 1 8 2 3 4 5
## 374 P321 3 6 8 5 3 3 3 4 1 2 3 11 9 2 3 4 6
## 375 P23 3 5 4 3 3 2 5 4 5 5 7 7 5 4 6 6 6
## 376 P325 7 6 2 3 7 3 4 12 3 5 4 3 3 4 9 4 4
## 377 P7 4 8 3 7 8 7 2 3 10 3 5 2 3 4 5 3 7
## 378 P159 2 2 9 5 2 7 4 4 5 7 2 8 3 5 4 7 3
## 379 P301 7 1 2 3 4 5 5 1 3 9 2 3 6 3 3 3 1
## 380 P306 4 2 3 8 7 4 6 4 9 6 7 4 4 2 2 9 3
## 381 P312 3 2 3 8 3 6 4 3 0 2 2 3 6 2 3 3 3
## 382 P326 3 11 7 6 4 7 8 2 7 4 5 3 3 3 4 3 4
## 383 P433 2 4 5 3 2 2 1 5 3 5 6 5 2 7 4 5 2
## 384 P323 3 7 2 2 2 8 8 5 5 4 2 6 7 6 6 0 1
## 385 P98 4 2 4 4 7 2 3 4 4 4 5 5 6 9 6 2 4
## 386 P328 4 6 6 6 4 9 3 2 5 0 0 4 6 7 8 4 1
## 387 P330 4 4 8 2 4 5 3 5 10 2 3 5 3 1 5 3 2
## 388 P2 7 6 3 2 7 1 6 3 3 3 2 2 6 2 0 6 2
## 389 P308 7 3 2 4 6 3 4 6 5 5 4 6 3 9 2 6 10
## 390 P315 5 7 2 5 7 8 3 6 5 1 4 1 2 2 8 5 4
## 391 P104 4 4 5 5 3 7 5 6 5 7 10 5 8 7 3 2 4
## 392 P768 0 0 2 8 2 5 3 7 3 4 1 0 0 8 4 1 4
## 393 P150 4 3 3 4 6 2 3 5 4 3 4 6 3 4 6 6 3
## 394 P298 5 7 4 1 4 3 5 3 7 4 6 7 9 3 4 4 2
## 395 P155 5 7 4 3 4 3 2 4 3 5 2 3 3 4 4 5 10
## 396 P163 6 5 6 6 7 5 5 5 1 3 1 3 3 0 6 1 0
## 397 P297 3 4 4 1 3 3 3 3 2 7 8 4 4 5 2 4 1
## 398 P369 3 2 2 3 3 7 2 5 4 2 9 4 2 6 6 6 6
## 399 P12 3 4 1 6 4 3 7 3 5 3 5 6 5 0 4 0 7
## 400 P561 6 5 1 3 1 7 2 11 4 8 3 5 4 5 5 4 7
## 401 P327 2 5 4 5 5 5 4 7 1 0 4 5 5 6 4 3 1
## 402 P553 2 2 3 7 5 4 5 6 4 3 5 1 6 1 4 5 2
## 403 P148 3 2 8 3 5 7 1 5 3 5 3 2 8 4 5 5 5
## 404 P337 3 6 3 1 1 7 3 3 1 3 1 7 5 4 8 2 8
## 405 P303 3 5 8 4 3 6 2 6 4 5 4 6 3 5 4 2 2
## 406 P498 4 4 6 8 8 1 6 5 7 8 2 6 5 5 3 3 3
## 407 P567 3 7 1 9 6 5 1 5 2 5 5 4 8 8 2 5 7
## 408 P599 2 1 1 1 3 2 1 1 1 3 3 2 2 0 5 1 1
## 409 P401 3 5 5 7 2 2 6 5 7 3 5 4 4 4 1 2 2
## 410 P201 1 3 3 5 5 5 2 3 2 7 7 5 3 3 1 2 7
## 411 P293 6 3 5 2 6 4 4 4 0 5 3 4 1 4 7 10 2
## 412 P356 4 6 4 2 2 5 3 2 10 0 4 5 3 3 4 5 3
## 413 P105 2 3 3 2 5 4 5 7 5 3 8 3 6 2 2 3 1
## 414 P610 6 3 1 4 5 1 11 3 5 2 5 4 4 4 3 9 2
## 415 P292 2 7 5 4 4 3 5 6 3 6 5 3 3 3 5 2 2
## 416 P322 4 5 2 2 7 3 8 7 8 6 3 3 4 4 4 7 6
## 417 P318 3 5 5 9 9 1 1 8 8 8 4 4 4 6 3 3 6
## 418 P365 6 5 5 1 5 2 8 7 3 3 2 4 3 8 5 4 2
## 419 P782 5 7 4 6 2 2 3 6 4 2 3 2 6 4 6 3 3
## 420 P590 3 4 4 6 4 4 0 5 2 1 5 3 2 5 6 4 5
## 421 P123 5 5 3 6 4 6 4 7 4 2 4 4 3 3 5 2 5
## 422 P156 1 4 6 6 3 8 2 3 4 6 3 6 4 3 2 6 1
## 423 P370 6 2 3 5 11 5 3 2 2 5 3 1 5 4 3 4 1
## 424 P587 4 4 2 5 2 3 2 3 0 5 4 1 3 7 5 6 3
## 425 P611 3 1 2 7 3 0 4 3 3 3 3 2 3 2 2 2 3
## 426 P803 3 2 3 3 7 3 1 3 3 1 4 2 2 4 5 2 5
## 427 P811 5 1 3 5 4 4 4 2 2 3 3 3 5 3 4 4 3
## 428 P291 2 2 5 6 4 0 4 1 4 3 3 6 2 3 5 1 4
## 429 P336 2 3 5 3 1 4 4 3 3 3 4 2 5 5 9 5 1
## 430 P412 4 2 4 8 5 3 2 1 1 5 2 2 6 4 5 6 4
## 431 P271 3 3 4 6 1 8 4 3 1 5 3 9 5 4 4 6 3
## 432 P158 8 3 3 2 3 3 4 5 2 7 7 3 9 3 4 6 3
## 433 P609 0 0 2 1 8 4 5 3 3 4 2 3 3 3 3 3 6
## 434 P642 5 3 4 2 2 2 4 2 5 2 3 5 5 1 3 7 3
## 435 P788 4 3 3 5 1 4 6 3 1 5 3 2 3 3 4 7 3
## 436 P415 2 4 2 3 6 7 3 7 6 3 2 3 6 4 7 1 4
## 437 P784 3 1 2 1 3 4 3 4 1 4 1 1 1 4 4 6 5
## 438 P593 4 5 1 4 0 1 3 5 3 3 4 4 6 3 7 4 2
## 439 P199 4 1 1 6 3 7 1 4 4 5 3 5 7 4 3 1 2
## 440 P796 2 5 0 3 3 0 4 1 4 5 4 3 5 4 9 4 1
## 441 P580 1 5 4 7 2 5 1 6 0 1 4 3 2 3 5 7 3
## 442 P594 1 2 3 5 3 4 4 3 3 1 2 3 3 6 1 9 5
## 443 P402 1 0 6 0 3 4 4 1 4 4 1 6 0 4 9 3 2
## 444 P335 6 4 2 4 3 2 7 0 2 5 2 7 2 3 6 3 2
## 445 P573 1 2 4 4 2 2 3 0 6 2 3 2 5 1 2 6 7
## 446 P341 5 1 3 1 1 3 5 3 3 1 4 7 4 3 6 0 3
## 447 P568 4 2 1 5 2 2 2 4 5 5 2 0 3 0 5 5 2
## 448 P387 5 3 0 1 9 5 10 5 0 6 3 2 2 2 4 4 4
## 449 P414 2 2 1 1 5 2 7 3 5 4 6 3 3 2 5 2 3
## 450 P764 1 2 5 3 0 3 2 1 2 2 2 1 1 0 4 1 4
## 451 P789 2 1 1 6 1 4 2 4 5 1 1 3 1 3 3 3 2
## 452 P581 2 2 5 2 2 8 6 3 2 4 2 4 6 4 0 6 2
## 453 P676 1 1 3 2 5 4 1 7 1 2 1 0 2 2 1 3 1
## 454 P808 0 3 3 3 1 2 3 2 3 1 0 3 3 5 3 0 4
## 455 P584 2 3 2 6 2 2 2 4 6 4 4 4 5 3 6 7 4
## 456 P673 1 3 1 2 3 0 6 0 0 5 0 1 4 1 5 5 4
## 457 P366 2 2 8 3 5 3 4 4 3 1 3 1 1 1 3 3 2
## 458 P701 5 3 1 2 1 3 4 6 4 2 6 1 3 2 2 3 4
## 459 P727 2 0 4 1 4 2 2 3 4 1 1 6 2 0 1 1 2
## 460 P703 2 3 4 4 0 3 4 2 1 1 0 1 1 1 4 1 1
## 461 P793 0 1 1 4 2 1 1 3 1 2 1 4 0 2 2 5 1
## 462 P388 5 2 1 1 1 2 4 3 1 1 2 9 1 4 4 6 4
## 463 P797 2 3 2 2 2 3 3 4 3 2 4 2 0 5 5 3 3
## 464 P804 2 2 5 3 1 4 5 1 2 3 4 0 0 2 3 3 3
## 465 P747 1 1 1 0 4 1 1 8 5 3 3 1 2 2 2 7 0
## 466 P801 3 2 0 3 2 3 3 1 6 1 5 2 1 3 3 3 2
## 467 P108 0 2 2 0 3 1 2 1 6 3 0 3 4 3 5 1 5
## 468 P737 0 0 3 1 0 1 2 3 3 0 4 0 3 4 1 0 3
## 469 P816 0 1 0 0 1 2 2 6 0 1 0 2 2 0 5 1 1
## 470 P583 2 1 4 1 3 3 1 3 1 3 1 6 4 2 7 2 2
## 471 P390 4 4 3 2 3 1 3 5 3 6 0 5 0 3 3 3 1
## 472 P569 1 3 4 1 2 1 2 4 1 5 6 7 1 4 1 2 4
## 473 P591 2 2 2 2 1 3 2 1 4 4 4 4 1 1 2 2 3
## 474 P595 1 2 3 3 1 5 1 4 3 4 1 5 2 2 1 0 2
## 475 P805 0 6 3 2 5 2 0 1 3 1 4 6 3 5 5 0 3
## 476 P206 1 0 1 3 1 3 4 0 4 5 0 2 3 3 2 2 4
## 477 P338 2 2 1 3 4 2 1 2 3 5 2 5 3 3 3 1 2
## 478 P434 2 0 7 1 3 2 1 1 3 2 1 3 2 1 4 4 3
## 479 P705 1 3 0 1 4 3 3 1 4 6 1 2 2 0 2 1 2
## 480 P391 0 1 0 4 3 0 4 1 4 3 0 3 1 3 1 7 2
## 481 P345 2 3 2 0 7 1 2 6 1 1 3 2 1 0 2 0 5
## 482 P475 3 5 1 2 2 3 4 0 3 0 2 4 1 3 6 1 4
## 483 P686 2 4 0 1 2 4 0 2 2 2 0 2 1 4 3 5 2
## 484 P693 2 3 4 2 4 4 2 4 2 2 3 2 1 0 1 4 4
## 485 P361 6 3 3 2 3 0 0 3 2 2 2 1 1 2 4 4 4
## 486 P570 2 2 0 2 0 2 3 2 1 4 3 2 3 3 4 2 4
## 487 P394 1 4 2 9 1 2 2 3 1 5 1 3 3 2 2 2 4
## 488 P641 0 5 0 2 6 2 0 2 3 5 4 5 1 1 2 4 5
## 489 P389 2 3 4 4 0 1 0 0 2 1 0 1 2 3 4 3 2
## 490 P790 3 1 5 2 0 4 3 4 0 4 2 1 2 3 3 3 3
## 491 P582 3 4 2 3 5 1 3 0 4 3 4 1 4 5 2 2 1
## 492 P204 1 2 1 1 1 3 4 2 2 1 0 1 3 2 1 2 5
## 493 P395 1 1 0 2 2 0 1 5 1 3 1 2 0 6 1 3 2
## 494 P396 0 1 1 4 3 1 0 2 4 1 6 2 1 0 1 0 1
## 495 P813 1 1 1 3 2 2 5 5 1 3 2 1 0 5 2 0 3
## 496 P698 2 2 2 1 0 2 3 2 3 0 1 6 3 4 2 1 2
## 497 P342 3 2 2 2 3 0 1 2 2 4 1 0 3 3 5 4 1
## 498 P798 6 0 3 1 0 2 1 3 1 3 0 1 4 3 2 1 4
## 499 P692 0 2 3 0 2 3 3 0 2 3 2 3 2 0 2 8 2
## 500 P786 1 2 2 2 1 0 6 4 3 2 3 2 4 3 1 1 2
## 501 P127 4 0 2 2 2 1 3 2 1 3 1 0 7 2 6 1 4
## 502 P367 0 2 2 1 1 5 4 0 2 1 3 2 1 2 1 1 0
## 503 P357 3 1 3 4 2 3 2 4 3 2 3 3 2 0 1 1 3
## 504 P371 2 4 3 1 2 2 1 0 2 3 2 2 3 4 7 1 2
## 505 P600 0 1 3 1 1 1 2 2 0 1 3 0 1 1 2 0 1
## 506 P372 1 2 0 1 2 4 2 0 1 1 2 3 0 3 2 3 0
## 507 P785 3 1 4 0 1 1 0 3 3 0 4 1 3 2 1 5 1
## 508 P752 4 0 2 3 2 2 1 3 3 1 1 1 2 5 3 2 2
## 509 P588 5 2 1 0 1 2 2 6 2 6 4 1 1 2 2 2 1
## 510 P265 0 1 1 5 2 1 3 0 3 1 3 1 1 2 3 0 2
## 511 P343 0 0 2 1 0 5 2 1 1 1 1 1 1 2 3 1 3
## 512 P762 2 3 2 1 0 2 1 1 3 1 1 0 1 1 1 1 2
## 513 P601 0 0 1 0 1 1 1 1 0 0 0 2 0 3 1 0 0
## 514 P344 1 2 0 3 0 0 3 1 2 0 0 1 2 0 0 2 2
## 515 P812 3 2 0 0 2 1 0 2 2 2 1 6 3 2 2 1 1
## 516 P589 0 1 1 0 2 1 0 1 0 1 1 1 0 2 0 2 1
## 517 P800 3 2 1 0 0 0 1 2 0 0 0 0 0 1 3 0 0
## 518 P373 0 3 0 0 1 1 2 0 2 1 3 1 3 0 0 0 0
## 519 P792 0 1 0 1 0 3 1 2 2 0 2 1 1 0 0 2 0
## 520 P572 2 0 0 0 1 3 0 0 0 2 0 3 0 2 2 3 1
## 521 P393 1 0 1 0 2 2 1 0 1 1 0 0 0 2 4 0 1
## 522 P732 0 1 1 1 1 1 0 0 1 2 1 1 2 1 0 0 1
## 523 P481 1 2 0 0 0 0 1 1 1 0 1 1 2 2 1 2 2
## 524 P585 1 0 1 1 2 0 1 0 2 2 2 1 1 1 1 2 0
## 525 P769 0 0 2 3 0 1 0 2 2 0 0 0 0 1 1 0 1
## 526 P597 1 2 0 0 2 1 1 0 0 0 0 2 1 1 0 1 1
## 527 P787 1 0 2 0 1 1 3 1 1 1 0 1 0 2 1 0 0
## 528 P807 0 0 2 0 1 0 0 2 0 2 0 0 0 0 3 0 0
## 529 P767 0 0 1 1 0 2 0 2 0 1 0 0 1 3 0 0 1
## 530 P706 0 0 0 0 0 1 0 0 2 2 2 2 1 1 3 0 2
## 531 P358 1 1 1 0 0 0 0 0 1 0 1 1 0 1 0 0 0
## 532 P339 0 0 1 2 4 2 0 0 2 1 3 0 0 0 0 3 1
## 533 P592 2 0 0 1 0 0 0 1 1 1 3 0 0 2 2 1 0
## 534 P605 1 3 2 1 4 1 0 1 0 0 2 0 0 0 1 0 1
## 535 P746 1 0 0 0 1 2 3 0 1 1 0 2 2 1 1 1 0
## 536 P736 1 1 0 0 0 2 1 2 0 0 0 0 2 1 0 0 0
## 537 P287 0 0 0 0 1 0 1 1 0 0 0 2 2 3 1 1 2
## 538 P362 1 0 0 1 1 1 0 0 1 3 0 0 0 2 1 2 0
## 539 P374 1 1 2 2 1 0 1 0 1 1 2 1 1 0 1 0 0
## 540 P476 1 0 1 1 3 0 0 0 2 2 1 1 2 0 0 1 0
## 541 P726 0 1 0 2 2 2 0 1 0 0 1 1 2 1 1 1 1
## 542 P416 1 1 1 0 0 0 2 1 1 2 0 0 0 2 2 0 2
## 543 P255 1 0 1 0 1 1 0 0 0 0 0 0 0 1 0 2 0
## 544 P478 1 0 0 2 3 0 1 0 0 0 1 0 1 2 0 0 1
## 545 P687 1 0 0 0 0 1 4 0 2 1 2 0 2 1 0 0 1
## 546 P699 0 0 0 0 0 0 3 0 2 0 0 0 1 3 1 0 2
## 547 P742 0 0 1 0 1 1 0 0 0 0 0 1 3 1 1 1 1
## 548 P360 0 1 2 2 1 1 0 0 1 0 1 1 1 0 1 1 2
## 549 P281 1 0 3 1 0 0 1 2 0 0 1 0 0 1 1 4 1
## 550 P743 1 1 3 0 2 0 0 0 1 1 0 0 0 1 2 0 2
## 551 P754 0 0 0 0 0 0 1 2 0 0 0 1 1 1 1 1 0
## 552 P479 0 3 1 1 0 2 0 0 0 0 0 0 1 1 0 1 0
## 553 P753 1 0 0 0 0 0 3 0 1 0 1 0 2 2 2 2 0
## 554 P700 1 0 0 5 0 1 2 0 1 1 1 0 1 0 0 0 0
## 555 P288 1 1 0 0 1 0 3 1 1 0 0 0 1 0 1 3 0
## 556 P606 1 1 0 1 1 1 1 1 1 1 0 0 1 0 0 0 1
## 557 P422 1 1 0 1 0 0 0 0 1 2 1 0 1 1 0 0 0
## 558 P602 0 0 0 1 1 0 2 4 0 0 1 0 0 3 3 0 0
## 559 P728 1 0 1 1 0 1 0 0 0 0 0 0 1 0 1 1 0
## 560 P765 0 0 0 0 0 0 0 0 2 1 2 0 0 0 0 0 1
## 561 P477 1 0 1 0 0 1 0 3 1 0 0 0 3 0 0 0 0
## 562 P809 0 1 0 1 1 0 1 0 0 2 0 1 0 0 0 2 0
## 563 P577 1 1 0 1 1 0 0 0 1 1 0 1 3 0 1 0 0
## 564 P670 0 0 0 0 0 0 1 0 1 0 1 1 0 1 1 0 0
## 565 P704 0 0 2 1 0 0 1 0 1 0 1 0 0 1 0 0 0
## 566 P663 0 0 0 2 0 0 0 0 0 0 0 1 0 3 1 1 1
## 567 P707 1 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0
## 568 P802 1 1 1 0 3 2 1 0 0 0 0 0 0 0 0 0 1
## 569 P733 0 0 0 0 2 0 0 1 0 0 0 0 0 0 1 0 0
## 570 P738 0 0 0 0 0 0 2 0 0 1 0 0 0 0 1 0 0
## 571 P748 0 1 1 0 0 3 0 0 0 0 0 0 2 1 0 0 1
## 572 P749 1 0 0 0 1 0 0 0 0 0 0 0 2 1 0 1 0
## 573 P257 0 0 0 0 1 1 1 0 1 1 0 2 0 0 1 2 0
## 574 P794 0 0 1 0 0 0 1 0 0 1 0 0 1 0 0 0 0
## 575 P282 0 0 0 0 3 1 2 0 1 0 0 0 0 1 0 0 0
## 576 P482 0 0 1 0 1 0 0 0 0 1 0 0 1 1 2 0 1
## 577 P688 0 0 0 0 1 0 0 0 0 1 1 3 0 0 0 0 1
## 578 P376 0 0 0 0 0 0 0 0 0 0 0 2 0 0 2 0 0
## 579 P377 1 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 1
## 580 P340 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1
## 581 P375 1 0 1 0 0 0 2 0 1 0 1 1 0 0 0 0 0
## 582 P603 0 1 0 0 1 0 0 1 1 0 0 0 0 1 1 1 0
## 583 P574 0 1 0 0 0 0 0 1 1 1 1 0 0 1 0 0 1
## 584 P283 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0
## 585 P363 2 1 0 0 0 0 1 0 0 0 0 2 0 0 0 0 1
## 586 P817 1 0 0 0 1 1 2 1 1 0 0 1 0 0 0 0 0
## 587 P417 0 0 0 1 0 0 0 0 1 1 0 1 0 0 1 1 0
## 588 P448 0 2 0 2 1 0 0 0 0 0 1 0 1 0 0 0 0
## 589 P456 0 0 0 2 0 0 0 0 0 1 0 0 0 1 0 0 1
## 590 P766 0 1 1 0 0 1 0 1 0 0 0 0 0 1 0 1 2
## 591 P224 0 0 0 0 1 1 0 0 0 1 1 0 0 0 0 1 0
## 592 P455 0 0 1 0 0 0 1 0 0 0 0 1 0 0 0 0 0
## 593 P348 1 0 0 0 0 1 0 2 1 0 0 0 0 0 1 0 0
## 594 P438 1 1 0 0 2 0 0 0 0 0 1 1 0 0 0 0 0
## 595 P575 0 0 0 0 0 0 0 0 0 1 0 2 0 0 0 0 0
## 596 P608 1 1 0 0 0 0 1 0 1 0 0 1 0 0 0 1 0
## 597 P690 0 0 0 0 2 0 0 0 0 0 0 1 0 1 0 0 0
## 598 P697 0 0 0 0 0 0 0 0 0 0 1 0 0 1 2 0 0
## 599 P795 0 0 0 1 0 0 0 0 1 0 0 1 0 0 0 0 0
## 600 P815 0 0 1 0 0 2 1 0 0 1 0 0 1 0 1 1 3
## 601 P212 0 0 0 0 0 1 2 0 0 0 0 0 0 0 0 0 0
## 602 P439 1 0 0 0 0 1 0 1 0 0 0 1 1 0 0 0 0
## 603 P664 0 0 0 0 0 0 0 0 0 2 0 0 0 1 0 3 0
## 604 P734 1 0 0 1 0 0 0 0 1 0 0 1 0 0 0 1 0
## 605 P755 0 0 0 0 0 0 0 0 2 0 0 1 0 0 3 0 0
## 606 P272 0 0 0 3 0 1 0 0 0 0 0 0 0 1 0 0 0
## 607 P289 0 1 0 0 0 0 0 0 0 2 1 0 0 0 2 0 0
## 608 P442 0 0 1 0 0 0 0 0 0 0 1 0 2 1 0 0 0
## 609 P449 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 2
## 610 P480 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0
## 611 P689 0 0 1 0 1 0 0 0 0 0 0 0 1 0 0 0 0
## 612 P751 0 2 0 1 0 0 0 1 0 0 2 0 0 0 0 0 0
## 613 P347 1 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0
## 614 P378 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0
## 615 P810 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 1
## 616 P247 1 1 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0
## 617 P460 1 0 0 0 1 0 0 0 0 0 1 0 0 0 2 0 0
## 618 P651 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 1
## 619 P671 1 0 0 0 0 0 0 0 0 1 0 0 1 1 0 0 0
## 620 P735 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 621 P750 0 0 0 0 0 1 0 0 0 0 0 1 0 0 1 0 0
## 622 P346 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1
## 623 P450 1 0 0 0 1 3 0 0 0 0 0 0 0 0 0 0 0
## 624 P483 0 0 0 0 2 1 0 1 0 0 0 0 0 0 0 0 0
## 625 P756 0 0 1 0 0 0 1 0 0 2 1 0 0 1 0 0 0
## 626 P818 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0
## 627 P219 0 0 0 1 0 0 0 0 0 0 1 0 1 0 1 0 0
## 628 P349 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 2
## 629 P384 1 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0
## 630 P418 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0
## 631 P424 0 0 1 0 1 0 0 0 0 0 0 0 1 0 0 0 0
## 632 P443 0 1 1 1 0 0 0 0 0 1 0 0 0 1 0 0 0
## 633 P694 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 634 P718 0 2 0 0 0 1 0 1 0 0 0 1 1 0 0 0 0
## 635 P731 0 0 0 1 0 0 0 0 0 2 0 0 0 1 0 1 0
## 636 P739 0 0 0 1 0 0 0 1 0 0 0 2 0 0 0 0 0
## 637 P776 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0
## 638 P819 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 639 P221 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 640 P440 1 0 0 0 0 0 0 0 0 1 1 1 0 0 0 0 0
## 641 P451 1 0 0 0 0 0 1 2 0 1 0 0 0 0 0 0 0
## 642 P452 0 0 0 0 1 0 0 0 1 0 0 0 3 2 0 0 0
## 643 P576 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0
## 644 P757 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0
## 645 P770 2 0 0 0 0 1 0 0 1 0 0 0 1 0 1 0 0
## 646 P771 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0
## 647 P238 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 1 0
## 648 P245 2 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0
## 649 P277 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0
## 650 P290 0 0 1 0 1 0 0 0 0 1 0 0 1 0 0 0 0
## 651 P441 0 0 1 0 1 0 0 1 0 0 0 0 1 0 0 0 1
## 652 P447 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0
## 653 P459 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 654 P578 1 0 1 0 0 0 1 0 0 0 0 0 0 0 2 0 0
## 655 P604 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0
## 656 P691 0 0 0 0 1 0 0 0 0 0 0 0 0 2 0 0 0
## 657 P772 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 1
## 658 P214 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0
## 659 P220 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 660 P241 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 1 0
## 661 P379 0 1 0 0 0 0 1 0 0 1 0 0 0 1 0 0 0
## 662 P423 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0
## 663 P458 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0
## 664 P607 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0
## 665 P653 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 1
## 666 P665 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1
## 667 P695 0 0 0 0 0 0 1 0 0 0 0 0 0 2 2 0 0
## 668 P213 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0
## 669 P225 0 0 1 0 0 1 0 0 0 0 0 0 1 0 0 0 0
## 670 P242 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0
## 671 P248 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0
## 672 P419 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 673 P445 0 0 0 0 0 0 0 0 0 3 0 0 1 0 0 0 0
## 674 P446 0 1 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0
## 675 P472 0 0 1 0 0 1 0 0 0 0 1 0 0 0 0 0 0
## 676 P729 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0
## 677 P741 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0
## 678 P758 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0
## 679 P779 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 680 P222 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0
## 681 P239 0 0 1 0 0 0 0 0 0 0 2 1 0 0 0 0 0
## 682 P240 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 2 0
## 683 P461 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 0
## 684 P666 1 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0
## 685 P667 1 0 0 0 0 0 1 0 1 0 0 0 1 1 1 0 0
## 686 P672 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 687 P696 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1
## 688 P777 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 689 P216 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 690 P223 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 1
## 691 P273 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0
## 692 P453 0 0 0 0 1 0 0 0 1 2 0 1 0 0 0 0 0
## 693 P639 0 1 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0
## 694 P652 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 695 P740 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0
## 696 P759 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
## 697 P226 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
## 698 P229 0 0 1 0 0 0 0 1 0 0 1 0 0 1 0 0 0
## 699 P231 0 0 0 0 0 0 0 0 0 0 0 1 1 0 1 0 0
## 700 P244 0 0 0 0 0 0 0 2 0 0 0 0 1 0 0 0 1
## 701 P427 0 0 0 0 0 0 0 0 0 1 1 0 1 0 0 0 0
## 702 P679 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0
## 703 P711 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
## 704 P744 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
## 705 P773 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0
## 706 P235 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0
## 707 P252 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 708 P350 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
## 709 P454 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0
## 710 P579 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1
## 711 P658 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0
## 712 P717 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
## 713 P720 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 714 P778 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
## 715 P780 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0
## 716 P217 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 717 P246 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 718 P274 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0
## 719 P278 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0
## 720 P280 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0
## 721 P462 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
## 722 P464 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0
## 723 P470 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 724 P660 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
## 725 P681 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0
## 726 P714 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0
## 727 P227 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 2 0
## 728 P233 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
## 729 P352 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0
## 730 P426 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 731 P463 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1
## 732 P465 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0
## 733 P647 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0
## 734 P655 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 735 P657 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 736 P659 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0
## 737 P678 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0
## 738 P774 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0
## 739 P218 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0
## 740 P236 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0
## 741 P237 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 742 P258 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 743 P260 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 1 0
## 744 P420 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
## 745 P643 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0
## 746 P669 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0
## 747 P677 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 748 P724 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0
## 749 P730 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0
## 750 P234 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0
## 751 P243 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0
## 752 P249 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0
## 753 P256 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
## 754 P275 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 755 P354 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 756 P355 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
## 757 P425 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 758 P444 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 759 P457 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 760 P662 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 761 P682 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0
## 762 P683 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0
## 763 P685 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 764 P713 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 765 P715 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0
## 766 P775 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 767 P232 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 768 P276 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0
## 769 P351 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 770 P380 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 771 P386 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 772 P466 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 773 P473 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
## 774 P474 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 775 P650 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 776 P661 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0
## 777 P668 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 778 P712 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 779 P716 1 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0
## 780 P719 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 781 P761 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 782 P228 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0
## 783 P230 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 784 P250 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0
## 785 P253 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 786 P279 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 787 P381 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0
## 788 P382 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 789 P383 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 790 P421 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0
## 791 P428 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 792 P467 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 793 P468 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 794 P471 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 795 P644 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 796 P646 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 797 P649 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 798 P654 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 799 P656 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 800 P708 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 801 P722 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 802 P760 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0
## 803 P763 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
## 804 P215 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 805 P251 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 806 P254 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
## 807 P259 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 808 P469 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 809 P680 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 810 P684 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 811 P721 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## W17 W18 W19 W20 W21 W22 W23 W24 W25 W26 W27 W28 W29 W30 W31 W32 W33
## 1 67 52 45 64 49 48 72 64 64 30 25 43 23 29 30 31 28
## 2 36 53 38 39 41 31 43 33 30 27 37 34 37 38 39 23 33
## 3 39 42 41 44 51 47 44 38 32 29 41 27 21 36 27 30 19
## 4 41 43 29 50 43 48 39 39 27 31 35 28 32 24 44 30 23
## 5 51 33 48 61 40 44 41 40 32 26 29 36 28 22 34 21 32
## 6 36 45 28 33 34 35 36 43 32 29 29 26 39 34 40 33 21
## 7 38 43 36 43 36 42 34 29 25 29 36 28 19 39 44 32 42
## 8 42 32 48 36 41 38 49 39 34 30 22 23 30 35 27 41 41
## 9 42 54 35 53 58 28 27 37 27 27 35 20 33 24 22 40 33
## 10 35 34 36 36 31 46 31 43 28 39 26 30 22 31 30 48 24
## 11 43 36 42 27 36 30 39 41 21 31 21 30 20 34 36 35 40
## 12 43 40 51 39 37 35 34 36 19 29 28 25 35 23 20 24 30
## 13 42 43 26 35 29 48 24 33 34 23 24 26 28 32 34 38 40
## 14 36 44 43 44 28 35 29 43 30 27 30 29 35 42 39 38 38
## 15 39 50 38 38 44 33 27 39 23 22 29 24 36 33 33 32 38
## 16 45 25 32 36 44 45 30 42 23 27 38 32 40 29 36 28 21
## 17 55 40 28 49 43 39 34 28 25 40 35 36 31 26 24 21 37
## 18 60 43 41 50 46 35 46 33 21 30 32 22 32 38 22 39 31
## 19 52 40 56 46 45 38 38 40 22 30 27 29 32 35 31 28 35
## 20 36 49 40 49 41 47 34 30 30 18 24 28 27 30 30 36 27
## 21 32 35 35 36 31 32 45 36 12 38 25 30 33 24 39 49 25
## 22 37 43 34 44 44 37 41 34 27 27 25 30 19 27 34 39 22
## 23 46 41 45 38 39 39 34 37 24 35 22 39 39 32 40 34 23
## 24 48 34 31 49 35 36 42 30 31 26 47 44 34 19 19 19 31
## 25 24 30 38 42 39 50 30 26 36 37 25 31 22 19 40 43 19
## 26 35 37 56 32 41 38 44 31 31 44 33 31 29 33 26 28 27
## 27 44 35 33 52 40 48 30 36 23 28 22 39 35 17 40 43 36
## 28 32 38 40 29 48 31 48 34 18 25 34 40 26 38 28 29 36
## 29 49 35 35 48 34 51 31 30 26 26 34 38 36 35 34 36 37
## 30 46 43 33 30 44 39 30 29 24 31 18 32 20 34 29 28 40
## 31 32 41 45 41 39 36 58 29 21 22 31 29 38 37 25 23 33
## 32 50 37 41 37 49 27 44 26 28 23 22 26 22 27 36 25 36
## 33 36 55 44 45 50 37 41 27 25 21 34 33 33 40 18 30 28
## 34 28 34 43 37 39 36 25 38 21 30 20 33 24 25 38 43 28
## 35 46 35 31 43 43 30 27 41 26 32 32 34 41 38 26 23 44
## 36 44 30 39 39 36 32 39 30 22 25 34 28 29 24 29 25 38
## 37 27 36 36 39 42 35 38 35 24 32 32 41 33 32 29 45 26
## 38 38 51 38 41 21 33 33 25 27 32 42 26 33 26 26 32 31
## 39 34 37 40 34 35 39 52 27 19 43 31 19 28 30 30 32 38
## 40 42 50 36 44 31 50 35 26 27 23 32 37 19 40 34 29 38
## 41 41 57 42 46 31 37 40 27 32 23 28 30 28 31 47 30 30
## 42 35 47 51 35 43 38 33 33 25 35 28 31 27 44 41 27 25
## 43 39 39 48 32 39 35 39 31 35 31 26 29 36 37 27 26 26
## 44 31 43 30 35 44 40 36 40 23 31 26 21 42 40 34 27 26
## 45 42 35 39 36 34 33 42 45 24 24 30 27 31 29 29 35 37
## 46 43 33 26 39 33 25 35 23 24 23 26 37 29 29 30 39 39
## 47 40 34 47 38 32 28 39 32 27 27 29 30 25 32 30 27 28
## 48 44 39 46 31 44 30 37 30 29 22 38 37 30 30 25 29 36
## 49 43 40 50 29 36 32 28 35 30 22 23 20 17 24 26 20 30
## 50 46 49 28 43 42 46 29 35 20 46 27 29 32 16 37 29 27
## 51 40 54 38 34 34 30 44 33 28 22 24 31 21 41 26 30 44
## 52 29 40 39 24 33 36 32 32 26 30 30 34 33 26 24 29 31
## 53 35 31 41 43 36 44 27 26 20 35 32 19 39 38 33 24 23
## 54 37 38 43 41 32 36 35 36 28 32 27 30 26 35 19 31 24
## 55 40 46 26 31 39 51 43 41 20 24 20 39 30 34 24 25 32
## 56 30 47 20 28 48 43 43 42 27 21 24 25 40 38 31 29 29
## 57 24 38 39 38 31 41 37 34 26 27 26 36 34 39 37 30 39
## 58 30 37 34 38 28 31 39 25 25 29 16 29 31 28 25 22 36
## 59 42 32 34 26 30 42 31 29 24 36 16 27 36 35 33 27 30
## 60 34 40 45 39 35 35 45 32 17 23 28 38 26 36 35 24 24
## 61 43 49 29 27 35 33 30 29 28 30 23 23 23 48 32 28 29
## 62 35 39 56 48 39 20 36 20 33 34 28 36 20 21 36 41 32
## 63 39 44 33 35 33 38 26 28 24 21 26 24 33 28 24 24 29
## 64 36 31 43 34 31 33 34 32 41 26 19 25 28 22 29 21 23
## 65 34 47 40 41 41 46 24 41 18 24 34 32 40 23 32 32 29
## 66 49 30 40 47 32 49 33 46 26 26 27 28 30 39 27 34 27
## 67 39 34 34 37 36 37 31 40 14 22 26 34 30 36 17 31 39
## 68 36 41 44 40 35 40 32 31 37 24 32 25 23 28 28 21 39
## 69 34 35 30 27 34 29 28 27 28 27 30 27 25 35 25 40 32
## 70 29 43 30 33 42 38 48 36 13 29 23 26 28 26 23 29 37
## 71 37 32 31 29 45 33 35 29 16 34 28 30 30 17 32 37 31
## 72 28 38 36 40 32 27 30 32 19 23 30 23 20 25 35 34 34
## 73 28 27 35 40 41 32 31 35 28 19 25 28 21 32 36 29 32
## 74 31 37 50 32 27 35 29 26 29 20 19 20 25 47 35 33 26
## 75 33 30 26 31 35 22 26 44 18 41 30 22 28 31 21 27 33
## 76 36 30 32 29 40 41 36 33 22 28 23 35 36 33 32 24 31
## 77 34 43 40 36 35 36 41 35 30 27 30 28 25 47 21 32 41
## 78 31 30 36 30 34 34 30 24 33 29 27 41 23 23 23 21 42
## 79 37 39 32 40 38 41 40 31 24 31 26 27 23 33 31 33 33
## 80 34 37 42 36 30 45 28 29 28 22 26 28 33 35 20 26 35
## 81 32 54 36 39 38 39 35 24 21 31 27 33 31 25 27 26 38
## 82 35 29 31 43 29 39 35 35 20 16 29 38 28 24 29 34 18
## 83 35 30 29 39 41 30 34 28 22 31 29 30 34 26 28 32 31
## 84 40 32 46 28 32 48 35 30 28 27 26 34 24 27 15 37 30
## 85 38 40 34 47 32 32 38 32 18 20 32 26 35 29 25 27 35
## 86 31 43 32 35 38 48 38 30 21 20 22 24 23 31 23 33 31
## 87 53 37 40 38 42 34 29 24 30 22 26 24 26 25 28 28 30
## 88 28 36 42 50 33 39 34 63 51 23 25 25 29 20 24 21 27
## 89 39 27 44 29 35 27 36 23 23 29 22 35 16 27 19 28 29
## 90 31 44 28 30 38 34 42 29 20 26 30 31 37 41 30 28 30
## 91 42 38 33 38 39 33 41 24 20 25 32 25 32 27 28 34 39
## 92 40 41 34 44 27 46 29 24 27 18 36 33 29 26 27 29 33
## 93 30 39 30 45 35 32 30 29 25 25 26 26 25 35 24 27 27
## 94 29 37 28 29 27 33 36 27 21 32 39 23 32 25 45 31 46
## 95 36 27 26 39 38 34 33 24 22 18 36 28 33 27 24 25 30
## 96 35 31 48 31 41 29 40 36 25 26 22 26 37 28 27 31 28
## 97 45 41 40 29 22 36 25 32 18 22 21 27 30 35 33 32 24
## 98 32 41 36 51 29 29 32 24 23 19 32 26 28 31 22 49 35
## 99 42 16 33 19 33 37 36 21 31 25 30 25 22 22 38 35 37
## 100 43 40 43 37 34 43 27 35 25 38 27 26 21 26 23 29 33
## 101 32 39 32 36 39 31 25 33 22 24 22 24 28 27 18 24 27
## 102 39 32 40 46 32 38 26 28 24 27 29 16 36 29 27 28 30
## 103 33 52 38 29 33 43 34 33 23 25 28 25 23 32 25 36 36
## 104 39 33 34 42 34 38 29 28 16 26 25 21 23 26 36 31 29
## 105 45 24 32 50 41 50 51 39 49 19 15 27 24 26 22 21 15
## 106 39 32 40 31 28 32 34 37 26 24 19 35 19 22 36 29 26
## 107 36 34 30 32 32 34 27 18 26 20 27 33 27 24 29 26 28
## 108 40 40 43 36 28 42 29 43 20 25 27 26 29 24 34 27 29
## 109 30 37 33 40 36 22 31 39 24 26 24 27 24 25 43 29 27
## 110 26 28 40 34 25 40 33 29 23 17 26 23 15 24 23 26 28
## 111 35 44 38 36 41 33 38 31 34 20 24 27 31 25 18 35 19
## 112 26 30 28 38 41 41 32 29 25 18 31 30 26 27 27 34 27
## 113 33 52 18 31 31 32 37 39 23 22 28 42 22 18 25 25 33
## 114 32 41 30 40 36 31 33 28 22 22 30 23 31 28 30 34 29
## 115 43 29 33 39 25 32 31 23 19 21 29 21 25 20 29 22 19
## 116 29 31 43 31 37 27 33 33 23 19 21 19 25 33 37 30 33
## 117 32 48 26 34 30 36 31 34 19 19 27 28 32 21 24 34 26
## 118 36 47 30 35 34 31 29 42 28 17 17 32 29 33 20 27 29
## 119 29 31 38 35 27 38 36 35 26 22 23 27 31 29 24 30 25
## 120 45 31 22 33 28 25 32 33 23 14 26 26 27 29 22 38 14
## 121 21 46 29 21 21 27 35 27 24 22 16 19 28 23 14 17 21
## 122 28 25 27 31 19 17 28 33 38 24 25 24 19 22 18 25 16
## 123 29 22 22 37 32 25 27 50 33 14 11 13 24 16 17 15 17
## 124 22 23 26 35 20 27 19 28 29 24 20 19 15 16 20 23 22
## 125 23 20 27 20 30 29 33 43 31 9 17 16 17 14 15 13 8
## 126 24 22 20 24 20 20 26 34 30 11 15 16 25 16 17 12 24
## 127 17 12 20 24 29 24 38 24 27 10 17 10 16 18 21 14 23
## 128 23 20 33 16 23 23 16 25 27 12 15 15 11 14 29 23 12
## 129 25 23 25 26 9 23 23 22 26 15 16 15 20 13 15 16 17
## 130 24 16 23 20 19 22 15 18 25 16 16 13 11 9 16 10 21
## 131 33 20 16 20 20 25 24 32 35 13 12 11 10 11 6 10 18
## 132 17 25 14 20 27 21 29 33 30 12 8 12 12 20 11 8 14
## 133 12 18 21 19 26 25 16 35 21 15 17 9 9 16 13 10 9
## 134 14 23 22 18 22 31 24 22 37 22 11 11 18 13 14 12 13
## 135 26 18 19 23 24 24 18 25 16 16 9 11 20 19 10 13 23
## 136 18 11 17 21 22 17 19 22 23 15 12 18 15 24 14 18 13
## 137 23 20 9 13 23 28 27 26 27 6 14 13 8 18 16 15 17
## 138 18 17 22 17 18 17 13 23 19 16 18 8 23 19 15 21 15
## 139 15 24 15 18 16 15 23 20 20 15 11 9 12 21 26 20 12
## 140 17 26 23 30 19 21 27 44 32 10 10 13 16 13 10 15 14
## 141 26 14 18 20 25 20 21 17 7 21 19 20 14 20 19 16 12
## 142 21 23 26 19 21 16 18 19 15 15 15 14 12 15 11 10 14
## 143 28 22 17 16 19 21 15 16 18 14 10 14 16 11 16 10 17
## 144 17 20 20 13 19 21 20 25 12 15 9 15 17 7 11 17 24
## 145 16 23 19 23 15 15 16 23 19 23 13 13 18 15 18 21 15
## 146 19 15 26 20 24 24 22 25 27 12 12 15 12 17 10 15 21
## 147 23 24 22 20 15 15 19 22 21 17 11 20 13 6 14 9 11
## 148 17 22 24 26 21 23 19 35 24 10 11 8 5 14 19 18 14
## 149 22 23 13 23 22 24 35 23 24 13 18 13 11 17 18 9 10
## 150 19 24 14 25 21 27 36 28 23 6 10 9 16 11 17 11 15
## 151 13 20 29 18 14 30 19 16 22 18 18 15 16 14 10 21 23
## 152 12 14 22 15 22 20 21 34 26 13 11 11 16 16 11 9 15
## 153 32 18 27 25 23 19 20 27 21 8 11 9 12 11 11 8 17
## 154 20 11 18 23 19 23 25 27 18 10 11 15 17 13 10 10 10
## 155 21 18 14 20 15 15 10 22 13 11 20 20 12 10 9 8 12
## 156 28 12 21 23 19 19 27 21 24 13 8 20 13 13 11 11 10
## 157 16 19 13 11 15 18 17 18 29 12 15 5 18 10 9 16 8
## 158 13 21 14 28 25 15 23 22 18 15 15 10 8 17 16 13 15
## 159 19 15 17 22 24 21 22 22 21 14 7 7 10 9 11 14 19
## 160 23 10 26 10 24 29 28 25 31 6 6 8 15 7 12 9 9
## 161 24 15 19 23 20 26 23 34 25 9 11 13 14 8 10 16 14
## 162 12 20 22 17 13 17 17 36 19 7 12 5 11 10 8 17 11
## 163 15 12 24 23 22 16 17 20 25 9 16 15 10 9 14 13 14
## 164 16 16 13 19 19 22 14 18 24 15 11 12 9 8 10 8 15
## 165 32 8 24 15 13 30 20 24 17 10 18 15 10 11 9 14 12
## 166 10 18 20 15 16 11 18 18 29 10 5 5 7 11 8 11 7
## 167 9 13 12 12 10 13 13 27 19 11 4 8 14 16 11 13 10
## 168 17 15 17 24 10 16 16 16 20 16 5 8 9 7 6 10 12
## 169 16 13 18 16 12 28 15 25 20 8 8 4 4 5 10 9 9
## 170 11 18 12 17 21 16 16 26 20 11 11 6 5 8 7 9 10
## 171 25 15 9 19 23 12 15 28 9 7 9 10 9 19 12 9 15
## 172 17 14 7 19 12 13 17 19 11 4 11 10 10 10 16 10 16
## 173 12 19 9 10 16 17 11 19 18 8 8 9 13 9 8 12 5
## 174 17 14 16 13 17 13 16 18 14 9 11 8 7 9 10 11 4
## 175 18 13 14 8 5 17 11 21 18 3 15 9 9 12 17 8 5
## 176 12 19 18 10 17 16 14 21 14 9 9 9 8 10 9 13 8
## 177 15 12 15 18 14 18 18 21 15 8 12 14 10 10 15 8 5
## 178 16 19 17 9 16 18 14 22 25 12 4 5 11 10 19 10 10
## 179 14 14 21 11 11 17 18 16 25 8 8 9 2 6 7 10 9
## 180 14 10 14 14 14 14 15 20 12 12 12 10 7 15 7 13 12
## 181 18 12 18 8 19 13 12 14 15 7 3 12 11 11 9 13 14
## 182 15 16 8 13 15 10 26 25 28 7 8 7 7 10 16 9 13
## 183 12 13 13 21 13 7 18 12 18 9 6 5 14 9 7 11 6
## 184 25 9 17 12 15 16 11 14 15 4 13 12 10 7 10 7 19
## 185 10 21 7 19 7 13 20 23 18 9 12 6 10 4 14 10 8
## 186 10 16 17 17 6 19 16 13 18 6 10 11 11 10 10 13 12
## 187 13 21 16 12 15 13 20 20 21 10 7 11 6 8 14 13 6
## 188 15 17 12 19 8 15 15 17 13 8 11 9 6 14 5 16 12
## 189 22 12 21 15 17 11 15 12 17 11 5 7 7 8 9 5 11
## 190 8 13 10 21 12 4 13 30 14 4 5 7 15 8 11 13 15
## 191 12 14 10 10 11 14 11 10 17 8 13 6 16 9 4 12 10
## 192 15 13 10 7 14 20 19 16 15 11 4 7 8 9 9 10 10
## 193 11 13 12 17 10 18 12 18 13 5 10 3 7 14 8 11 7
## 194 8 14 6 9 14 21 11 13 10 8 7 9 9 20 14 9 6
## 195 10 13 13 18 12 15 9 8 5 11 8 9 10 7 12 12 9
## 196 12 11 11 14 14 12 18 10 11 10 10 8 4 11 5 14 20
## 197 13 10 8 13 13 9 13 16 20 16 10 11 7 6 5 7 11
## 198 19 12 9 16 16 12 14 13 7 8 14 9 11 9 7 10 8
## 199 10 13 10 16 15 14 13 15 15 8 5 8 7 8 8 8 8
## 200 11 19 15 18 13 17 9 12 12 10 9 13 13 7 11 4 10
## 201 10 13 9 16 13 10 12 22 11 12 11 9 7 12 9 10 7
## 202 17 13 9 16 13 10 15 16 10 15 7 10 5 6 12 14 5
## 203 19 11 10 8 17 11 15 29 13 5 8 10 6 8 7 9 11
## 204 10 5 13 16 18 11 6 12 11 14 18 10 14 5 11 13 9
## 205 11 12 11 11 17 9 18 19 16 3 5 12 2 10 4 9 10
## 206 12 5 13 8 13 10 7 13 10 7 10 5 7 11 6 10 9
## 207 19 15 10 12 16 13 10 12 14 9 5 9 15 14 7 8 4
## 208 12 11 6 7 12 12 13 11 21 5 9 6 9 11 8 4 11
## 209 11 14 13 10 14 12 11 15 7 11 8 9 11 12 7 11 9
## 210 10 13 20 8 12 18 8 8 18 6 9 8 8 9 6 7 7
## 211 9 11 7 14 19 21 10 20 10 4 6 12 7 2 10 14 18
## 212 21 10 9 15 15 13 15 8 8 7 8 7 13 9 10 14 3
## 213 13 10 10 10 15 9 11 13 18 5 9 9 11 4 13 15 4
## 214 8 10 18 18 17 10 16 14 10 4 7 7 10 3 13 9 7
## 215 10 15 11 11 13 11 16 14 15 5 11 7 4 11 10 10 6
## 216 7 20 9 17 10 6 10 20 11 11 13 12 6 11 6 6 11
## 217 12 9 15 16 20 7 10 12 9 9 9 5 8 10 10 10 7
## 218 6 10 18 8 9 14 15 17 20 9 8 13 8 3 7 7 8
## 219 14 6 9 11 18 15 9 10 11 7 9 5 9 4 9 12 11
## 220 9 14 14 9 10 7 10 13 16 4 12 6 10 9 9 7 6
## 221 13 11 16 9 7 13 19 11 18 3 7 7 8 5 6 14 12
## 222 15 13 15 12 9 7 13 17 11 10 10 13 8 7 12 7 1
## 223 15 10 13 12 10 11 16 8 15 8 6 8 5 10 10 5 4
## 224 13 12 22 12 14 10 10 10 11 7 17 5 5 5 16 7 6
## 225 10 16 12 10 12 12 12 9 14 8 9 4 11 11 3 7 6
## 226 14 10 11 9 13 7 8 5 14 8 10 8 11 6 3 12 13
## 227 14 12 13 10 12 6 9 7 8 5 6 18 5 7 7 12 11
## 228 8 16 4 6 9 16 10 10 15 7 8 7 5 8 9 3 10
## 229 11 5 13 10 10 11 14 11 16 6 5 12 4 9 7 5 8
## 230 15 11 8 12 5 22 11 13 13 5 6 11 15 7 9 4 12
## 231 7 13 11 8 6 12 5 11 8 5 10 5 11 13 7 10 11
## 232 16 17 9 17 12 11 13 18 20 6 5 5 12 4 8 7 4
## 233 9 3 12 5 11 7 12 5 9 7 10 5 11 7 10 12 6
## 234 13 3 7 12 11 13 11 12 12 4 2 6 6 11 10 17 8
## 235 13 8 9 10 9 9 10 9 12 9 7 7 8 10 8 8 6
## 236 12 9 7 13 10 18 15 6 14 4 7 3 7 5 5 11 4
## 237 10 10 9 6 10 12 11 6 10 8 10 11 10 8 13 3 7
## 238 6 6 13 8 8 9 14 13 14 6 7 11 10 11 10 9 7
## 239 5 7 10 10 8 15 9 11 18 9 5 9 8 12 7 9 10
## 240 16 11 11 9 10 12 17 13 11 9 8 4 10 5 8 9 5
## 241 11 12 5 6 14 13 16 13 16 10 10 9 8 5 6 6 4
## 242 15 13 11 8 10 9 13 16 6 6 10 9 9 12 5 15 9
## 243 4 11 9 7 6 5 7 4 11 11 15 13 5 7 15 12 11
## 244 9 10 6 9 17 10 9 9 1 4 4 10 9 9 5 5 7
## 245 15 9 9 10 5 11 7 5 6 12 11 14 6 8 7 6 12
## 246 11 11 13 7 10 9 7 14 5 13 5 12 8 13 8 10 7
## 247 7 14 4 5 6 7 9 8 11 7 8 8 8 4 11 6 7
## 248 8 11 6 7 9 13 8 13 13 10 8 6 9 9 11 10 9
## 249 12 13 12 6 9 7 10 3 7 6 10 6 9 14 7 8 12
## 250 14 12 11 12 6 8 11 8 8 8 10 6 8 10 8 4 4
## 251 14 13 9 5 11 7 14 11 13 8 8 5 10 6 8 2 9
## 252 10 10 11 9 9 12 13 8 17 6 7 6 9 9 6 8 8
## 253 16 16 12 11 11 1 11 10 14 14 6 5 2 3 6 8 9
## 254 8 8 10 8 10 13 14 9 9 5 11 9 5 8 9 8 5
## 255 14 10 6 11 11 8 7 17 3 8 4 7 10 8 11 7 14
## 256 6 8 11 26 10 9 10 9 5 4 8 7 7 5 8 7 7
## 257 6 7 9 9 10 7 7 9 6 10 7 15 11 9 6 15 5
## 258 12 18 10 13 7 14 9 13 11 7 6 7 3 5 3 6 6
## 259 12 7 7 12 8 12 15 14 13 11 10 8 5 8 8 7 8
## 260 9 6 9 10 6 4 11 11 8 8 7 7 5 10 12 11 7
## 261 9 12 12 12 10 18 13 12 13 2 3 5 2 11 5 3 1
## 262 13 10 7 16 10 10 8 12 6 10 8 4 8 9 16 6 10
## 263 8 9 15 7 6 9 9 8 11 6 3 14 6 7 13 9 6
## 264 12 10 9 6 13 12 5 6 14 7 11 13 10 7 5 6 5
## 265 7 6 12 8 16 8 7 12 16 6 15 4 5 16 4 7 9
## 266 10 7 11 6 8 5 3 12 10 9 9 6 7 13 7 12 15
## 267 12 9 12 6 4 15 4 4 8 4 8 7 8 7 15 7 14
## 268 11 14 11 12 6 5 12 13 8 8 7 7 5 7 6 8 12
## 269 8 5 7 9 13 14 14 17 12 7 5 7 5 6 5 13 6
## 270 11 15 6 15 5 10 12 23 9 12 10 5 8 5 10 5 9
## 271 7 7 6 10 14 11 14 17 14 10 6 9 4 6 12 7 6
## 272 18 16 13 12 7 10 9 19 17 5 8 12 3 3 11 10 7
## 273 10 9 8 7 5 12 10 10 5 12 7 8 0 11 7 1 15
## 274 7 13 12 13 15 14 7 13 5 4 6 5 6 4 19 10 5
## 275 6 19 11 9 8 10 11 6 8 8 7 11 8 4 4 6 6
## 276 7 7 13 7 12 13 10 9 15 6 8 8 6 7 3 7 3
## 277 10 7 6 14 12 11 11 14 4 7 9 7 10 5 4 9 5
## 278 10 7 8 8 8 9 7 10 8 8 9 8 9 7 7 5 5
## 279 7 7 12 10 9 15 13 8 15 6 3 6 8 14 5 9 9
## 280 12 11 7 4 10 12 10 7 10 4 5 14 11 6 9 6 9
## 281 9 9 7 5 8 9 8 10 7 8 9 6 4 7 5 6 8
## 282 5 5 6 12 14 10 16 16 9 5 5 11 7 8 7 11 9
## 283 5 7 8 7 9 5 6 11 12 8 7 8 4 10 11 8 12
## 284 9 12 8 9 13 10 7 9 4 11 3 3 3 7 6 9 9
## 285 7 13 8 11 5 10 12 25 13 7 11 2 7 4 11 4 6
## 286 13 9 11 5 10 11 6 7 11 11 12 7 6 8 8 11 6
## 287 14 9 8 7 8 5 12 11 9 9 12 8 7 3 5 5 11
## 288 8 11 6 8 11 7 9 13 11 11 4 8 6 6 11 4 16
## 289 9 9 10 8 11 9 9 13 8 5 9 9 4 6 10 9 12
## 290 13 6 6 13 9 9 6 7 7 6 11 12 2 9 7 5 3
## 291 13 11 10 5 7 6 6 8 5 7 6 12 4 9 10 10 5
## 292 14 7 13 9 8 12 11 11 12 5 7 5 8 9 8 10 15
## 293 16 10 5 9 12 12 11 12 10 9 9 4 4 8 10 9 6
## 294 1 20 8 9 9 12 13 14 13 6 9 6 3 3 5 7 10
## 295 9 10 4 15 8 9 14 10 10 13 7 7 6 5 9 6 6
## 296 6 12 14 5 9 12 13 14 10 3 6 10 14 4 8 8 9
## 297 11 12 13 10 7 8 9 2 7 7 12 7 7 9 4 9 6
## 298 11 10 7 7 13 11 8 10 8 14 5 3 13 11 9 7 8
## 299 9 8 8 8 12 9 4 14 6 7 9 7 13 8 6 9 3
## 300 7 13 9 12 11 5 11 11 12 3 10 12 9 9 10 8 9
## 301 5 11 10 10 9 8 9 12 7 7 4 6 3 3 13 4 7
## 302 6 3 12 7 8 8 5 9 7 4 7 7 8 11 7 11 6
## 303 12 8 10 7 13 10 9 6 10 5 7 9 12 8 4 5 7
## 304 5 6 11 10 9 9 8 8 10 8 14 10 7 8 6 15 5
## 305 16 8 6 5 5 10 7 12 5 7 6 9 6 9 8 8 8
## 306 8 14 9 10 3 3 1 8 10 5 6 14 9 12 8 9 5
## 307 5 13 7 5 11 7 7 11 14 2 11 8 7 6 7 9 8
## 308 8 7 5 12 15 10 10 10 9 3 7 4 7 9 12 9 5
## 309 15 6 13 11 6 10 9 8 12 8 9 13 3 5 3 5 5
## 310 4 6 5 12 6 8 7 7 8 7 9 7 8 10 7 8 8
## 311 8 11 5 3 8 7 12 8 8 8 11 12 9 9 4 6 10
## 312 11 3 9 11 13 9 11 6 13 5 6 7 8 10 6 6 14
## 313 13 13 15 9 9 11 9 10 9 7 13 12 6 5 7 8 8
## 314 7 11 10 8 5 4 12 9 17 6 6 4 7 6 9 4 10
## 315 9 15 4 6 7 11 7 9 6 10 10 2 6 7 2 5 12
## 316 8 7 6 8 3 7 5 4 15 5 8 5 11 3 8 7 5
## 317 8 16 11 6 9 4 11 6 11 8 4 10 6 7 5 6 10
## 318 10 8 8 10 3 13 7 9 6 5 4 5 3 11 10 9 5
## 319 4 7 12 13 10 15 6 19 11 7 3 6 3 5 3 9 2
## 320 6 5 8 6 4 10 9 6 15 7 2 3 7 7 3 8 7
## 321 9 5 13 10 7 12 5 12 15 8 3 5 4 4 2 5 5
## 322 6 8 3 6 7 4 9 8 4 6 7 5 6 8 7 4 4
## 323 8 9 9 8 11 10 9 12 11 1 5 4 4 4 2 3 7
## 324 5 4 4 8 13 5 11 8 12 6 3 1 3 2 5 4 6
## 325 8 10 7 6 3 7 9 6 8 3 6 1 10 2 2 8 9
## 326 8 4 8 5 10 7 9 13 14 6 4 7 5 7 4 4 8
## 327 2 3 4 5 5 7 6 7 11 4 5 4 2 8 13 5 6
## 328 6 4 5 3 5 7 7 10 11 1 3 4 4 5 4 2 4
## 329 6 4 4 8 6 5 12 11 4 5 2 4 4 4 3 3 6
## 330 10 5 7 5 7 8 7 12 9 3 8 6 3 5 3 2 4
## 331 9 10 6 4 10 8 7 6 12 3 4 1 2 1 5 5 6
## 332 5 6 6 6 5 9 6 6 14 6 5 1 7 5 6 6 3
## 333 5 5 9 5 11 4 11 7 12 2 2 1 9 5 1 2 4
## 334 4 6 5 8 10 8 2 11 5 4 3 3 7 3 7 5 3
## 335 7 6 5 3 5 5 12 8 13 4 4 4 3 3 7 0 3
## 336 8 3 3 4 10 2 8 9 12 4 4 4 4 6 2 3 4
## 337 4 3 2 2 8 4 6 9 7 2 4 3 3 4 8 3 3
## 338 3 6 5 5 3 3 12 9 7 3 6 5 3 7 4 3 6
## 339 10 5 3 6 9 10 3 10 6 6 1 4 4 4 3 4 3
## 340 11 4 2 7 11 6 8 5 6 8 4 2 3 5 3 4 3
## 341 1 4 5 3 1 5 8 6 3 2 2 2 4 8 8 5 3
## 342 5 3 9 3 5 4 3 4 9 5 6 5 9 3 2 6 4
## 343 7 10 8 8 6 5 6 8 8 5 4 4 5 6 4 2 3
## 344 4 7 5 5 3 9 6 10 9 1 4 5 5 0 8 5 3
## 345 8 5 7 1 3 2 4 7 7 4 7 3 5 4 6 3 3
## 346 3 4 3 4 3 4 6 8 6 4 0 1 2 7 5 3 6
## 347 3 4 8 3 1 3 4 4 5 2 4 6 7 2 5 6 3
## 348 3 10 2 7 6 6 4 5 5 4 1 3 5 5 2 3 3
## 349 7 4 4 0 7 7 5 3 4 3 3 4 4 4 5 5 5
## 350 4 8 6 2 4 6 3 5 4 5 4 4 3 2 4 4 4
## 351 2 6 4 1 1 3 8 6 9 3 5 2 3 4 2 6 5
## 352 7 4 5 6 11 8 3 7 4 1 3 3 3 1 3 3 3
## 353 3 8 8 4 3 4 3 5 6 4 2 5 2 4 1 5 4
## 354 7 6 4 6 4 4 5 7 5 3 1 1 3 2 3 2 3
## 355 3 6 3 6 7 5 4 4 10 7 3 5 7 4 4 1 2
## 356 3 6 3 5 6 2 7 4 2 3 5 4 6 3 6 2 2
## 357 2 6 3 4 4 8 3 4 4 5 3 2 1 3 9 5 3
## 358 6 4 7 6 4 5 3 3 6 1 4 4 13 5 3 5 3
## 359 7 7 9 5 5 3 3 5 2 4 2 6 4 8 3 1 5
## 360 4 12 4 5 3 0 3 7 7 5 4 8 1 4 3 0 3
## 361 9 6 0 7 2 2 4 7 3 5 6 8 1 3 4 8 0
## 362 3 6 4 7 4 0 6 4 5 5 5 3 4 3 2 7 1
## 363 6 4 2 2 2 6 1 2 3 7 5 1 2 4 5 3 4
## 364 2 2 1 5 6 4 3 2 2 4 5 6 1 4 7 1 5
## 365 7 8 4 5 5 6 8 3 3 5 3 3 0 2 3 2 1
## 366 5 10 8 4 9 7 5 4 2 1 3 2 4 0 3 2 11
## 367 3 2 3 2 4 3 8 5 4 4 4 2 0 2 4 2 4
## 368 5 5 7 3 0 1 4 6 2 3 5 0 4 3 5 5 8
## 369 4 4 9 6 4 2 3 6 6 3 4 7 7 5 4 3 1
## 370 6 6 3 5 0 5 6 3 10 3 4 4 2 2 8 4 0
## 371 5 4 2 5 4 4 2 5 7 2 4 5 1 6 2 6 4
## 372 5 5 1 5 5 4 3 7 4 3 4 2 2 3 2 0 7
## 373 3 5 4 2 6 3 4 1 4 6 4 0 6 5 3 4 3
## 374 4 7 3 3 1 3 1 4 4 2 5 10 3 2 5 2 5
## 375 8 4 4 3 3 3 4 9 4 6 5 4 3 2 3 1 3
## 376 6 2 1 4 3 3 7 3 2 3 0 3 5 4 7 7 4
## 377 10 0 3 7 5 1 5 7 5 2 4 3 1 3 2 2 4
## 378 4 4 5 7 1 4 2 4 2 4 1 4 5 4 5 2 3
## 379 5 6 4 6 5 11 3 3 3 2 4 3 5 2 4 1 4
## 380 2 9 1 7 2 3 8 2 3 4 4 3 2 2 6 3 3
## 381 4 5 6 4 7 3 7 3 4 2 4 6 1 3 4 5 4
## 382 10 7 2 4 6 4 5 8 5 2 4 3 4 4 2 5 3
## 383 3 3 3 2 5 10 8 6 5 1 1 2 4 3 4 3 3
## 384 5 4 3 8 8 3 3 4 7 1 1 2 3 5 4 6 5
## 385 4 3 6 6 7 3 6 6 4 1 0 3 3 3 2 3 3
## 386 6 5 9 5 2 4 6 4 8 2 1 3 1 5 4 6 4
## 387 3 3 9 5 1 6 5 6 8 2 1 5 4 2 2 3 5
## 388 7 7 9 4 7 2 4 5 3 5 8 5 5 3 1 3 2
## 389 3 2 2 2 2 4 5 5 4 4 1 5 2 1 3 5 6
## 390 2 6 4 2 6 1 13 3 1 5 4 4 5 3 0 3 2
## 391 6 3 3 1 3 5 5 1 2 3 1 5 5 2 7 3 2
## 392 4 2 1 1 6 2 5 4 9 3 1 1 6 2 7 5 4
## 393 5 3 4 0 6 7 5 2 8 5 4 2 2 8 2 1 4
## 394 5 2 3 8 5 5 3 4 5 2 5 1 4 0 2 1 2
## 395 5 5 4 2 1 4 5 6 3 3 4 4 5 8 4 3 1
## 396 7 3 3 3 2 5 4 3 6 6 5 7 3 4 3 4 1
## 397 5 2 3 9 5 10 3 7 3 3 2 2 3 0 4 4 3
## 398 7 3 6 5 5 6 4 8 7 6 3 1 1 2 5 1 5
## 399 1 5 5 3 7 4 4 5 6 4 0 4 4 2 2 4 6
## 400 9 7 4 1 5 2 4 4 6 3 6 2 3 6 0 2 3
## 401 5 6 0 3 3 9 2 5 4 5 2 2 5 1 3 3 6
## 402 1 5 2 6 7 9 5 3 6 4 2 4 3 6 2 6 7
## 403 4 1 3 5 4 2 0 0 4 5 8 1 2 1 7 2 1
## 404 3 6 4 3 4 6 4 4 5 5 1 3 4 1 3 2 5
## 405 3 5 8 7 5 4 6 2 4 2 4 5 1 2 0 4 1
## 406 5 3 2 5 1 4 5 7 2 3 4 3 2 5 5 3 2
## 407 2 3 1 4 6 5 2 2 4 2 3 3 2 1 4 4 5
## 408 3 3 3 1 3 2 5 10 6 5 6 3 1 6 4 4 5
## 409 4 5 10 1 4 5 5 4 3 5 0 4 2 1 1 4 2
## 410 3 5 3 4 7 9 6 5 3 2 2 6 1 3 2 3 3
## 411 5 5 2 2 3 3 9 6 5 6 0 6 2 1 6 3 4
## 412 4 2 2 6 3 3 5 9 2 5 1 4 4 2 3 1 3
## 413 7 6 5 6 7 3 4 5 3 3 2 8 4 2 6 2 5
## 414 2 2 2 5 4 3 9 5 5 3 1 6 2 2 3 3 4
## 415 2 3 1 4 3 6 2 4 5 5 10 5 4 3 5 2 3
## 416 5 5 3 1 2 3 4 7 6 2 2 2 2 3 7 1 5
## 417 0 1 2 3 3 2 3 5 5 2 4 1 1 2 2 1 1
## 418 5 3 10 2 7 1 3 2 3 1 3 2 2 1 3 2 4
## 419 1 4 0 2 1 6 5 8 3 7 7 2 4 2 3 2 1
## 420 2 8 5 6 2 9 8 3 2 0 3 2 1 1 3 2 1
## 421 1 0 5 4 6 5 5 0 7 5 0 5 1 3 5 5 0
## 422 5 5 0 4 0 5 4 4 4 2 6 5 3 2 2 7 4
## 423 7 0 7 1 5 4 8 9 6 0 3 4 1 5 1 5 2
## 424 5 2 6 3 3 1 8 6 5 2 2 2 9 4 1 3 4
## 425 5 5 3 2 2 6 4 9 8 2 1 4 7 3 3 5 3
## 426 4 3 9 4 3 7 3 5 4 2 6 4 5 3 2 2 3
## 427 2 4 2 2 6 2 7 2 9 6 2 4 3 3 4 5 0
## 428 3 4 4 9 3 5 8 4 4 5 2 3 2 2 0 1 8
## 429 4 3 5 3 3 4 4 5 4 4 2 2 4 0 5 3 4
## 430 6 2 1 3 5 3 3 6 5 2 1 3 6 4 5 1 3
## 431 1 4 1 2 3 2 6 2 8 2 5 2 1 5 2 3 3
## 432 2 4 2 6 2 5 2 2 3 5 1 3 1 0 6 1 3
## 433 5 5 3 0 5 9 6 10 5 1 3 1 4 6 2 3 2
## 434 3 2 7 4 3 5 6 6 7 2 2 0 5 3 3 2 2
## 435 3 2 6 4 2 2 3 3 6 0 1 3 3 1 3 2 4
## 436 6 7 4 4 2 3 3 6 3 1 5 5 6 0 2 6 4
## 437 5 5 5 3 4 3 2 4 7 3 3 2 1 2 3 2 1
## 438 6 4 5 2 6 3 2 2 8 4 0 2 2 2 2 3 1
## 439 2 5 5 3 2 2 7 5 8 1 3 0 3 8 2 1 2
## 440 4 8 4 3 6 1 4 7 3 2 2 2 2 1 2 1 2
## 441 3 3 5 5 1 6 2 4 5 0 2 0 6 2 1 3 1
## 442 3 5 3 2 4 9 6 3 3 4 1 1 2 0 4 1 2
## 443 4 4 5 4 4 4 6 3 4 4 1 3 1 2 7 1 8
## 444 2 3 4 1 4 3 2 5 2 4 4 1 3 2 4 4 4
## 445 4 3 3 6 7 2 11 6 3 4 1 2 5 5 3 2 2
## 446 3 4 4 6 2 2 4 1 6 1 2 1 6 3 5 3 1
## 447 1 3 2 4 5 3 5 6 11 6 1 1 4 4 3 2 3
## 448 4 2 6 2 5 2 1 5 5 3 1 4 1 2 3 0 1
## 449 4 1 3 3 4 1 2 9 8 1 6 1 2 0 2 4 2
## 450 4 6 2 3 4 5 2 6 8 1 1 3 1 5 0 3 1
## 451 6 3 4 5 4 4 1 9 5 3 1 1 2 2 3 2 4
## 452 3 3 3 1 2 4 3 1 4 0 3 3 3 1 3 4 5
## 453 3 1 1 3 4 2 6 7 6 3 5 4 1 0 4 0 4
## 454 0 2 2 3 2 1 4 5 7 5 3 1 5 1 2 2 3
## 455 4 5 4 6 4 2 4 3 4 1 2 3 1 1 0 2 0
## 456 0 2 3 2 1 3 2 1 9 2 3 1 0 5 6 3 3
## 457 1 3 3 9 3 4 3 4 0 5 2 2 2 3 1 4 4
## 458 5 1 1 4 6 2 9 5 4 4 1 0 1 2 0 1 1
## 459 1 2 1 2 1 2 1 3 3 4 2 4 3 1 5 6 3
## 460 0 3 1 1 2 3 6 0 2 3 5 0 2 3 3 4 2
## 461 1 2 1 0 1 7 6 4 6 1 4 2 2 3 0 5 3
## 462 1 3 3 2 3 4 8 5 7 3 2 2 0 5 2 5 3
## 463 7 1 3 2 4 4 3 7 9 1 2 3 2 0 1 2 2
## 464 3 3 2 6 2 5 4 7 5 0 2 2 2 3 3 2 1
## 465 3 3 2 1 3 0 2 3 8 3 0 3 2 3 2 4 4
## 466 1 3 1 2 1 0 6 5 4 2 1 1 3 1 1 4 5
## 467 0 1 2 2 3 4 9 2 5 3 2 0 3 3 0 2 4
## 468 2 1 2 4 2 2 1 7 3 3 2 1 4 1 4 7 4
## 469 1 2 3 1 0 2 1 7 3 3 3 2 2 3 1 1 4
## 470 3 2 3 4 3 3 3 1 4 1 3 4 0 2 3 3 2
## 471 3 2 2 4 4 7 3 5 3 3 2 1 2 0 3 2 0
## 472 5 2 4 1 4 4 5 4 6 2 1 3 2 0 2 3 0
## 473 6 4 3 4 1 3 3 3 6 4 3 4 3 1 1 1 0
## 474 4 10 5 3 4 3 4 3 2 1 2 3 3 2 2 3 0
## 475 3 6 1 4 3 2 8 2 3 1 1 1 3 2 4 0 3
## 476 2 3 2 6 3 5 5 4 1 1 3 3 2 2 1 1 1
## 477 2 1 2 2 3 3 7 3 4 1 4 0 3 3 0 1 0
## 478 3 2 2 2 4 2 2 1 6 3 3 2 1 2 2 2 4
## 479 3 4 3 6 4 2 4 6 2 2 0 4 0 2 6 2 3
## 480 3 3 5 3 3 3 3 4 5 3 2 2 1 2 5 0 2
## 481 3 2 1 1 0 1 2 5 3 3 1 3 2 4 2 0 4
## 482 4 1 4 4 6 2 2 3 4 0 4 2 1 0 2 0 3
## 483 2 6 2 5 3 6 3 4 3 2 2 0 1 2 4 1 1
## 484 0 4 2 1 2 1 3 2 7 2 2 2 2 2 0 1 2
## 485 3 4 1 2 3 3 4 3 3 2 1 2 0 2 3 1 3
## 486 4 4 5 2 4 5 5 6 2 0 0 0 5 3 1 1 5
## 487 5 1 0 7 3 2 0 1 2 1 2 3 1 4 2 3 2
## 488 2 1 3 1 0 3 4 4 1 2 3 3 1 2 3 2 2
## 489 3 4 2 2 5 7 1 4 4 1 4 2 2 1 4 3 2
## 490 2 0 2 4 4 2 4 8 4 0 0 0 2 3 1 4 4
## 491 1 3 1 3 2 2 4 1 4 1 2 3 1 1 1 2 6
## 492 3 2 5 0 5 3 1 5 4 5 0 2 4 4 2 1 3
## 493 0 2 2 2 3 8 5 5 2 3 4 0 3 2 3 0 1
## 494 3 6 5 1 1 3 3 3 6 2 1 2 0 3 0 3 2
## 495 2 5 0 3 2 4 8 5 5 1 0 3 0 1 1 1 4
## 496 2 5 2 3 2 4 4 5 3 2 1 0 1 6 1 0 7
## 497 2 4 2 2 5 2 3 3 3 5 3 2 0 1 1 0 0
## 498 1 1 4 1 1 2 5 5 4 2 3 0 2 2 3 4 3
## 499 5 4 6 3 4 4 2 1 4 1 0 0 0 1 0 1 1
## 500 1 2 3 1 1 5 4 2 1 3 2 1 0 1 2 1 4
## 501 0 3 7 7 3 2 0 2 1 1 3 2 3 4 2 2 0
## 502 1 5 7 3 3 3 4 4 3 1 2 1 0 1 2 1 1
## 503 1 3 5 1 3 3 1 3 7 2 0 0 1 2 4 0 1
## 504 4 1 3 1 2 1 4 4 1 0 2 2 1 3 1 0 1
## 505 1 1 1 2 2 0 3 1 8 1 5 0 0 2 4 0 2
## 506 4 3 5 1 2 3 3 4 3 1 1 2 0 1 0 0 4
## 507 3 0 3 1 5 2 2 5 4 1 2 2 2 0 2 1 0
## 508 3 5 2 4 2 2 3 5 1 1 5 1 1 2 0 0 0
## 509 3 2 6 2 1 1 1 5 6 0 3 0 3 1 0 0 2
## 510 3 6 3 1 3 3 3 1 2 0 0 2 1 0 1 2 0
## 511 5 0 3 0 1 5 4 4 2 2 1 0 0 2 0 1 4
## 512 2 1 0 1 1 1 4 3 5 0 0 0 3 1 0 2 1
## 513 0 3 2 1 1 1 5 3 1 2 3 2 4 2 0 2 4
## 514 4 0 1 1 2 1 2 4 2 0 1 1 1 4 2 1 1
## 515 0 1 1 1 1 2 2 2 2 0 2 3 1 0 1 2 1
## 516 0 2 1 0 1 4 1 1 4 1 1 2 1 0 2 1 3
## 517 0 1 0 2 3 2 1 2 1 1 2 2 2 2 2 1 1
## 518 0 1 0 0 0 1 0 1 2 2 3 2 1 3 0 2 3
## 519 4 2 0 0 0 0 1 3 1 1 1 4 2 4 1 2 0
## 520 1 0 1 2 1 0 2 4 3 1 0 0 0 1 1 4 2
## 521 1 1 0 0 2 0 2 0 2 2 2 0 2 1 3 2 1
## 522 1 0 0 2 0 0 0 1 3 2 3 0 1 0 2 0 2
## 523 1 1 2 0 3 0 1 3 3 1 1 4 1 0 1 2 1
## 524 2 0 2 0 2 2 2 3 4 1 4 0 1 0 0 0 0
## 525 3 0 2 2 2 2 3 4 1 0 0 1 2 2 2 1 1
## 526 0 0 0 1 2 0 1 1 6 1 1 1 0 0 1 1 1
## 527 0 0 1 1 2 0 1 0 1 1 0 2 2 1 0 3 0
## 528 1 2 1 2 1 2 6 1 2 3 0 1 0 1 1 0 1
## 529 2 1 1 2 2 0 4 0 1 2 1 2 1 1 5 0 1
## 530 0 2 0 1 0 0 1 3 2 0 1 1 1 0 0 2 3
## 531 1 1 1 2 0 1 1 2 0 2 2 0 1 0 1 1 1
## 532 0 1 1 1 0 2 0 2 1 0 1 3 2 3 1 0 2
## 533 2 1 1 0 3 0 0 3 1 0 1 4 0 0 0 0 1
## 534 1 2 0 0 5 1 1 0 3 1 0 0 0 1 1 1 1
## 535 0 2 1 1 0 1 1 1 1 1 0 1 0 1 1 3 3
## 536 1 4 1 1 1 2 1 1 1 3 0 0 2 0 1 3 1
## 537 0 0 0 0 0 4 1 1 3 1 0 2 1 0 0 2 0
## 538 1 1 1 1 0 3 1 2 2 2 1 2 1 2 0 0 1
## 539 0 1 2 0 1 1 1 1 3 1 3 4 1 0 1 1 2
## 540 0 2 0 2 2 0 0 0 1 0 1 1 0 1 0 2 2
## 541 0 1 1 0 2 1 2 0 1 1 0 0 0 2 1 2 2
## 542 1 0 0 2 0 0 0 2 1 0 1 1 0 3 0 0 1
## 543 2 0 1 2 0 1 0 3 1 0 1 0 0 1 1 3 1
## 544 3 2 2 0 1 0 0 2 5 1 0 3 1 0 0 1 1
## 545 0 0 0 0 0 2 0 2 2 0 0 4 0 0 4 3 0
## 546 0 0 0 2 2 3 1 2 1 1 3 0 1 2 0 0 0
## 547 2 1 0 0 0 1 0 2 4 0 0 2 0 1 1 1 0
## 548 0 0 1 0 0 3 1 2 3 0 1 2 2 1 0 0 1
## 549 1 1 1 0 0 1 4 2 2 0 0 0 2 0 2 1 1
## 550 0 1 0 1 0 0 1 2 0 1 0 0 0 2 2 0 1
## 551 1 0 2 3 0 1 1 1 2 0 0 0 1 1 1 2 1
## 552 0 0 1 0 1 0 2 0 3 0 0 0 5 3 0 1 1
## 553 1 0 1 0 0 0 2 2 0 1 2 0 0 0 0 1 2
## 554 0 2 1 0 0 0 3 0 0 1 0 0 0 1 0 2 0
## 555 0 1 0 1 0 2 0 2 2 0 0 1 0 3 1 0 1
## 556 0 2 0 0 2 1 0 1 2 1 0 1 2 0 1 0 5
## 557 1 0 0 1 0 3 0 2 2 0 0 1 0 0 2 0 1
## 558 0 0 0 1 0 1 1 1 0 3 1 0 1 1 1 2 2
## 559 0 0 1 1 3 1 0 1 1 0 0 1 2 1 2 0 0
## 560 0 0 1 0 0 0 1 0 0 1 1 2 1 0 1 0 2
## 561 1 0 0 0 0 2 3 1 0 0 0 0 0 1 0 0 1
## 562 1 0 2 0 3 1 0 3 1 0 0 1 0 2 0 1 0
## 563 1 1 0 0 1 0 1 1 0 0 1 1 0 0 1 1 0
## 564 0 0 0 0 2 0 1 2 3 0 0 1 2 1 2 1 0
## 565 0 2 1 1 0 0 0 1 2 1 0 0 0 1 0 0 2
## 566 0 0 1 0 1 0 0 1 2 1 0 0 1 1 2 1 3
## 567 0 1 0 3 0 0 0 0 1 1 0 1 1 2 1 1 0
## 568 0 2 0 0 2 2 0 0 1 0 0 0 0 2 0 0 0
## 569 0 1 0 1 0 1 1 1 1 1 1 0 1 1 1 3 0
## 570 0 0 0 0 1 2 1 2 1 0 0 0 0 0 1 2 3
## 571 0 1 0 0 0 0 0 4 0 0 0 1 0 0 0 0 0
## 572 0 2 0 1 0 1 0 3 1 0 1 0 1 0 1 0 1
## 573 0 2 0 1 0 0 0 2 3 0 0 0 1 0 1 0 0
## 574 0 0 0 0 0 0 1 1 0 1 4 0 0 0 0 2 0
## 575 0 0 0 1 1 0 1 0 2 0 0 2 1 1 0 1 1
## 576 0 0 0 0 0 2 1 1 3 1 0 0 0 0 1 2 0
## 577 0 1 1 0 1 1 2 1 0 0 1 0 2 1 1 0 1
## 578 0 0 0 2 1 2 1 1 0 1 1 0 2 1 0 1 1
## 579 0 0 0 1 1 1 0 1 2 0 1 1 2 0 2 2 2
## 580 0 0 0 0 0 1 0 0 1 0 0 0 0 3 2 0 1
## 581 0 1 0 0 0 0 1 2 2 0 0 1 0 0 2 1 0
## 582 0 1 0 0 1 0 0 0 0 1 0 1 0 0 1 2 1
## 583 2 0 0 2 2 1 0 0 0 1 0 0 1 0 0 0 0
## 584 1 0 0 0 1 0 0 1 2 2 1 0 0 1 0 1 2
## 585 0 1 0 1 1 1 0 0 1 0 0 0 1 1 0 1 0
## 586 0 0 0 1 0 0 0 1 0 0 1 0 0 0 0 0 1
## 587 1 0 0 0 0 2 1 2 1 0 0 0 1 0 0 1 1
## 588 0 0 0 0 0 0 0 1 0 0 0 0 0 2 1 0 1
## 589 0 2 0 1 0 0 0 0 1 0 1 0 0 0 0 1 0
## 590 0 0 0 0 2 0 0 0 0 1 0 0 0 0 0 0 1
## 591 1 1 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0
## 592 0 0 1 0 1 0 0 2 1 0 0 1 0 1 1 0 2
## 593 1 0 0 0 1 0 0 1 0 0 2 0 0 0 2 0 0
## 594 1 0 1 0 0 1 0 0 0 0 0 1 0 0 0 0 0
## 595 0 0 0 1 0 0 1 0 2 0 0 1 0 0 0 2 0
## 596 0 1 0 0 0 0 0 1 1 0 0 0 0 0 0 1 0
## 597 0 0 0 0 1 1 1 2 0 0 0 0 0 0 1 1 0
## 598 0 1 0 1 1 0 0 0 0 1 0 1 0 0 0 0 0
## 599 1 0 0 2 1 0 0 0 0 0 3 2 1 1 0 0 1
## 600 0 0 0 0 0 0 1 0 0 0 0 2 0 0 0 0 0
## 601 0 0 0 0 1 0 0 0 3 0 0 0 0 0 1 1 0
## 602 0 0 0 1 1 0 0 1 1 0 1 1 0 0 0 0 0
## 603 0 0 0 0 1 0 0 1 0 0 1 0 0 0 0 0 1
## 604 0 1 0 1 0 0 0 1 0 2 0 1 1 1 0 0 1
## 605 0 0 0 1 1 0 1 1 0 0 0 0 0 1 0 0 0
## 606 1 0 0 0 0 3 0 0 1 0 1 0 2 1 0 0 0
## 607 0 0 1 2 0 0 0 0 0 0 0 0 0 1 0 0 0
## 608 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1
## 609 0 0 0 0 0 0 0 0 2 4 0 1 0 1 0 0 1
## 610 0 1 1 0 0 0 1 0 3 0 0 1 0 1 0 0 1
## 611 0 1 0 0 0 0 0 1 0 0 1 0 0 1 0 1 1
## 612 0 1 0 0 0 0 0 0 1 1 0 0 0 0 1 0 0
## 613 0 0 0 0 1 0 0 1 2 0 1 0 1 1 0 0 0
## 614 0 1 0 1 0 0 0 0 1 0 0 1 0 1 0 1 0
## 615 0 0 0 0 0 0 0 0 0 1 2 3 0 0 0 1 0
## 616 0 2 1 0 1 1 0 3 1 0 0 0 0 0 0 0 0
## 617 1 0 0 0 1 0 0 0 0 1 1 0 0 0 0 0 0
## 618 1 1 0 0 0 0 0 1 2 0 0 0 1 0 0 2 1
## 619 0 0 0 1 0 1 0 1 1 0 0 0 0 0 0 0 0
## 620 1 0 0 0 0 0 0 1 1 0 0 0 0 1 0 0 2
## 621 0 0 0 1 0 0 1 0 0 1 0 0 0 0 1 0 0
## 622 0 1 0 0 0 0 0 1 2 0 0 1 0 0 0 0 1
## 623 0 0 0 0 0 0 0 0 1 2 0 0 0 0 0 1 0
## 624 0 0 0 0 0 1 0 1 1 0 2 0 0 0 1 0 0
## 625 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0
## 626 0 0 1 0 0 1 0 2 1 1 0 1 1 0 1 1 1
## 627 0 0 0 0 1 0 0 0 0 0 1 0 1 0 1 1 0
## 628 1 0 0 0 1 0 0 0 1 0 0 2 0 0 0 0 0
## 629 0 0 1 0 1 0 1 1 0 0 0 0 0 1 0 0 0
## 630 0 0 0 0 0 0 0 0 3 2 0 0 0 0 0 0 0
## 631 0 0 0 1 1 0 2 0 1 0 1 0 0 0 0 0 0
## 632 0 0 0 2 1 0 2 0 1 0 0 0 0 0 0 0 0
## 633 0 0 0 0 1 0 0 1 0 0 1 0 0 0 0 0 1
## 634 0 0 0 0 0 1 0 1 0 0 0 0 0 0 1 0 0
## 635 0 0 0 0 0 0 1 0 0 0 0 0 3 0 0 0 1
## 636 0 0 1 0 0 0 0 0 1 0 1 1 2 0 0 0 0
## 637 0 0 0 1 1 1 0 1 0 0 0 0 1 0 1 0 0
## 638 0 3 0 0 0 2 0 0 0 1 0 0 0 0 0 1 0
## 639 0 1 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0
## 640 0 0 0 0 0 0 1 1 1 0 0 0 0 0 1 0 0
## 641 0 0 0 0 0 0 1 0 1 0 1 1 0 0 0 0 0
## 642 0 0 0 0 0 0 1 1 1 2 0 0 0 0 0 0 0
## 643 0 0 0 0 0 0 0 0 0 1 0 1 0 0 2 0 0
## 644 1 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0
## 645 0 0 1 0 0 0 0 0 0 0 0 1 0 1 0 1 0
## 646 1 2 0 0 0 0 0 0 0 0 0 0 1 0 0 1 1
## 647 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0
## 648 0 0 0 0 0 1 3 1 1 0 0 0 0 0 0 0 0
## 649 0 1 0 0 1 0 0 0 0 0 1 0 1 0 0 0 0
## 650 0 0 0 0 0 0 0 0 0 1 1 1 0 0 0 0 0
## 651 0 1 0 0 0 0 0 1 1 0 0 0 0 0 0 0 1
## 652 0 0 0 0 0 0 0 2 1 0 0 0 0 0 0 0 0
## 653 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 1
## 654 1 0 0 0 0 3 0 1 0 1 0 0 1 0 0 0 0
## 655 0 1 1 2 0 0 0 0 0 1 1 1 0 0 1 0 0
## 656 0 1 0 0 0 0 1 1 1 0 0 0 1 0 0 1 0
## 657 1 0 1 0 0 0 0 0 0 0 1 1 0 0 0 0 2
## 658 0 0 1 0 0 0 0 0 1 0 1 0 0 0 0 0 0
## 659 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 2 0
## 660 0 0 0 0 0 0 0 1 1 0 0 0 0 0 1 1 0
## 661 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 1
## 662 1 0 1 0 0 0 1 0 1 1 0 0 0 1 0 0 0
## 663 0 0 1 1 0 0 0 1 1 0 0 0 0 0 1 0 0
## 664 1 0 0 0 1 0 0 1 0 0 1 0 0 0 0 1 0
## 665 0 0 0 0 1 0 0 1 0 0 1 0 1 0 0 0 1
## 666 3 1 0 0 0 0 0 0 1 0 0 0 1 0 1 0 0
## 667 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 668 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
## 669 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0
## 670 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0
## 671 0 1 0 0 0 0 1 0 1 0 0 0 0 2 0 0 0
## 672 0 0 0 0 0 1 0 0 0 0 0 1 0 1 0 1 0
## 673 0 1 0 0 0 1 1 0 0 1 0 0 0 0 0 1 0
## 674 0 0 0 0 0 1 0 1 0 1 0 0 0 0 0 0 0
## 675 0 0 0 0 0 2 0 1 1 0 0 0 0 1 0 0 1
## 676 0 0 2 0 0 0 0 1 0 0 0 1 0 0 0 0 0
## 677 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0
## 678 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 679 0 0 0 1 0 0 0 1 0 0 2 0 0 0 0 0 0
## 680 0 0 0 0 2 0 0 0 0 0 0 0 0 1 0 1 0
## 681 0 1 0 0 0 0 0 0 2 0 1 0 0 0 0 1 0
## 682 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0
## 683 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0
## 684 1 0 1 0 0 0 0 1 2 0 0 0 0 0 0 0 0
## 685 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0
## 686 0 0 1 0 0 2 1 0 0 0 0 0 0 0 0 0 0
## 687 0 0 0 0 0 1 0 2 0 0 1 0 0 0 0 0 0
## 688 0 0 0 0 0 1 0 1 1 0 0 0 0 1 1 0 0
## 689 0 1 0 0 0 0 0 0 0 0 1 0 0 1 0 0 0
## 690 0 1 0 0 0 1 0 1 0 0 0 0 0 0 0 1 0
## 691 1 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0
## 692 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1
## 693 0 0 0 1 0 0 0 0 0 0 2 0 0 1 0 0 0
## 694 0 0 0 0 0 1 0 0 2 0 0 1 0 0 0 0 0
## 695 0 0 0 0 0 1 1 0 0 0 0 0 0 0 1 0 0
## 696 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
## 697 0 0 0 0 0 2 0 1 1 1 0 0 0 0 0 0 0
## 698 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0
## 699 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 700 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0
## 701 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0
## 702 0 0 0 0 0 2 1 0 0 0 0 0 0 0 0 1 0
## 703 0 0 0 0 0 1 1 1 1 0 0 0 0 0 0 1 1
## 704 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0
## 705 0 0 0 0 0 1 0 2 0 0 0 0 0 0 0 0 0
## 706 1 0 0 1 0 0 1 1 0 0 0 0 1 0 0 0 0
## 707 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0
## 708 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 2
## 709 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
## 710 0 0 0 0 0 0 0 0 1 0 1 0 0 1 0 0 0
## 711 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 712 1 0 0 1 0 0 0 0 0 0 0 0 0 1 0 1 0
## 713 0 0 0 2 2 1 0 1 0 0 0 0 0 0 0 0 0
## 714 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0
## 715 0 1 0 0 0 0 1 3 0 0 0 0 0 0 0 0 1
## 716 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
## 717 1 0 0 0 0 0 1 0 2 0 0 0 0 0 1 0 0
## 718 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0
## 719 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0
## 720 0 0 1 0 1 0 0 1 0 0 0 0 0 0 0 0 0
## 721 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0
## 722 0 1 1 0 0 0 0 0 2 0 0 0 0 0 0 0 0
## 723 1 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0
## 724 0 0 0 0 1 0 0 0 1 0 0 1 0 0 0 0 0
## 725 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 726 0 0 0 0 0 1 1 0 0 0 0 1 0 1 0 1 0
## 727 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 728 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0
## 729 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0
## 730 0 1 0 0 1 0 1 0 0 1 0 0 0 0 0 0 0
## 731 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
## 732 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0
## 733 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0
## 734 1 0 0 0 2 0 0 0 0 0 0 0 0 1 0 0 0
## 735 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0
## 736 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 737 1 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0
## 738 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 739 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 740 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 1
## 741 0 1 0 0 0 0 0 0 1 0 0 0 0 0 2 0 0
## 742 0 1 0 0 0 0 0 1 0 0 2 0 0 0 0 0 1
## 743 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 744 0 0 0 1 0 1 0 0 0 1 0 0 0 0 0 0 0
## 745 0 0 0 0 1 0 0 0 2 0 0 1 0 0 0 0 0
## 746 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0
## 747 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 1
## 748 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
## 749 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0
## 750 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0
## 751 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0
## 752 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 753 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0
## 754 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 755 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
## 756 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0
## 757 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 1 0
## 758 0 0 0 0 1 0 0 1 0 1 0 0 0 0 0 0 0
## 759 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0
## 760 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 761 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 762 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
## 763 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0
## 764 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0
## 765 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
## 766 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 767 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0
## 768 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 769 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0
## 770 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 771 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
## 772 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
## 773 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0
## 774 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0
## 775 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0
## 776 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
## 777 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
## 778 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0
## 779 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 780 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0
## 781 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0
## 782 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 783 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 784 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 785 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 786 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
## 787 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 788 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
## 789 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0
## 790 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 791 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0
## 792 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 793 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 794 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0
## 795 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0
## 796 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0
## 797 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 798 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 799 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
## 800 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0
## 801 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
## 802 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 803 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
## 804 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
## 805 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 806 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 807 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 808 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0
## 809 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0
## 810 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 811 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## W34 W35 W36 W37 W38 W39 W40 W41 W42 W43 W44 W45 W46 W47 W48 W49 W50
## 1 34 34 36 47 24 35 47 34 46 41 34 39 44 46 46 41 57
## 2 41 38 28 35 33 33 35 34 29 25 38 46 46 34 34 45 41
## 3 46 31 33 29 36 34 25 27 52 36 43 31 37 38 42 28 28
## 4 33 32 38 38 43 34 40 28 38 30 36 37 34 39 44 31 25
## 5 20 30 37 34 28 26 41 44 43 39 34 33 41 43 35 30 29
## 6 36 39 37 33 37 37 32 43 40 26 40 28 29 29 31 38 26
## 7 38 43 32 37 40 38 35 28 38 34 37 34 55 26 33 26 38
## 8 31 38 26 35 34 38 39 45 36 50 35 32 31 37 36 34 23
## 9 39 38 33 39 38 30 31 34 42 26 32 40 40 29 34 30 30
## 10 41 41 42 36 32 33 28 34 43 44 23 42 30 33 37 40 26
## 11 34 27 29 35 40 20 23 27 41 38 37 35 32 28 48 35 24
## 12 37 27 41 38 34 38 33 41 48 34 32 44 29 44 32 28 38
## 13 32 31 50 36 43 42 32 32 38 36 39 32 31 39 23 40 32
## 14 38 34 32 31 33 32 36 34 40 30 33 39 42 45 31 31 23
## 15 32 30 32 34 41 47 28 26 23 38 36 40 44 39 37 24 27
## 16 30 26 27 41 31 26 38 29 29 34 42 38 45 38 40 30 35
## 17 29 38 32 30 31 39 44 40 35 40 27 25 31 28 50 32 38
## 18 29 26 29 25 35 38 32 27 40 43 35 24 40 30 33 35 22
## 19 32 40 33 44 30 30 44 31 35 32 34 40 27 27 30 27 37
## 20 38 32 30 36 37 26 29 47 33 20 25 36 36 28 35 35 34
## 21 34 33 31 27 30 37 36 33 26 28 39 38 34 30 38 41 34
## 22 30 28 25 37 45 35 31 33 33 45 29 36 41 33 34 37 21
## 23 21 39 25 22 34 33 38 31 26 37 27 29 50 31 31 28 36
## 24 29 40 48 33 36 29 40 34 39 33 44 30 23 27 31 28 31
## 25 33 38 55 33 43 39 29 45 25 32 37 33 35 31 45 32 27
## 26 30 28 29 35 44 37 36 38 34 35 34 38 34 32 26 30 27
## 27 37 46 30 35 39 38 36 28 29 29 35 41 30 31 35 38 30
## 28 26 37 35 19 33 30 28 50 50 26 42 42 29 38 36 26 29
## 29 38 32 42 32 20 32 22 28 31 36 42 42 32 31 39 24 24
## 30 36 29 29 35 31 30 40 41 28 36 25 28 37 33 28 37 27
## 31 36 33 32 34 35 22 30 40 39 34 26 34 44 39 29 29 37
## 32 40 37 29 22 34 32 40 40 32 31 34 32 37 44 40 25 19
## 33 26 28 37 34 27 38 29 37 30 29 39 28 22 36 25 40 31
## 34 34 23 27 29 32 40 36 37 31 32 42 36 34 31 31 26 26
## 35 29 28 22 47 39 34 27 30 40 28 46 36 32 22 28 24 29
## 36 40 36 42 22 33 30 21 31 38 35 33 30 37 30 30 34 38
## 37 26 35 34 40 33 42 35 37 43 33 28 25 31 44 24 25 43
## 38 26 38 46 28 30 31 41 21 40 33 32 26 26 29 44 30 34
## 39 33 30 28 17 34 38 31 36 36 22 38 34 33 44 23 31 35
## 40 42 35 28 29 32 29 26 23 32 33 30 44 47 37 18 36 23
## 41 41 25 22 32 29 32 32 42 30 35 32 28 30 41 40 39 38
## 42 29 30 32 29 27 30 33 26 37 42 35 33 27 35 35 27 22
## 43 33 39 42 28 21 37 32 36 25 49 36 27 33 41 37 22 33
## 44 39 32 40 29 29 28 30 26 27 36 37 26 44 41 29 34 25
## 45 29 21 40 28 32 32 23 22 33 38 35 33 28 23 39 15 31
## 46 27 32 33 39 39 22 21 31 29 39 34 35 45 28 33 38 23
## 47 31 34 34 32 41 42 37 36 28 30 27 23 37 31 38 27 29
## 48 32 38 30 39 41 28 31 29 44 24 40 28 24 22 30 31 28
## 49 28 35 41 29 35 30 40 28 36 31 36 35 43 28 30 30 26
## 50 36 26 30 37 30 31 25 36 35 32 22 36 30 26 31 29 26
## 51 30 20 28 23 42 21 30 30 45 34 28 37 40 30 33 32 33
## 52 31 33 32 30 26 34 28 28 25 23 37 37 42 32 31 36 34
## 53 35 28 34 27 24 30 36 30 29 22 36 26 33 44 29 36 27
## 54 40 33 28 32 28 22 39 25 32 30 32 38 31 29 37 30 19
## 55 28 23 32 26 41 29 33 30 38 39 33 27 33 33 36 30 34
## 56 33 35 33 27 28 25 35 29 33 31 28 34 38 38 31 38 31
## 57 33 38 31 34 27 33 28 39 28 34 29 27 35 34 35 32 23
## 58 25 27 24 39 37 24 27 27 29 28 26 34 33 40 31 34 28
## 59 31 28 18 31 27 35 37 48 27 46 34 26 27 38 37 27 29
## 60 32 34 30 30 17 27 36 35 33 29 37 20 38 38 32 14 26
## 61 19 21 36 28 36 35 36 26 26 24 43 38 35 35 24 29 33
## 62 23 23 24 43 30 28 26 17 33 28 29 34 32 41 24 33 27
## 63 23 30 38 29 23 30 41 30 33 46 30 29 31 32 21 34 31
## 64 21 38 33 26 19 28 34 32 35 41 29 34 36 33 30 40 23
## 65 34 34 25 23 19 19 28 29 28 31 42 21 35 25 37 29 32
## 66 26 28 29 32 28 26 23 29 21 31 31 26 24 33 32 30 23
## 67 28 28 28 32 52 33 30 40 34 25 25 33 39 49 39 35 21
## 68 36 30 29 27 23 23 30 31 27 32 23 25 38 24 23 32 35
## 69 28 26 27 32 31 33 32 23 33 29 25 30 40 37 36 29 27
## 70 37 26 22 35 31 30 36 35 25 28 23 32 36 32 31 25 40
## 71 24 34 33 38 35 28 34 28 32 24 28 22 24 26 33 25 40
## 72 36 29 41 32 29 34 41 25 31 32 37 35 33 31 29 33 29
## 73 31 20 25 21 38 29 32 32 27 36 31 29 36 26 43 32 35
## 74 26 30 26 16 38 43 34 26 22 26 37 42 28 35 27 31 25
## 75 39 27 29 22 36 30 29 38 27 29 42 38 30 28 28 30 34
## 76 22 33 37 34 33 29 36 33 32 35 41 34 29 30 27 26 34
## 77 22 27 27 17 29 22 27 32 34 40 23 36 30 30 26 21 16
## 78 35 35 27 25 32 41 37 37 25 19 40 31 39 21 37 40 27
## 79 26 19 37 38 38 37 19 33 33 45 29 28 27 32 33 27 29
## 80 29 38 21 32 33 29 28 30 29 30 37 23 26 25 28 33 22
## 81 25 17 34 29 35 28 22 33 37 20 22 37 39 26 24 29 28
## 82 29 31 25 41 36 27 26 40 18 32 35 39 32 29 23 28 18
## 83 27 40 33 34 31 19 48 21 31 19 24 32 36 30 33 29 27
## 84 37 25 30 28 34 23 31 41 27 34 32 35 29 26 25 31 32
## 85 20 28 35 24 26 34 40 31 28 31 17 38 34 28 21 28 30
## 86 39 30 30 34 31 21 21 39 30 29 29 41 35 22 28 29 29
## 87 29 40 26 24 21 34 28 28 31 25 29 40 24 26 36 29 24
## 88 28 13 17 16 23 38 34 32 33 32 31 28 31 30 29 52 43
## 89 20 36 31 31 37 35 38 25 42 36 28 24 23 26 38 27 22
## 90 30 23 48 25 25 26 26 28 27 33 28 45 30 44 29 27 23
## 91 19 32 23 30 33 34 23 28 34 27 39 36 39 35 22 35 16
## 92 31 30 29 22 41 28 31 28 30 32 25 38 25 29 28 28 12
## 93 44 43 22 35 31 33 35 25 40 43 36 34 32 18 26 35 29
## 94 27 28 32 34 25 21 30 36 28 21 30 34 31 33 25 36 19
## 95 31 30 19 26 36 28 39 35 37 32 25 31 29 28 37 22 31
## 96 39 24 25 29 24 25 25 34 41 27 39 30 41 28 22 29 15
## 97 18 35 33 30 24 23 36 27 31 39 38 21 32 33 34 24 22
## 98 29 38 29 31 25 21 22 32 28 31 39 29 29 34 27 40 35
## 99 24 20 20 31 20 42 24 26 27 24 31 39 37 30 46 41 29
## 100 29 21 36 24 26 24 24 32 30 26 28 38 25 18 22 26 21
## 101 34 27 35 38 52 32 25 25 22 24 29 35 33 32 34 32 19
## 102 29 33 49 22 37 25 28 21 38 21 18 32 41 38 30 28 28
## 103 27 25 22 28 24 27 35 30 24 31 31 31 20 33 27 24 30
## 104 30 25 28 43 29 34 30 33 14 29 20 25 36 46 34 36 31
## 105 23 25 18 33 25 30 27 29 31 37 26 27 39 33 32 36 39
## 106 25 23 17 25 40 25 31 33 35 30 24 30 23 36 33 32 26
## 107 35 31 22 37 29 41 36 32 31 25 23 27 36 24 40 23 20
## 108 27 36 28 30 33 39 28 25 36 35 27 24 22 19 32 26 31
## 109 34 21 33 30 34 22 22 25 32 32 25 36 36 23 28 43 20
## 110 26 27 28 38 41 25 37 41 37 36 29 40 29 41 31 23 27
## 111 34 23 20 28 27 34 19 35 18 35 20 34 31 33 30 25 30
## 112 28 32 33 26 31 20 27 29 21 34 30 36 23 29 30 28 23
## 113 29 28 32 17 34 27 28 25 30 17 28 35 34 40 38 33 21
## 114 30 32 26 30 31 24 29 27 24 28 30 28 29 34 31 29 25
## 115 37 28 37 27 23 28 42 28 29 32 25 31 21 35 23 33 28
## 116 27 32 35 33 28 31 31 30 37 28 27 34 41 39 28 32 40
## 117 38 32 26 22 27 32 37 29 32 27 40 33 29 35 30 29 25
## 118 19 22 32 35 29 22 26 23 26 26 25 34 23 35 28 22 20
## 119 25 27 24 35 30 34 24 21 31 36 27 25 27 34 27 37 31
## 120 23 33 25 27 40 31 29 38 29 41 36 27 24 38 19 33 20
## 121 16 23 30 20 15 19 20 14 25 18 29 30 30 19 13 25 24
## 122 18 17 23 20 23 24 26 21 22 19 21 19 22 21 25 21 19
## 123 18 20 19 26 16 24 17 20 26 35 29 22 22 30 29 31 34
## 124 24 15 20 18 24 13 22 23 19 20 24 19 18 22 12 27 29
## 125 13 25 16 29 17 17 19 19 24 26 21 25 25 24 29 23 34
## 126 20 16 13 18 13 8 16 16 18 12 25 14 22 19 20 18 28
## 127 21 15 25 15 13 11 21 19 20 15 17 11 12 18 23 22 19
## 128 16 9 23 22 15 18 13 17 14 17 11 24 13 16 18 23 18
## 129 19 13 14 17 17 15 22 14 23 12 13 12 21 19 11 20 20
## 130 16 15 4 16 21 15 24 21 18 16 25 16 13 7 16 7 22
## 131 19 19 13 16 11 13 24 15 18 24 14 18 18 13 23 22 23
## 132 17 14 17 15 12 15 17 18 10 14 22 22 19 20 19 29 26
## 133 10 28 19 14 17 15 10 13 13 26 17 17 20 25 30 23 30
## 134 19 4 15 16 10 15 8 18 19 24 21 13 21 20 11 24 20
## 135 9 17 15 18 21 13 15 25 16 20 12 16 13 13 20 17 27
## 136 12 17 19 10 20 15 20 16 13 12 19 17 13 14 13 22 22
## 137 7 18 13 17 9 16 16 16 12 18 13 11 20 20 26 26 25
## 138 16 17 7 21 17 22 12 13 20 8 15 19 7 20 22 7 14
## 139 16 14 11 15 24 14 19 20 19 14 18 13 17 15 11 13 18
## 140 11 15 20 10 15 20 13 19 17 13 20 18 20 19 14 19 20
## 141 16 20 25 15 18 18 16 15 19 9 27 14 17 12 16 13 19
## 142 17 20 18 20 8 17 11 16 16 15 18 21 10 18 22 21 19
## 143 17 16 13 22 13 16 14 12 18 22 17 16 21 12 19 16 21
## 144 16 20 11 18 8 10 15 17 14 13 17 16 18 17 18 12 19
## 145 17 22 13 18 14 12 14 10 13 17 11 16 16 13 14 20 26
## 146 21 10 12 16 20 13 12 15 15 13 16 10 13 8 18 26 29
## 147 21 16 15 9 20 16 23 14 13 14 13 18 24 16 10 18 17
## 148 13 9 16 18 10 21 11 15 21 12 15 13 18 23 23 16 23
## 149 14 11 14 13 15 18 16 12 19 12 10 18 11 18 21 19 24
## 150 11 13 18 13 11 14 10 16 15 7 14 12 9 14 13 22 19
## 151 18 13 15 8 10 20 5 17 8 13 22 15 23 10 13 7 16
## 152 19 14 20 18 17 19 8 15 17 13 10 20 19 15 18 22 26
## 153 20 6 10 16 16 13 10 19 17 14 13 19 19 20 22 22 18
## 154 10 12 15 11 19 15 26 20 16 11 19 12 11 20 20 17 20
## 155 24 23 11 12 18 8 19 18 18 13 19 13 12 9 20 20 10
## 156 16 10 11 16 15 9 14 7 14 18 13 11 12 14 12 20 18
## 157 13 10 14 13 13 13 21 16 19 15 13 10 11 16 14 17 21
## 158 13 12 14 12 18 14 15 17 12 12 7 12 17 18 24 16 23
## 159 6 15 9 15 12 14 19 15 17 16 16 15 14 15 14 14 22
## 160 12 10 9 11 15 17 22 13 23 9 18 19 13 21 12 19 24
## 161 11 8 10 17 13 17 11 8 12 10 11 23 20 11 17 16 16
## 162 14 13 15 12 12 10 16 17 14 13 16 14 27 16 20 22 26
## 163 12 6 11 21 14 10 15 14 10 17 21 14 25 20 12 21 25
## 164 10 13 16 15 19 17 10 9 20 11 11 15 12 9 21 16 28
## 165 7 7 16 12 15 6 14 11 14 18 11 11 11 13 14 16 20
## 166 14 8 12 8 9 14 13 14 16 10 17 11 16 12 11 17 16
## 167 14 12 4 17 15 11 13 8 7 13 11 9 12 10 17 12 24
## 168 12 7 13 5 11 10 8 18 9 19 17 11 14 15 14 13 12
## 169 7 12 7 8 12 4 9 6 20 17 9 18 10 14 15 19 20
## 170 8 15 9 7 14 14 7 14 6 13 14 13 11 16 10 14 18
## 171 6 12 13 9 7 11 11 6 10 10 8 13 9 15 11 16 18
## 172 11 15 6 10 12 11 11 9 11 13 11 17 11 7 13 15 11
## 173 11 11 12 14 11 6 4 15 10 8 14 17 11 16 17 12 12
## 174 8 16 12 10 10 9 13 11 9 10 13 14 11 8 17 19 18
## 175 13 5 13 14 14 11 15 12 11 8 8 4 11 13 22 17 18
## 176 11 15 11 10 9 12 12 11 9 9 12 12 11 13 18 11 24
## 177 13 9 9 14 15 10 9 6 9 14 9 10 7 15 13 9 11
## 178 9 11 8 12 6 15 6 12 20 11 15 14 7 11 15 16 14
## 179 9 5 8 16 15 13 7 8 12 14 12 12 12 13 14 16 19
## 180 8 15 13 11 12 17 4 8 10 12 13 12 12 8 12 9 15
## 181 13 9 8 5 8 6 8 11 14 11 13 11 8 9 12 18 15
## 182 10 11 5 11 9 6 7 14 8 20 14 9 13 12 12 11 22
## 183 6 11 9 8 9 4 15 5 7 9 4 4 11 14 12 10 18
## 184 10 5 14 7 11 10 11 14 10 13 6 9 5 12 15 11 10
## 185 14 10 5 7 7 13 10 13 14 14 11 10 14 16 14 16 14
## 186 16 10 9 16 12 10 8 6 9 11 8 14 10 13 8 7 8
## 187 13 7 12 9 7 5 7 17 13 6 4 10 15 20 11 14 14
## 188 7 17 11 5 11 9 9 8 6 14 11 15 6 8 11 9 15
## 189 9 8 13 12 7 8 12 7 14 6 3 9 15 8 11 13 12
## 190 15 16 10 10 9 8 8 11 4 14 8 12 7 16 9 8 8
## 191 19 9 7 5 10 8 11 5 11 13 11 11 11 14 15 16 17
## 192 17 8 11 4 15 5 11 10 15 4 11 9 11 6 15 15 17
## 193 6 7 13 12 20 9 7 10 9 2 12 11 5 10 12 14 12
## 194 3 11 7 10 10 7 12 16 11 14 10 11 9 8 20 19 14
## 195 16 11 12 10 6 19 6 12 11 16 12 11 13 8 17 10 10
## 196 10 11 12 9 3 9 8 19 11 13 6 15 11 11 9 12 13
## 197 9 19 10 4 8 8 12 20 8 15 10 11 9 13 12 7 13
## 198 3 13 8 13 9 9 9 14 6 14 14 16 16 8 13 10 13
## 199 9 13 9 8 7 11 16 7 9 10 8 10 9 9 10 12 10
## 200 10 15 12 9 4 10 8 5 10 8 11 6 8 18 7 10 10
## 201 7 15 8 14 7 7 13 13 6 14 8 8 10 8 10 7 16
## 202 8 8 9 9 12 4 7 8 6 10 17 9 11 14 11 13 18
## 203 5 6 8 12 9 12 9 8 10 16 11 8 17 16 8 10 23
## 204 10 4 10 11 12 6 5 9 12 7 10 14 12 12 15 7 6
## 205 7 8 5 10 10 9 5 9 14 6 6 15 7 10 14 11 12
## 206 12 11 12 11 9 5 8 17 8 10 6 19 13 11 7 7 18
## 207 12 6 9 6 10 7 10 10 10 9 21 9 7 8 8 8 11
## 208 8 13 8 10 11 10 9 10 11 8 7 8 11 19 8 19 18
## 209 9 8 5 11 8 11 10 12 8 7 9 7 8 9 8 13 14
## 210 11 11 13 11 14 9 13 10 11 11 9 4 12 10 12 10 11
## 211 5 8 16 8 8 7 11 9 8 5 15 11 12 9 14 16 8
## 212 13 6 10 14 4 13 8 11 5 12 7 11 5 11 8 13 17
## 213 10 8 10 12 12 8 12 7 10 6 6 5 13 7 7 9 17
## 214 9 8 7 9 15 8 9 8 11 5 13 3 7 7 10 12 7
## 215 7 12 5 5 11 7 11 13 11 7 15 6 8 7 12 8 9
## 216 15 7 9 7 8 6 2 12 5 13 17 7 4 6 4 12 16
## 217 6 6 11 7 10 8 10 5 15 5 9 3 13 9 10 11 10
## 218 15 8 10 8 5 3 10 9 7 8 16 8 9 7 7 11 9
## 219 3 8 8 10 12 7 12 15 15 7 10 10 7 12 10 5 9
## 220 13 10 8 7 12 10 5 8 9 7 11 13 11 8 5 13 10
## 221 10 10 10 11 7 9 8 10 6 7 8 9 6 12 10 8 9
## 222 12 8 7 9 5 10 9 4 6 10 11 15 3 7 8 12 11
## 223 9 10 9 10 9 6 4 13 6 11 7 8 8 17 6 13 12
## 224 7 11 10 6 2 12 10 8 6 7 9 3 9 10 8 7 12
## 225 11 7 7 5 6 7 4 16 13 9 11 10 8 5 9 8 8
## 226 7 9 9 5 10 11 14 10 10 10 6 4 9 12 12 7 6
## 227 9 5 6 11 6 9 4 10 7 14 6 14 12 13 12 8 18
## 228 7 12 5 2 7 7 10 7 10 8 7 6 13 9 9 10 10
## 229 9 9 6 12 8 7 5 7 5 14 4 3 4 9 5 9 15
## 230 6 8 5 7 7 7 8 9 5 7 6 8 6 12 8 4 10
## 231 5 10 8 9 11 10 4 13 5 21 10 6 7 4 8 16 5
## 232 9 5 9 6 12 7 9 14 9 9 5 12 7 6 5 13 3
## 233 5 14 10 9 12 17 7 11 4 7 8 10 12 3 7 6 5
## 234 7 9 7 6 13 13 6 8 10 5 16 11 12 17 6 6 4
## 235 7 10 10 10 7 16 4 6 10 9 10 7 9 11 4 8 11
## 236 13 10 7 10 10 9 10 14 7 8 9 8 11 12 7 9 10
## 237 8 13 10 8 10 10 5 7 7 13 8 7 12 10 7 10 10
## 238 2 10 5 11 7 8 5 13 14 6 8 5 4 9 7 8 8
## 239 7 7 8 11 4 11 7 2 5 8 9 14 10 10 12 13 5
## 240 6 10 5 7 7 5 15 8 4 5 11 9 9 8 9 11 6
## 241 7 6 5 9 7 7 10 5 10 7 13 7 12 7 8 11 12
## 242 8 8 5 14 12 4 13 5 9 8 7 6 6 4 6 8 7
## 243 9 11 10 8 7 12 8 8 7 5 10 5 9 13 13 10 10
## 244 10 11 8 8 11 10 9 6 7 3 7 12 11 15 13 4 11
## 245 3 9 11 14 9 11 11 8 8 5 11 10 7 7 9 7 10
## 246 8 9 14 7 8 8 7 8 6 9 7 11 8 12 7 7 7
## 247 13 5 7 8 8 8 6 8 9 13 10 13 10 8 7 8 11
## 248 8 14 7 10 8 10 9 7 11 6 5 9 6 6 15 10 7
## 249 5 8 11 11 9 12 6 7 11 15 8 7 12 6 9 6 7
## 250 11 7 6 13 8 5 11 5 10 8 4 7 15 10 13 12 10
## 251 9 9 8 8 4 9 9 11 6 5 4 10 8 7 7 12 7
## 252 3 9 4 11 7 5 12 8 6 8 11 8 8 8 10 7 9
## 253 13 11 11 3 8 11 12 8 12 8 10 10 14 7 5 7 8
## 254 9 10 8 13 4 6 9 5 4 9 9 7 9 7 8 13 11
## 255 17 14 8 12 9 7 4 6 8 7 6 15 3 10 12 5 11
## 256 9 15 10 9 16 8 13 7 6 9 11 9 10 5 5 5 4
## 257 6 10 13 9 8 8 5 14 14 10 10 11 5 7 5 4 13
## 258 11 15 5 9 9 4 6 6 10 6 7 11 12 7 10 12 8
## 259 4 7 4 5 9 4 9 7 6 8 5 6 6 11 7 9 8
## 260 7 8 7 6 11 9 7 6 8 6 11 11 5 6 7 11 13
## 261 11 9 8 8 9 9 12 3 6 12 5 8 11 11 11 17 17
## 262 13 11 4 9 10 5 5 9 3 6 12 9 8 11 8 9 9
## 263 6 3 10 9 12 14 5 6 11 7 7 15 8 12 3 11 15
## 264 7 10 1 4 12 11 10 9 12 5 10 16 7 10 7 11 10
## 265 15 10 4 13 4 13 11 7 9 4 9 5 8 7 4 5 9
## 266 7 6 9 6 6 9 11 5 5 11 12 8 12 11 4 6 6
## 267 6 3 7 8 13 11 12 8 7 7 6 9 9 14 11 11 8
## 268 8 8 5 6 6 9 11 6 4 5 9 8 8 15 7 6 11
## 269 12 9 9 7 14 3 9 7 7 9 4 9 9 12 6 10 8
## 270 6 12 3 5 11 8 6 5 10 6 5 7 6 11 12 11 3
## 271 5 13 3 5 11 9 6 7 5 5 7 6 7 12 8 14 14
## 272 7 10 9 8 7 8 2 4 6 6 14 9 6 12 10 11 9
## 273 6 9 8 12 8 4 6 4 4 9 5 8 7 19 14 11 9
## 274 5 12 6 9 9 7 7 5 7 6 7 9 12 7 6 5 7
## 275 7 7 8 9 8 7 10 6 7 4 12 12 8 4 11 9 13
## 276 3 4 10 5 6 11 6 6 13 13 12 10 6 11 7 13 5
## 277 9 7 14 6 7 7 8 11 12 3 8 11 7 9 8 12 5
## 278 4 5 8 8 9 8 9 9 7 8 8 9 17 2 9 6 12
## 279 12 8 9 12 9 8 6 10 6 19 1 10 7 11 7 6 5
## 280 13 9 11 5 7 6 11 11 12 6 11 14 13 6 9 1 1
## 281 15 4 9 6 18 6 7 8 7 12 9 10 9 10 13 11 8
## 282 9 9 5 5 4 13 10 8 6 6 12 11 6 3 3 13 12
## 283 16 8 11 8 8 11 6 7 5 8 6 7 7 4 3 5 8
## 284 14 10 7 7 7 8 7 8 13 5 8 10 10 11 11 12 5
## 285 5 7 8 6 6 9 5 4 6 6 16 6 5 12 10 5 16
## 286 5 8 8 7 8 10 6 13 10 8 8 11 3 8 6 6 10
## 287 18 6 13 6 9 10 3 10 11 5 6 8 6 11 10 7 7
## 288 5 6 13 8 7 8 9 5 4 12 6 4 11 10 6 10 6
## 289 8 6 7 11 6 7 4 8 11 6 7 4 9 5 10 5 5
## 290 9 8 16 12 6 5 9 3 4 9 10 6 10 8 5 7 6
## 291 7 4 7 10 8 9 6 17 6 12 12 10 10 8 5 8 9
## 292 6 5 7 10 8 5 13 6 7 8 8 12 7 9 4 7 6
## 293 6 10 5 11 8 8 5 9 10 10 11 7 10 11 9 10 6
## 294 12 7 4 7 3 8 10 8 10 8 9 4 8 10 7 13 11
## 295 8 5 2 10 10 8 7 6 8 5 6 6 8 9 12 2 10
## 296 6 11 6 9 5 8 4 7 7 11 5 7 4 7 8 5 14
## 297 10 10 10 13 5 10 13 17 4 7 4 10 6 5 6 4 10
## 298 7 9 6 12 12 9 3 5 6 14 5 5 7 8 14 8 8
## 299 7 6 6 9 7 6 7 8 9 11 9 6 6 7 5 12 6
## 300 8 9 15 6 7 8 3 9 10 14 4 8 8 6 7 4 9
## 301 7 7 7 9 6 8 5 4 7 10 10 8 7 12 10 13 11
## 302 13 5 6 11 7 4 14 5 5 12 7 3 5 7 11 8 8
## 303 9 12 9 4 3 9 2 8 5 4 14 8 5 7 6 6 6
## 304 2 13 11 6 4 4 8 15 5 8 7 5 7 11 5 8 7
## 305 7 7 12 7 6 6 12 8 7 7 7 7 10 12 15 7 8
## 306 10 6 14 10 6 12 11 11 8 5 7 9 3 9 6 8 4
## 307 8 5 9 12 12 4 8 7 5 4 7 6 7 4 8 8 8
## 308 6 10 6 7 5 9 6 8 13 7 6 6 11 12 12 6 8
## 309 9 7 4 8 8 5 5 8 7 11 7 12 6 6 5 11 8
## 310 5 4 5 8 9 14 10 14 3 8 9 3 16 7 3 5 10
## 311 9 9 3 13 6 6 9 8 12 8 4 6 7 6 13 8 9
## 312 7 8 4 6 9 7 4 2 9 6 7 10 6 8 7 18 3
## 313 9 10 6 7 12 5 4 7 7 7 3 5 5 5 13 10 6
## 314 6 8 4 9 7 2 9 8 10 10 8 3 14 14 8 11 11
## 315 5 19 8 6 8 8 12 6 9 10 3 4 6 8 14 8 7
## 316 8 6 9 8 8 11 10 7 7 8 6 6 8 8 5 12 5
## 317 8 10 5 8 8 10 9 7 6 9 7 4 8 3 12 8 8
## 318 7 10 13 10 13 5 12 9 11 5 4 6 6 2 9 10 13
## 319 9 5 9 6 13 6 5 8 8 9 10 8 12 5 8 20 9
## 320 12 7 9 7 12 9 13 5 6 12 7 12 10 9 15 9 12
## 321 10 3 8 3 5 7 6 4 5 8 10 3 6 4 7 10 9
## 322 8 6 4 8 7 4 4 2 5 6 5 3 4 5 3 5 8
## 323 1 9 4 4 5 6 5 1 6 8 4 5 6 5 5 7 6
## 324 6 6 9 8 5 4 8 8 4 2 7 7 4 7 0 5 6
## 325 3 6 7 7 3 8 3 7 7 8 6 4 6 7 8 7 5
## 326 5 2 3 5 4 4 7 8 3 2 6 2 7 5 4 5 12
## 327 4 4 4 4 6 8 6 3 2 6 11 3 6 10 4 8 9
## 328 5 5 3 5 9 3 1 5 7 5 7 9 8 3 6 10 10
## 329 6 6 4 6 7 7 4 4 5 3 5 4 9 5 7 5 7
## 330 2 6 4 4 3 5 2 8 4 8 3 6 6 4 4 13 6
## 331 6 2 6 7 4 7 5 1 6 6 7 2 10 5 3 7 12
## 332 4 2 2 3 4 6 5 9 5 1 7 5 7 2 7 5 9
## 333 3 3 3 6 5 1 4 7 9 4 6 9 6 9 6 9 11
## 334 4 6 8 6 7 8 2 3 6 3 3 4 6 7 7 10 9
## 335 1 5 8 2 7 3 5 3 4 2 4 10 5 7 6 9 3
## 336 9 6 6 4 6 2 8 4 4 5 6 5 6 9 12 9 5
## 337 4 8 4 7 2 3 6 8 8 5 7 6 5 9 5 11 8
## 338 3 8 1 2 3 4 3 8 6 7 3 4 4 8 4 16 7
## 339 5 7 3 8 2 3 1 6 6 6 5 5 3 4 8 6 6
## 340 7 4 2 3 11 1 5 2 4 4 1 4 9 5 4 2 5
## 341 4 3 9 8 3 2 5 4 2 4 8 3 11 2 2 3 5
## 342 5 4 5 4 3 7 4 9 3 5 1 5 7 5 5 6 4
## 343 1 2 2 6 3 7 6 4 5 1 6 6 2 5 6 7 7
## 344 4 2 2 5 4 6 6 2 4 4 4 6 6 4 5 11 9
## 345 9 7 2 3 6 2 3 5 2 7 2 1 2 6 2 3 3
## 346 6 4 1 1 6 6 5 4 4 11 2 3 8 3 2 2 9
## 347 2 9 5 7 5 4 5 8 6 8 8 2 1 6 2 3 3
## 348 6 2 4 4 2 7 3 1 3 0 4 6 7 7 3 5 3
## 349 4 2 2 4 4 3 6 1 10 3 3 7 2 2 5 9 6
## 350 8 7 9 4 6 2 8 5 4 2 0 3 8 4 5 4 4
## 351 5 2 6 3 3 2 6 2 7 4 3 7 4 6 4 8 5
## 352 1 3 3 4 0 5 6 5 10 5 5 10 3 3 3 4 10
## 353 1 7 8 0 6 3 3 6 2 6 2 4 5 3 6 4 6
## 354 5 2 8 4 1 7 5 3 2 3 7 1 0 2 1 7 6
## 355 3 6 4 6 6 6 4 8 7 7 6 5 5 5 7 7 5
## 356 3 6 2 6 2 5 4 5 2 5 6 4 3 4 9 4 2
## 357 6 1 2 5 2 2 3 5 6 3 6 2 5 3 6 8 8
## 358 5 2 5 3 4 3 4 5 5 4 7 1 3 5 2 2 4
## 359 7 5 3 5 2 2 2 3 7 6 8 2 3 5 3 4 5
## 360 3 1 8 3 6 5 4 3 3 4 4 3 3 6 5 2 4
## 361 4 2 8 4 1 8 4 7 2 5 0 2 3 5 4 6 2
## 362 5 6 2 3 8 1 5 4 4 2 6 5 5 1 2 4 3
## 363 4 5 5 5 4 9 0 3 6 2 5 4 2 4 6 11 5
## 364 2 5 5 6 6 6 4 4 1 6 5 2 4 3 9 3 6
## 365 5 4 2 0 5 3 3 4 8 5 1 2 1 4 3 1 4
## 366 2 1 4 4 3 2 5 4 4 2 4 3 6 5 3 3 10
## 367 2 8 6 4 2 4 6 4 7 4 4 4 6 5 2 8 2
## 368 0 1 8 1 5 3 6 4 4 6 1 2 3 6 9 9 5
## 369 5 3 3 6 2 5 7 2 7 6 3 7 5 4 5 5 6
## 370 2 8 4 4 4 3 3 5 7 2 2 3 8 6 8 2 4
## 371 4 4 6 2 3 1 6 3 7 2 1 6 3 1 2 3 4
## 372 7 4 6 4 4 2 7 4 0 3 6 6 3 3 2 5 3
## 373 3 6 5 5 5 4 3 4 5 2 4 9 4 3 5 5 3
## 374 5 1 8 4 2 5 3 2 3 3 5 7 4 6 6 3 6
## 375 4 5 6 5 2 5 3 6 3 3 4 5 2 1 6 2 4
## 376 5 3 2 1 4 4 3 2 8 2 2 4 4 5 2 7 3
## 377 2 6 4 5 1 3 5 8 2 3 3 6 2 6 2 4 2
## 378 2 3 7 1 3 4 4 2 4 6 4 9 2 3 4 4 3
## 379 2 5 7 8 2 5 8 1 3 5 7 5 7 1 6 2 5
## 380 3 2 5 3 4 4 3 1 3 6 3 4 3 2 3 2 6
## 381 11 5 2 5 5 3 4 2 4 7 3 3 6 1 6 6 5
## 382 2 1 3 10 4 0 4 2 3 5 3 4 3 1 2 1 1
## 383 3 4 3 2 10 7 2 1 2 5 6 2 3 4 3 7 3
## 384 2 5 2 5 5 3 4 6 4 5 0 4 2 3 3 3 5
## 385 2 1 2 4 4 4 8 2 6 2 5 4 7 2 5 4 5
## 386 2 2 3 3 4 2 2 5 0 2 4 8 3 1 3 5 5
## 387 4 3 4 1 3 6 3 5 6 5 1 3 3 5 0 4 8
## 388 3 10 5 2 7 3 2 5 2 4 5 1 1 4 5 1 6
## 389 3 5 4 0 4 6 6 5 4 2 2 3 3 2 8 1 6
## 390 2 3 10 3 2 4 3 2 4 4 2 6 3 1 2 4 4
## 391 2 2 5 1 3 3 3 3 2 5 1 6 3 3 3 5 5
## 392 5 3 1 5 3 3 3 5 4 3 6 4 6 9 7 4 9
## 393 6 0 1 6 2 4 2 9 3 3 6 5 2 0 4 5 7
## 394 2 5 2 3 4 3 4 7 0 1 6 4 4 1 5 6 5
## 395 3 4 7 5 2 5 3 2 2 5 5 5 1 2 6 2 2
## 396 5 2 6 3 5 11 1 4 3 0 3 4 4 3 2 6 7
## 397 2 2 7 3 5 5 1 6 5 5 5 2 6 5 6 6 2
## 398 1 6 2 1 2 7 1 5 4 4 2 3 2 4 1 2 7
## 399 2 5 5 5 9 2 5 4 4 2 4 5 1 3 2 4 6
## 400 0 0 3 4 4 5 1 1 2 3 1 5 5 3 4 5 4
## 401 6 4 7 3 5 4 4 6 2 4 3 7 3 0 6 5 2
## 402 4 0 7 2 5 8 5 2 3 4 2 1 3 1 5 3 1
## 403 7 4 4 2 2 3 9 3 4 5 1 3 7 2 4 4 6
## 404 4 4 5 5 2 1 2 6 7 6 1 4 6 3 4 8 1
## 405 2 3 1 5 2 3 2 1 3 4 6 6 5 6 4 7 3
## 406 3 6 6 2 3 3 1 3 1 1 1 1 5 4 3 5 2
## 407 6 2 8 2 7 3 5 2 2 4 5 2 3 2 4 2 1
## 408 3 5 3 5 3 7 1 5 5 3 4 3 8 3 10 8 7
## 409 8 2 4 4 1 4 3 3 6 2 2 2 5 0 9 6 1
## 410 4 2 4 5 5 2 5 4 5 5 4 5 1 1 2 7 1
## 411 3 2 5 1 1 3 2 3 4 2 8 2 3 5 5 7 2
## 412 3 3 0 7 2 5 5 2 6 4 5 1 2 3 6 2 9
## 413 5 1 2 5 3 1 1 1 3 2 6 3 2 3 6 1 4
## 414 4 0 3 3 3 1 2 3 5 0 3 5 4 7 6 4 4
## 415 1 4 1 1 7 5 2 5 3 2 3 2 3 5 3 3 3
## 416 1 2 3 4 3 2 2 2 1 0 3 4 5 4 2 2 8
## 417 2 5 3 1 5 2 5 5 7 2 1 8 2 2 4 3 2
## 418 5 2 3 7 2 3 7 2 3 1 4 5 2 1 5 3 2
## 419 2 4 4 2 5 1 6 3 3 4 3 2 3 4 3 5 6
## 420 4 4 5 2 3 3 1 6 4 3 3 1 1 5 3 4 7
## 421 2 2 5 2 3 2 2 5 4 3 2 5 4 5 3 2 3
## 422 1 2 3 5 2 5 6 1 4 4 1 2 3 5 2 3 4
## 423 4 5 1 0 1 0 3 4 2 3 6 3 3 3 3 2 4
## 424 2 1 4 3 2 3 3 5 8 2 1 3 4 3 4 2 5
## 425 0 1 2 6 3 6 5 4 5 7 1 2 3 3 1 2 6
## 426 1 2 3 3 5 4 3 2 3 0 4 4 6 3 1 2 8
## 427 4 1 5 3 4 4 1 2 0 4 4 5 6 3 4 5 3
## 428 3 2 4 3 5 3 2 3 2 6 5 3 2 1 3 4 4
## 429 1 4 3 3 1 4 2 3 2 4 1 4 7 7 4 4 3
## 430 2 2 3 3 4 2 1 7 4 1 5 4 3 6 3 2 3
## 431 2 3 1 1 5 6 1 2 5 4 2 4 3 2 2 3 6
## 432 1 3 4 1 3 2 2 4 2 2 6 2 4 2 4 7 3
## 433 3 3 2 3 3 5 1 3 2 6 3 1 1 2 1 6 2
## 434 4 1 1 4 4 4 1 1 3 4 2 4 2 3 4 8 2
## 435 3 5 5 1 2 4 3 4 3 4 2 5 4 3 1 3 6
## 436 1 4 1 1 2 0 2 2 2 3 4 2 0 2 1 3 5
## 437 5 4 3 3 4 1 4 4 4 5 2 6 3 7 1 5 8
## 438 2 3 4 1 3 3 3 3 5 4 4 3 5 3 4 2 7
## 439 1 2 1 4 4 2 2 3 6 2 7 4 3 4 2 1 3
## 440 3 4 0 4 5 3 4 2 1 1 2 4 5 4 2 4 10
## 441 3 2 3 3 4 2 5 4 6 5 3 1 0 4 6 4 2
## 442 5 0 3 1 4 0 3 2 4 5 4 5 3 3 3 5 6
## 443 3 6 6 2 1 1 4 2 2 1 1 4 2 4 7 3 4
## 444 3 1 4 6 1 0 4 8 1 6 4 5 2 2 1 1 2
## 445 2 4 4 2 0 2 2 3 4 1 5 3 4 1 2 1 3
## 446 6 4 1 2 8 3 4 0 1 0 6 2 1 2 3 8 2
## 447 3 2 2 3 0 5 1 0 3 4 3 4 6 4 2 4 5
## 448 1 2 2 4 3 2 4 0 6 4 1 2 3 2 1 5 4
## 449 4 3 2 4 3 2 7 2 3 2 2 2 7 5 2 1 1
## 450 3 1 1 3 4 5 3 2 5 4 6 5 1 6 3 6 6
## 451 2 1 1 1 3 2 2 3 1 1 2 6 4 10 3 8 4
## 452 5 2 1 1 1 3 2 3 3 3 4 3 3 2 3 5 9
## 453 4 1 4 6 2 3 3 3 1 5 5 3 3 3 4 3 8
## 454 3 0 4 5 6 2 3 5 2 5 1 4 3 1 5 5 7
## 455 3 5 0 1 1 1 3 1 3 3 3 3 3 3 3 3 4
## 456 3 2 6 5 3 2 0 1 5 4 4 3 8 5 4 4 7
## 457 0 5 0 5 3 2 5 1 3 2 4 3 5 4 2 7 0
## 458 1 3 2 5 5 5 2 4 2 2 2 5 1 5 2 2 5
## 459 4 7 5 3 7 6 2 1 1 4 3 3 6 5 2 3 4
## 460 6 1 2 5 3 3 7 4 6 4 10 4 6 2 2 6 5
## 461 2 4 7 6 0 3 4 1 5 4 3 3 3 6 3 8 7
## 462 3 0 3 0 1 5 5 3 4 1 2 3 1 0 1 3 5
## 463 0 1 2 0 4 2 4 4 3 0 1 2 3 8 5 4 6
## 464 6 2 2 5 1 4 4 3 2 1 2 3 4 4 4 4 6
## 465 2 1 0 2 4 3 6 6 2 2 5 9 0 4 1 3 5
## 466 1 3 5 3 2 3 5 2 3 4 5 1 1 3 6 3 4
## 467 0 4 6 3 6 4 4 2 5 7 1 2 3 3 3 4 1
## 468 4 1 3 5 7 3 3 2 2 5 5 4 3 6 1 5 5
## 469 5 4 3 2 4 6 6 7 3 3 4 2 4 5 5 5 6
## 470 0 2 1 4 3 0 1 2 2 2 7 3 2 3 2 4 7
## 471 0 4 2 0 3 3 1 4 2 2 3 4 3 1 4 5 1
## 472 3 2 5 1 1 1 3 5 1 0 1 3 3 2 2 4 4
## 473 2 1 3 3 2 2 2 5 1 0 0 2 3 3 4 4 4
## 474 0 1 0 1 0 2 4 1 3 1 4 2 6 5 3 7 1
## 475 2 2 1 2 2 1 2 3 2 1 5 1 4 4 1 4 2
## 476 2 0 1 3 3 4 2 2 2 3 6 2 2 6 6 4 1
## 477 1 1 1 3 2 3 0 7 3 4 1 2 1 4 3 3 9
## 478 0 3 1 0 2 4 2 3 3 7 4 1 6 3 0 1 4
## 479 1 0 0 1 3 1 3 2 6 3 2 1 3 5 3 5 6
## 480 0 2 0 3 2 2 1 3 2 2 5 2 6 4 2 2 2
## 481 4 2 2 1 1 6 2 2 3 7 3 2 3 1 1 3 7
## 482 3 6 0 1 7 0 1 2 1 3 2 4 2 7 1 2 3
## 483 2 4 1 3 4 0 0 4 3 3 3 2 5 2 5 2 2
## 484 2 1 3 3 2 4 2 2 2 5 3 2 1 3 4 5 3
## 485 2 1 3 4 3 1 4 4 0 1 1 3 3 4 3 3 5
## 486 0 1 4 2 3 0 2 1 2 1 2 0 5 3 1 1 8
## 487 2 1 1 1 2 0 2 6 2 1 2 0 4 8 1 3 2
## 488 3 2 0 4 3 2 3 1 2 3 3 4 4 2 2 0 4
## 489 5 2 0 2 0 2 3 1 3 3 3 4 3 3 1 1 5
## 490 4 4 3 0 1 1 1 1 1 1 5 2 3 1 4 3 1
## 491 5 4 0 1 3 4 4 0 2 2 3 0 1 2 2 3 2
## 492 1 3 2 2 5 0 1 3 1 2 0 2 5 4 2 1 3
## 493 4 2 1 3 1 1 0 3 1 1 4 4 3 3 4 2 6
## 494 1 3 2 2 2 4 3 3 2 6 2 5 2 4 2 2 0
## 495 1 5 1 3 1 2 4 1 0 5 2 1 1 1 3 1 4
## 496 0 4 2 3 1 0 0 3 3 1 1 3 2 2 4 2 3
## 497 0 3 2 2 1 3 2 3 1 3 2 3 3 1 2 2 5
## 498 1 2 2 2 2 4 3 0 3 0 3 1 5 2 2 2 2
## 499 3 0 2 1 1 0 1 0 5 4 2 2 4 4 4 5 2
## 500 4 2 1 4 4 2 2 1 2 2 3 2 0 4 1 5 4
## 501 0 3 1 4 0 3 0 2 2 1 3 5 2 1 3 3 1
## 502 1 0 3 3 4 1 6 1 5 2 1 3 2 3 4 2 0
## 503 2 1 3 1 3 1 3 1 3 3 1 3 2 2 1 5 0
## 504 2 3 2 1 0 1 4 3 0 3 1 3 1 6 3 4 2
## 505 3 2 5 0 2 1 7 1 1 2 4 1 2 4 4 8 8
## 506 1 0 2 1 0 1 6 2 3 3 4 1 3 2 7 3 4
## 507 2 1 4 1 0 1 2 0 5 2 1 5 1 4 3 5 2
## 508 2 2 1 1 2 1 4 2 1 3 3 1 2 3 1 3 3
## 509 0 0 1 4 1 1 0 2 3 3 1 3 1 1 1 6 1
## 510 0 2 1 0 1 5 1 2 6 6 1 1 4 2 4 2 2
## 511 3 0 2 2 2 4 5 3 0 3 1 2 2 1 6 1 2
## 512 3 1 1 1 3 3 0 0 2 0 6 2 3 3 1 5 3
## 513 4 4 1 2 1 4 1 1 4 0 3 0 1 0 6 2 3
## 514 1 3 2 0 2 1 3 3 1 1 2 3 1 3 2 3 1
## 515 2 0 1 0 2 2 2 1 0 1 3 1 3 3 2 0 1
## 516 2 4 2 2 1 0 2 3 2 7 0 5 1 0 0 3 4
## 517 0 2 5 2 0 1 2 1 2 1 2 1 2 3 3 4 4
## 518 3 2 0 1 2 2 5 1 1 2 0 1 2 2 2 2 5
## 519 3 4 1 0 0 0 2 2 3 0 0 2 3 1 2 4 1
## 520 3 2 2 0 0 2 1 1 3 2 2 2 2 0 0 3 0
## 521 3 0 1 1 1 1 1 2 0 0 4 1 1 1 3 4 4
## 522 0 3 2 1 2 1 1 2 4 1 1 1 0 1 2 7 5
## 523 1 2 3 1 0 0 0 1 0 2 3 1 3 0 2 2 1
## 524 1 1 1 1 0 3 1 3 4 2 1 2 1 0 1 4 1
## 525 0 0 1 2 1 1 1 0 3 2 2 1 1 0 1 0 4
## 526 1 0 0 1 3 0 6 1 1 2 2 3 1 3 5 2 3
## 527 1 1 4 3 2 1 2 2 1 1 1 2 2 3 2 1 2
## 528 2 1 1 0 2 2 1 0 2 1 0 1 2 2 4 3 5
## 529 0 0 1 1 2 0 1 2 1 2 0 5 3 1 2 6 1
## 530 3 2 2 0 1 1 0 1 0 1 3 2 2 1 2 3 4
## 531 3 0 0 2 0 2 3 3 2 0 2 4 2 1 4 4 3
## 532 0 2 2 1 0 1 1 1 2 0 2 2 1 2 1 2 2
## 533 2 1 1 1 2 2 1 1 1 0 3 0 6 1 2 1 1
## 534 3 3 1 0 0 0 4 3 0 1 3 0 1 0 3 1 1
## 535 1 1 1 2 0 2 1 4 0 1 0 3 0 1 3 2 1
## 536 2 3 0 0 1 1 1 3 2 0 1 1 1 1 2 2 2
## 537 6 0 0 2 2 2 1 0 0 1 2 1 2 3 4 1 4
## 538 0 2 1 0 2 1 2 1 0 4 2 1 0 2 3 1 2
## 539 0 0 0 2 0 0 0 0 5 0 1 1 1 4 1 4 1
## 540 2 0 1 0 0 3 4 0 0 1 2 0 4 2 4 1 2
## 541 1 1 2 3 1 2 0 1 2 0 1 2 1 1 1 1 4
## 542 1 2 1 1 1 5 1 0 2 1 2 1 1 3 1 1 3
## 543 0 1 3 0 0 2 2 1 2 0 0 4 0 2 2 2 2
## 544 0 0 1 2 0 0 4 1 2 2 1 1 0 0 1 1 2
## 545 2 1 2 0 2 2 0 0 2 1 2 2 1 0 0 1 2
## 546 0 0 1 1 0 2 2 1 1 3 0 0 1 1 1 2 5
## 547 0 2 3 0 0 0 1 2 1 2 4 2 2 2 1 0 2
## 548 0 0 0 1 0 3 2 0 2 1 1 1 2 1 1 1 1
## 549 1 0 1 1 1 0 0 0 1 2 0 2 0 2 4 0 0
## 550 1 0 1 0 1 0 2 0 3 1 4 1 1 1 2 2 1
## 551 3 2 1 0 0 2 2 1 1 1 1 1 1 2 0 3 1
## 552 0 1 0 1 1 0 1 0 0 0 0 2 4 2 2 2 0
## 553 2 0 0 1 2 1 0 1 2 2 1 0 2 3 1 1 0
## 554 0 0 3 0 1 3 0 1 2 0 1 0 0 3 0 3 1
## 555 1 0 2 2 3 2 1 0 0 0 2 1 0 1 0 0 0
## 556 1 0 2 1 0 0 0 1 0 0 0 1 0 0 5 1 1
## 557 1 0 0 1 1 0 2 0 0 1 3 1 1 0 1 5 1
## 558 0 1 0 0 1 0 0 1 1 0 0 2 0 1 1 0 2
## 559 0 1 1 0 3 0 0 1 2 0 1 0 2 0 2 2 1
## 560 2 0 1 0 3 0 0 1 0 1 3 0 0 2 2 4 2
## 561 1 1 3 2 1 0 3 0 3 0 0 1 0 1 2 0 0
## 562 0 2 1 1 0 0 0 0 0 1 2 0 0 1 2 0 4
## 563 1 1 0 0 0 1 3 0 1 1 1 2 1 0 1 3 2
## 564 0 2 1 0 1 1 1 0 0 1 1 0 2 2 3 0 1
## 565 2 1 4 1 0 0 0 1 1 2 1 2 0 2 1 1 1
## 566 0 1 1 1 0 1 1 0 0 2 0 2 0 1 1 1 2
## 567 1 3 0 1 0 1 4 0 0 1 2 2 1 1 1 1 4
## 568 2 1 0 1 0 2 0 1 0 0 0 4 0 1 2 1 2
## 569 0 0 0 2 0 0 1 1 3 1 0 1 2 1 0 3 1
## 570 1 0 0 0 1 3 1 0 0 1 1 3 2 1 0 0 1
## 571 0 0 0 1 1 1 0 3 0 2 0 0 4 1 1 1 2
## 572 1 2 1 0 0 2 2 1 1 2 0 1 2 0 0 0 1
## 573 0 0 2 1 2 0 1 0 0 1 0 1 1 0 1 0 2
## 574 1 1 0 0 0 0 1 1 0 1 5 2 1 0 2 1 2
## 575 0 0 2 1 0 1 0 1 0 0 2 0 1 0 1 3 1
## 576 0 0 1 0 1 1 0 0 0 2 0 3 0 2 0 1 1
## 577 0 1 3 0 1 1 0 2 0 0 0 0 0 0 2 1 1
## 578 1 1 0 0 1 0 1 0 1 0 2 0 2 1 0 1 1
## 579 0 1 0 3 0 1 1 0 0 0 2 0 0 0 1 0 2
## 580 2 1 0 0 0 0 1 2 1 1 2 0 1 2 2 2 2
## 581 0 0 1 1 2 0 1 0 1 0 0 2 0 1 0 0 1
## 582 2 1 0 0 1 0 0 0 1 1 1 1 3 1 1 0 1
## 583 0 2 0 2 1 0 0 1 1 0 0 2 2 0 0 1 0
## 584 0 0 0 0 2 1 1 1 0 0 1 1 5 0 0 1 1
## 585 0 0 0 2 1 2 0 2 1 1 1 0 0 0 1 1 0
## 586 0 0 0 0 0 0 0 1 2 0 0 2 2 0 0 0 4
## 587 0 0 0 1 1 1 2 0 0 0 2 0 0 0 0 1 1
## 588 1 0 0 0 1 1 1 0 0 0 0 0 1 1 0 0 3
## 589 0 0 0 0 0 0 1 3 0 1 0 1 1 1 1 0 3
## 590 0 0 2 2 0 0 1 1 0 0 1 0 0 0 3 1 0
## 591 1 0 0 0 2 1 0 1 0 1 1 1 2 2 0 2 1
## 592 0 0 1 1 3 0 0 0 1 0 1 0 0 1 1 1 1
## 593 2 0 1 1 1 0 0 1 0 1 0 1 0 0 1 0 0
## 594 3 0 0 3 0 0 1 0 0 0 1 0 1 1 1 2 0
## 595 0 1 1 0 1 0 0 0 3 0 0 1 0 1 1 1 1
## 596 0 0 0 1 0 0 0 0 0 2 0 1 0 1 3 0 0
## 597 0 0 3 1 0 1 1 0 1 1 1 1 2 0 0 0 0
## 598 0 0 1 0 0 2 0 0 0 2 0 2 0 0 0 1 4
## 599 0 0 1 0 0 0 2 0 0 1 0 0 0 0 1 0 1
## 600 0 0 0 0 1 2 1 0 0 1 1 0 0 1 0 0 2
## 601 0 1 0 3 1 0 1 2 1 0 0 0 1 1 0 1 0
## 602 0 0 0 0 1 1 0 1 0 1 1 1 2 1 0 1 0
## 603 0 1 1 0 0 0 0 1 1 2 0 1 1 2 0 1 1
## 604 1 0 0 0 0 2 0 1 0 0 0 1 0 0 1 1 0
## 605 1 1 0 1 1 0 0 0 0 1 0 0 2 1 0 0 2
## 606 0 1 1 0 0 0 0 1 1 0 0 0 2 0 0 1 0
## 607 0 0 0 2 0 1 0 1 0 2 0 2 1 1 0 1 0
## 608 2 1 0 0 0 0 1 2 1 0 0 1 2 2 1 0 0
## 609 0 0 0 0 0 1 2 0 0 1 0 0 1 0 0 1 0
## 610 3 1 0 2 0 0 0 0 0 0 0 0 2 0 0 1 1
## 611 0 0 0 1 0 0 1 0 0 0 0 0 0 3 1 1 1
## 612 0 0 1 0 1 0 1 0 0 1 1 0 0 0 1 3 1
## 613 1 0 0 1 1 0 0 0 2 1 0 2 0 1 0 1 0
## 614 1 1 2 0 0 0 2 0 0 0 0 1 1 1 1 1 1
## 615 0 1 3 0 0 1 0 0 1 1 1 0 0 1 0 0 0
## 616 0 1 0 1 0 0 0 0 0 0 0 0 1 0 0 2 1
## 617 1 0 0 1 0 1 0 0 1 0 1 1 0 1 0 2 0
## 618 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 2 2
## 619 0 0 0 0 1 0 0 0 1 0 1 1 1 0 2 2 1
## 620 2 0 0 1 0 0 0 0 2 1 0 0 0 0 1 4 1
## 621 1 0 1 1 1 1 0 1 0 0 0 1 1 0 0 0 3
## 622 0 0 2 1 0 0 0 0 1 0 0 0 1 0 0 2 1
## 623 1 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2
## 624 1 0 0 0 2 0 1 0 0 0 0 0 0 0 0 0 1
## 625 1 0 0 0 0 0 1 1 0 0 0 1 2 0 1 0 1
## 626 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 2
## 627 2 0 1 0 1 0 0 0 0 0 0 0 1 1 0 0 0
## 628 1 0 2 0 0 0 0 0 0 0 0 1 0 0 1 1 0
## 629 0 0 0 0 1 0 0 0 0 0 1 0 0 1 0 2 1
## 630 2 1 0 0 0 0 1 0 2 1 0 0 1 0 0 0 1
## 631 0 0 0 0 0 0 0 1 0 0 2 0 0 0 1 1 1
## 632 0 0 0 0 1 0 2 0 0 0 0 1 0 0 0 1 0
## 633 1 0 0 0 0 2 0 0 1 1 1 1 1 2 1 0 1
## 634 0 1 0 1 0 0 2 0 0 0 0 1 0 0 0 0 0
## 635 0 0 0 0 0 0 0 0 0 1 1 0 0 0 1 2 0
## 636 0 0 1 0 0 0 0 0 0 1 0 1 0 1 0 0 1
## 637 1 0 1 0 2 0 1 0 0 0 0 0 0 0 2 0 1
## 638 0 3 1 1 1 0 1 0 0 0 0 0 0 0 0 0 0
## 639 0 0 0 1 0 0 1 0 1 1 1 0 2 1 0 1 0
## 640 0 1 1 0 0 0 0 1 1 1 0 0 0 0 0 1 1
## 641 0 0 0 2 0 1 0 0 0 0 1 0 1 0 0 1 0
## 642 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0
## 643 1 0 0 0 1 0 0 0 0 1 2 0 1 1 1 1 0
## 644 0 0 0 0 0 0 1 1 0 0 2 0 1 1 0 0 2
## 645 0 0 0 0 0 0 0 0 0 0 0 1 1 0 1 0 1
## 646 0 0 0 0 0 0 0 0 2 1 0 1 2 0 1 0 0
## 647 0 0 0 0 1 1 1 0 0 0 1 1 1 1 0 1 1
## 648 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 2
## 649 0 0 0 2 0 0 0 1 0 0 0 1 1 1 1 0 1
## 650 0 0 0 2 0 0 0 1 1 0 0 0 0 0 1 0 0
## 651 0 0 0 0 0 0 1 0 0 0 0 1 0 1 1 0 1
## 652 1 0 0 0 0 0 1 1 0 0 1 1 0 1 0 0 0
## 653 0 0 0 2 1 1 1 1 2 0 0 0 0 0 0 1 0
## 654 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1
## 655 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0
## 656 0 1 0 0 0 0 0 0 0 0 0 1 0 0 1 1 0
## 657 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 1 2
## 658 0 4 0 1 0 1 0 0 0 0 0 0 1 0 1 0 0
## 659 0 1 0 1 0 1 0 0 0 0 1 2 1 0 2 0 0
## 660 0 0 1 0 0 0 0 0 1 0 0 0 1 0 0 1 2
## 661 0 1 0 0 0 0 1 2 0 0 0 0 1 0 0 0 1
## 662 0 0 0 0 1 0 0 0 0 1 0 0 1 1 0 0 0
## 663 0 0 0 0 0 0 0 1 0 0 0 2 1 0 1 0 0
## 664 0 0 1 0 0 0 0 0 1 0 1 1 1 0 0 0 0
## 665 0 0 0 0 0 0 0 0 3 0 1 0 0 0 0 0 0
## 666 0 0 1 0 0 1 0 0 0 0 0 0 1 0 0 0 1
## 667 0 0 0 1 0 0 0 2 0 1 0 2 0 0 1 0 1
## 668 0 2 0 0 0 0 1 1 1 0 0 0 0 0 1 0 1
## 669 0 0 0 0 0 1 0 0 1 1 0 1 1 0 1 0 1
## 670 0 0 0 0 0 1 0 0 1 0 0 0 0 1 1 1 2
## 671 1 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 1
## 672 0 0 0 1 0 0 0 0 0 2 0 0 0 0 1 1 0
## 673 0 0 0 0 0 0 0 0 0 0 1 0 0 1 1 0 0
## 674 0 0 0 0 0 0 0 1 0 0 1 0 3 0 0 1 0
## 675 0 0 1 0 0 0 0 0 0 0 0 1 1 0 0 0 0
## 676 0 0 0 0 0 1 0 2 0 0 0 0 0 2 0 0 2
## 677 1 0 1 0 0 0 0 0 0 0 0 0 2 2 0 1 1
## 678 0 0 0 0 0 1 1 0 0 1 1 0 2 0 0 1 0
## 679 0 0 0 0 1 0 0 0 0 2 0 0 0 0 0 4 0
## 680 0 2 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0
## 681 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0
## 682 0 0 1 0 1 0 0 1 0 0 0 0 0 0 0 0 0
## 683 1 1 0 0 0 0 1 0 0 0 1 0 0 0 0 2 0
## 684 0 0 0 0 0 1 1 0 0 0 1 0 0 0 0 0 0
## 685 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 1
## 686 0 0 1 0 0 0 0 0 2 0 0 0 0 0 2 0 1
## 687 0 0 0 0 0 0 0 0 0 0 0 1 2 0 0 1 0
## 688 0 0 0 0 0 1 0 0 0 0 0 0 2 0 0 0 0
## 689 0 0 2 0 1 0 1 0 0 0 0 1 0 0 0 0 1
## 690 0 0 0 0 0 0 0 0 2 0 1 0 0 0 0 0 0
## 691 0 0 0 0 0 0 0 1 0 1 0 1 0 0 2 0 0
## 692 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1
## 693 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1
## 694 0 0 0 0 0 0 0 1 1 0 0 1 1 0 2 0 0
## 695 0 0 0 1 0 0 0 0 1 1 1 1 0 0 0 0 0
## 696 0 1 0 0 0 1 0 0 0 2 1 0 0 0 0 2 0
## 697 0 1 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0
## 698 0 0 0 0 1 1 0 0 1 0 0 0 0 0 1 0 0
## 699 0 0 0 0 0 0 1 1 0 0 2 0 1 0 0 0 0
## 700 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 2
## 701 0 0 1 0 0 0 0 0 0 0 1 2 0 0 0 0 0
## 702 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 1
## 703 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0
## 704 0 0 0 1 1 0 1 1 0 0 0 1 1 0 0 0 0
## 705 0 1 0 0 0 0 0 0 1 0 1 0 0 0 1 0 0
## 706 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0
## 707 0 0 0 0 0 1 0 0 0 0 0 0 1 2 0 1 0
## 708 0 0 0 0 0 1 0 0 0 0 0 0 0 1 1 1 0
## 709 0 0 0 1 0 0 1 1 0 0 0 1 0 0 0 0 0
## 710 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0
## 711 0 1 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0
## 712 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 1 0
## 713 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1
## 714 0 0 0 0 0 0 0 1 0 0 0 0 2 1 0 1 0
## 715 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 716 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 0 1
## 717 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0
## 718 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 2 0
## 719 0 0 0 1 0 0 0 0 1 0 0 0 0 0 1 0 0
## 720 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0
## 721 0 0 1 0 0 0 0 0 0 0 0 1 1 1 0 0 0
## 722 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0
## 723 0 0 0 0 0 0 0 0 0 0 1 0 1 0 1 0 1
## 724 0 0 0 0 0 0 0 1 0 0 0 0 2 0 0 0 0
## 725 0 0 0 0 0 1 0 1 1 0 0 0 0 0 0 0 0
## 726 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 727 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0
## 728 1 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0
## 729 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0
## 730 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 731 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0
## 732 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
## 733 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0
## 734 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
## 735 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 1 1
## 736 0 1 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0
## 737 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0
## 738 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1
## 739 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0
## 740 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0
## 741 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0
## 742 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 743 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 744 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0
## 745 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 746 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0
## 747 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0
## 748 0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0
## 749 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0
## 750 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2
## 751 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0
## 752 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0
## 753 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0
## 754 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0
## 755 0 0 0 1 0 0 0 0 1 0 1 0 0 0 0 0 0
## 756 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0
## 757 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0
## 758 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0
## 759 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0
## 760 0 0 0 0 0 0 1 0 0 0 0 0 1 0 1 0 0
## 761 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
## 762 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1
## 763 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0
## 764 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 765 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 766 0 0 0 0 0 0 0 0 1 1 0 0 0 0 1 1 0
## 767 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0
## 768 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0
## 769 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0
## 770 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0
## 771 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0
## 772 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0
## 773 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 774 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
## 775 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0
## 776 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 777 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 778 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1
## 779 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 780 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0
## 781 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 782 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0
## 783 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
## 784 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
## 785 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0
## 786 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
## 787 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 788 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0
## 789 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
## 790 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 791 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 792 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0
## 793 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0
## 794 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0
## 795 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 796 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0
## 797 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0
## 798 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0
## 799 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0
## 800 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 801 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0
## 802 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0
## 803 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 804 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 805 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0
## 806 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 807 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 808 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 809 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 810 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
## 811 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## W51 Total_Sales
## 1 73 2220
## 2 26 1932
## 3 26 1925
## 4 16 1920
## 5 27 1913
## 6 31 1912
## 7 25 1904
## 8 15 1897
## 9 19 1896
## 10 28 1894
## 11 24 1892
## 12 24 1886
## 13 14 1877
## 14 22 1875
## 15 22 1864
## 16 26 1860
## 17 16 1859
## 18 21 1859
## 19 29 1858
## 20 24 1854
## 21 16 1853
## 22 15 1849
## 23 19 1843
## 24 23 1842
## 25 26 1841
## 26 24 1835
## 27 22 1832
## 28 22 1825
## 29 19 1824
## 30 20 1823
## 31 20 1819
## 32 27 1818
## 33 23 1813
## 34 33 1812
## 35 35 1808
## 36 20 1805
## 37 28 1805
## 38 28 1804
## 39 27 1804
## 40 25 1804
## 41 21 1803
## 42 20 1799
## 43 23 1797
## 44 18 1786
## 45 30 1783
## 46 33 1782
## 47 17 1781
## 48 28 1768
## 49 25 1765
## 50 15 1765
## 51 25 1756
## 52 21 1752
## 53 22 1746
## 54 24 1745
## 55 20 1738
## 56 31 1738
## 57 29 1735
## 58 28 1732
## 59 32 1726
## 60 20 1724
## 61 19 1724
## 62 28 1720
## 63 14 1716
## 64 20 1715
## 65 21 1715
## 66 13 1712
## 67 32 1711
## 68 24 1710
## 69 18 1709
## 70 18 1707
## 71 15 1705
## 72 25 1704
## 73 19 1701
## 74 30 1698
## 75 28 1697
## 76 25 1696
## 77 24 1694
## 78 25 1693
## 79 16 1692
## 80 24 1692
## 81 30 1691
## 82 21 1690
## 83 29 1687
## 84 31 1684
## 85 15 1683
## 86 23 1682
## 87 21 1682
## 88 43 1681
## 89 24 1678
## 90 22 1678
## 91 23 1676
## 92 28 1675
## 93 23 1673
## 94 22 1672
## 95 26 1671
## 96 16 1670
## 97 30 1668
## 98 24 1663
## 99 25 1663
## 100 20 1661
## 101 18 1656
## 102 20 1651
## 103 18 1649
## 104 16 1648
## 105 45 1645
## 106 25 1644
## 107 24 1643
## 108 29 1643
## 109 25 1642
## 110 20 1637
## 111 18 1635
## 112 24 1626
## 113 33 1617
## 114 19 1617
## 115 27 1613
## 116 16 1612
## 117 20 1602
## 118 24 1598
## 119 19 1593
## 120 28 1579
## 121 30 1315
## 122 28 1289
## 123 39 1265
## 124 38 1253
## 125 30 1153
## 126 34 1069
## 127 31 1030
## 128 20 1010
## 129 20 969
## 130 21 967
## 131 31 966
## 132 35 963
## 133 22 960
## 134 29 960
## 135 19 958
## 136 16 956
## 137 37 949
## 138 25 946
## 139 20 945
## 140 23 939
## 141 7 932
## 142 18 930
## 143 21 927
## 144 22 922
## 145 20 921
## 146 20 920
## 147 17 908
## 148 26 905
## 149 22 885
## 150 28 875
## 151 28 867
## 152 18 867
## 153 31 860
## 154 30 855
## 155 10 834
## 156 22 829
## 157 24 826
## 158 25 823
## 159 21 820
## 160 19 818
## 161 27 816
## 162 21 811
## 163 23 805
## 164 11 797
## 165 29 786
## 166 24 691
## 167 25 687
## 168 15 681
## 169 20 667
## 170 23 660
## 171 25 659
## 172 15 658
## 173 27 656
## 174 14 653
## 175 15 651
## 176 20 643
## 177 14 640
## 178 14 640
## 179 21 636
## 180 11 635
## 181 22 633
## 182 17 632
## 183 13 631
## 184 16 628
## 185 21 625
## 186 20 625
## 187 18 624
## 188 21 619
## 189 18 615
## 190 15 613
## 191 11 604
## 192 22 603
## 193 14 602
## 194 15 602
## 195 21 601
## 196 10 600
## 197 16 594
## 198 14 593
## 199 13 591
## 200 14 589
## 201 14 586
## 202 12 582
## 203 21 579
## 204 10 571
## 205 16 566
## 206 11 565
## 207 9 559
## 208 11 558
## 209 21 557
## 210 9 557
## 211 10 556
## 212 19 556
## 213 9 555
## 214 13 539
## 215 9 537
## 216 6 537
## 217 21 535
## 218 16 532
## 219 10 526
## 220 14 525
## 221 9 520
## 222 8 518
## 223 15 515
## 224 9 513
## 225 12 513
## 226 11 512
## 227 12 512
## 228 13 504
## 229 17 503
## 230 10 502
## 231 11 502
## 232 11 502
## 233 10 501
## 234 10 500
## 235 8 500
## 236 15 499
## 237 6 494
## 238 12 493
## 239 19 492
## 240 13 491
## 241 9 490
## 242 8 489
## 243 10 489
## 244 5 487
## 245 8 487
## 246 5 486
## 247 10 486
## 248 14 486
## 249 10 486
## 250 12 485
## 251 4 485
## 252 11 483
## 253 8 482
## 254 9 482
## 255 8 482
## 256 10 480
## 257 3 478
## 258 15 478
## 259 12 478
## 260 6 478
## 261 16 476
## 262 7 476
## 263 11 474
## 264 12 474
## 265 5 474
## 266 7 473
## 267 11 473
## 268 9 473
## 269 15 473
## 270 8 472
## 271 13 472
## 272 10 472
## 273 5 470
## 274 7 470
## 275 10 469
## 276 11 467
## 277 13 466
## 278 9 465
## 279 9 465
## 280 12 464
## 281 11 464
## 282 12 463
## 283 7 463
## 284 5 462
## 285 14 462
## 286 4 462
## 287 7 461
## 288 12 461
## 289 9 460
## 290 8 460
## 291 9 459
## 292 9 457
## 293 9 457
## 294 11 457
## 295 12 457
## 296 12 456
## 297 10 453
## 298 7 452
## 299 8 452
## 300 9 450
## 301 9 450
## 302 6 450
## 303 13 449
## 304 9 448
## 305 7 444
## 306 7 442
## 307 6 442
## 308 10 441
## 309 9 440
## 310 13 439
## 311 8 437
## 312 6 435
## 313 6 434
## 314 6 433
## 315 8 430
## 316 5 430
## 317 11 430
## 318 6 429
## 319 14 414
## 320 20 381
## 321 14 379
## 322 6 324
## 323 14 319
## 324 9 318
## 325 7 316
## 326 11 314
## 327 17 301
## 328 12 294
## 329 6 294
## 330 13 287
## 331 7 285
## 332 12 284
## 333 12 280
## 334 10 279
## 335 11 277
## 336 6 272
## 337 8 269
## 338 11 266
## 339 9 265
## 340 8 265
## 341 7 256
## 342 6 254
## 343 4 254
## 344 10 251
## 345 6 246
## 346 4 240
## 347 9 238
## 348 9 234
## 349 6 234
## 350 4 232
## 351 4 232
## 352 3 231
## 353 3 231
## 354 4 230
## 355 9 229
## 356 6 228
## 357 2 228
## 358 9 227
## 359 2 226
## 360 2 226
## 361 4 226
## 362 6 226
## 363 5 225
## 364 6 223
## 365 4 221
## 366 6 220
## 367 6 220
## 368 6 220
## 369 3 220
## 370 7 219
## 371 2 219
## 372 10 219
## 373 6 217
## 374 3 216
## 375 0 215
## 376 6 214
## 377 1 213
## 378 7 212
## 379 1 212
## 380 7 212
## 381 6 212
## 382 1 212
## 383 16 212
## 384 4 211
## 385 5 210
## 386 5 209
## 387 6 209
## 388 0 207
## 389 2 207
## 390 9 207
## 391 4 206
## 392 11 206
## 393 3 205
## 394 8 205
## 395 5 204
## 396 3 204
## 397 2 204
## 398 3 204
## 399 3 203
## 400 5 203
## 401 1 202
## 402 3 202
## 403 7 201
## 404 3 201
## 405 2 200
## 406 4 199
## 407 3 199
## 408 16 199
## 409 9 198
## 410 4 197
## 411 1 197
## 412 8 197
## 413 4 195
## 414 5 195
## 415 5 193
## 416 2 193
## 417 7 191
## 418 7 191
## 419 3 189
## 420 8 188
## 421 4 187
## 422 4 187
## 423 5 185
## 424 5 185
## 425 10 185
## 426 9 185
## 427 5 184
## 428 6 183
## 429 4 182
## 430 4 182
## 431 5 181
## 432 5 180
## 433 9 179
## 434 5 177
## 435 11 177
## 436 4 176
## 437 4 176
## 438 2 174
## 439 2 173
## 440 4 173
## 441 7 172
## 442 4 171
## 443 0 170
## 444 6 169
## 445 5 169
## 446 8 168
## 447 4 168
## 448 9 167
## 449 6 167
## 450 12 165
## 451 8 164
## 452 4 163
## 453 10 162
## 454 14 162
## 455 5 160
## 456 7 160
## 457 6 159
## 458 6 158
## 459 12 158
## 460 8 157
## 461 9 157
## 462 4 153
## 463 3 153
## 464 0 152
## 465 8 151
## 466 12 150
## 467 4 148
## 468 3 145
## 469 5 142
## 470 5 140
## 471 2 139
## 472 1 139
## 473 8 139
## 474 3 138
## 475 3 138
## 476 5 137
## 477 5 136
## 478 9 136
## 479 2 136
## 480 9 135
## 481 8 133
## 482 2 133
## 483 5 133
## 484 7 133
## 485 5 132
## 486 4 131
## 487 6 130
## 488 4 130
## 489 5 129
## 490 3 126
## 491 1 124
## 492 4 122
## 493 3 122
## 494 5 122
## 495 4 122
## 496 3 121
## 497 6 120
## 498 5 119
## 499 4 118
## 500 2 118
## 501 0 117
## 502 6 117
## 503 2 114
## 504 3 114
## 505 6 114
## 506 4 111
## 507 4 111
## 508 1 110
## 509 4 109
## 510 3 103
## 511 5 103
## 512 4 89
## 513 3 87
## 514 3 82
## 515 4 80
## 516 0 77
## 517 3 76
## 518 4 75
## 519 4 74
## 520 5 72
## 521 5 70
## 522 5 70
## 523 5 69
## 524 1 69
## 525 8 69
## 526 4 68
## 527 7 68
## 528 4 68
## 529 1 67
## 530 5 66
## 531 5 64
## 532 2 63
## 533 6 63
## 534 4 63
## 535 6 63
## 536 6 62
## 537 1 61
## 538 2 60
## 539 1 59
## 540 4 59
## 541 2 58
## 542 3 57
## 543 8 55
## 544 3 55
## 545 1 53
## 546 1 52
## 547 2 52
## 548 2 51
## 549 1 50
## 550 3 49
## 551 2 49
## 552 4 47
## 553 2 47
## 554 5 46
## 555 2 44
## 556 2 44
## 557 1 41
## 558 1 41
## 559 4 41
## 560 4 41
## 561 3 40
## 562 2 40
## 563 1 39
## 564 2 39
## 565 1 39
## 566 1 38
## 567 0 38
## 568 2 38
## 569 3 37
## 570 3 35
## 571 3 35
## 572 1 35
## 573 2 34
## 574 3 34
## 575 1 33
## 576 2 33
## 577 0 32
## 578 1 31
## 579 0 31
## 580 1 30
## 581 3 30
## 582 0 29
## 583 0 28
## 584 0 27
## 585 0 27
## 586 3 26
## 587 0 25
## 588 4 25
## 589 2 25
## 590 2 25
## 591 0 24
## 592 0 24
## 593 1 23
## 594 0 23
## 595 2 23
## 596 5 23
## 597 0 23
## 598 2 23
## 599 2 23
## 600 0 23
## 601 1 22
## 602 1 22
## 603 0 22
## 604 1 22
## 605 1 22
## 606 0 21
## 607 0 21
## 608 0 21
## 609 2 21
## 610 1 21
## 611 4 21
## 612 1 21
## 613 0 20
## 614 1 20
## 615 1 20
## 616 0 19
## 617 1 19
## 618 1 19
## 619 0 18
## 620 0 18
## 621 0 18
## 622 1 17
## 623 3 17
## 624 2 17
## 625 1 17
## 626 0 17
## 627 1 16
## 628 2 16
## 629 2 16
## 630 0 16
## 631 1 16
## 632 0 16
## 633 0 16
## 634 2 16
## 635 1 16
## 636 1 16
## 637 0 16
## 638 1 16
## 639 2 15
## 640 0 15
## 641 0 15
## 642 2 15
## 643 0 15
## 644 2 15
## 645 1 15
## 646 0 15
## 647 0 14
## 648 0 14
## 649 1 14
## 650 2 14
## 651 0 14
## 652 3 14
## 653 1 14
## 654 0 14
## 655 2 14
## 656 1 14
## 657 0 14
## 658 0 13
## 659 0 13
## 660 0 13
## 661 0 13
## 662 1 13
## 663 1 13
## 664 1 13
## 665 1 13
## 666 0 13
## 667 0 13
## 668 1 12
## 669 0 12
## 670 1 12
## 671 1 12
## 672 2 12
## 673 0 12
## 674 0 12
## 675 0 12
## 676 0 12
## 677 0 12
## 678 2 12
## 679 0 12
## 680 2 11
## 681 0 11
## 682 3 11
## 683 0 11
## 684 0 11
## 685 0 11
## 686 1 11
## 687 1 11
## 688 2 11
## 689 1 10
## 690 0 10
## 691 0 10
## 692 0 10
## 693 1 10
## 694 0 10
## 695 1 10
## 696 1 10
## 697 0 9
## 698 0 9
## 699 1 9
## 700 0 9
## 701 0 9
## 702 0 9
## 703 0 9
## 704 0 9
## 705 0 9
## 706 1 8
## 707 2 8
## 708 0 8
## 709 1 8
## 710 1 8
## 711 2 8
## 712 0 8
## 713 0 8
## 714 1 8
## 715 0 8
## 716 0 7
## 717 0 7
## 718 1 7
## 719 1 7
## 720 1 7
## 721 0 7
## 722 0 7
## 723 0 7
## 724 0 7
## 725 1 7
## 726 0 7
## 727 0 6
## 728 0 6
## 729 1 6
## 730 1 6
## 731 1 6
## 732 1 6
## 733 0 6
## 734 0 6
## 735 1 6
## 736 1 6
## 737 0 6
## 738 0 6
## 739 2 5
## 740 0 5
## 741 0 5
## 742 0 5
## 743 0 5
## 744 0 5
## 745 0 5
## 746 0 5
## 747 0 5
## 748 0 5
## 749 0 5
## 750 0 4
## 751 0 4
## 752 0 4
## 753 0 4
## 754 1 4
## 755 0 4
## 756 0 4
## 757 0 4
## 758 0 4
## 759 0 4
## 760 1 4
## 761 2 4
## 762 0 4
## 763 0 4
## 764 0 4
## 765 0 4
## 766 0 4
## 767 0 3
## 768 0 3
## 769 0 3
## 770 2 3
## 771 0 3
## 772 0 3
## 773 0 3
## 774 1 3
## 775 0 3
## 776 0 3
## 777 0 3
## 778 0 3
## 779 0 3
## 780 0 3
## 781 0 3
## 782 0 2
## 783 0 2
## 784 0 2
## 785 0 2
## 786 0 2
## 787 0 2
## 788 0 2
## 789 0 2
## 790 0 2
## 791 1 2
## 792 0 2
## 793 0 2
## 794 0 2
## 795 0 2
## 796 0 2
## 797 0 2
## 798 0 2
## 799 0 2
## 800 0 2
## 801 0 2
## 802 0 2
## 803 0 2
## 804 0 1
## 805 0 1
## 806 0 1
## 807 0 1
## 808 0 1
## 809 0 1
## 810 0 1
## 811 0 1
#total sales over 52 weeks less than 20
df1%>% arrange(Total_Sales) %>% filter(Total_Sales<=20) %>%count()
## # A tibble: 1 x 1
## n
## <int>
## 1 199
#select top 5 Total_Sales products
p409<-subset(df1, Product_Code=="P409")
p34<-subset(df1,Product_Code=="P34")
p178<-subset(df1,Product_Code=="P178")
p135<-subset(df1,Product_Code=="P135")
p43<-subset(df1,Product_Code=="P43")
#transpose the data for time series
p409_t<-t(p409[2:53])
p34_t<-t(p34[2:53])
p178_t<-t(p178[2:53])
p135_t<-t(p135[2:53])
p43_t<-t(p43[2:53])
#Time series of p409
ts_p409<-ts(p409_t,start=c(2018,1),frequency=52)
autoplot(ts_p409)+xlab("Time")+ylab("sales") +ggtitle("P409 Time Series")
autoplot(ts_p409,series="mean")+
autolayer(ma(ts_p409,5), series="5-MA")+ggtitle("P409 MA")
## Warning: Removed 4 rows containing missing values (geom_path).
#Estimate the Trend-Cycle with Seasonal Data
autoplot(ts_p409,series = "Holdings")+
autolayer(ma(ts_p409,12),series="12-MA")+
xlab("Time")+ylab("Sales")+
ggtitle("Trend-Cycle with Seasonal Data")
## Warning: Removed 12 rows containing missing values (geom_path).
#Time series of p34
ts_p34<-ts(p34_t,start=c(2018,1),frequency=52)
autoplot(ts_p34)+xlab("Time")+ylab("sales")+ggtitle("P34 Time Series")
autoplot(ts_p34,series="mean")+
autolayer(ma(ts_p34,5), series="5-MA")+ggtitle("P34 MA")
## Warning: Removed 4 rows containing missing values (geom_path).
#Estimate the Trend-Cycle with Seasonal Data
autoplot(ts_p34,series = "Holdings")+
autolayer(ma(ts_p34,12),series="12-MA")+
xlab("Time")+ylab("Sales")+
ggtitle("Trend-Cycle with Seasonal Data")
## Warning: Removed 12 rows containing missing values (geom_path).
#Time series of p178
ts_p178<-ts(p178_t,start=c(2018,1),frequency=52)
autoplot(ts_p178)+xlab("Time")+ylab("sales")+ggtitle("P178 Time Series")
autoplot(ts_p178,series="mean")+
autolayer(ma(ts_p178,5), series="5-MA")+ggtitle("P178 MA")
## Warning: Removed 4 rows containing missing values (geom_path).
#Estimate the Trend-Cycle with Seasonal Data
autoplot(ts_p178,series = "Holdings")+
autolayer(ma(ts_p178,12),series="12-MA")+
xlab("Time")+ylab("Sales")+
ggtitle("Trend-Cycle with Seasonal Data")
## Warning: Removed 12 rows containing missing values (geom_path).
#Time series of p135
ts_p135<-ts(p135_t,start=c(2018,1),frequency=52)
autoplot(ts_p135)+xlab("Time")+ylab("sales")+ggtitle("P135 Time Series")
autoplot(ts_p135,series="mean")+
autolayer(ma(ts_p135,5), series="5-MA")+ggtitle("P135 MA")
## Warning: Removed 4 rows containing missing values (geom_path).
#Estimate the Trend-Cycle with Seasonal Data
autoplot(ts_p135,series = "Holdings")+
autolayer(ma(ts_p135,12),series="12-MA")+
xlab("Time")+ylab("Sales")+
ggtitle("Trend-Cycle with Seasonal Data")
## Warning: Removed 12 rows containing missing values (geom_path).
#Time series of p43
ts_p43<-ts(p43_t,start=c(2018,1),frequency=52)
autoplot(ts_p43)+xlab("Time")+ylab("sales")+ggtitle("P43 Time Series")
autoplot(ts_p43,series="mean")+
autolayer(ma(ts_p43,5), series="5-MA")+ggtitle("P43 MA")
## Warning: Removed 4 rows containing missing values (geom_path).
#Estimate the Trend-Cycle with Seasonal Data
autoplot(ts_p43,series = "Holdings")+
autolayer(ma(ts_p43,12),series="12-MA")+
xlab("Time")+ylab("Sales")+
ggtitle("Trend-Cycle with Seasonal Data")
## Warning: Removed 12 rows containing missing values (geom_path).
#since this is an one-year dataset, it's hard to see the trend or seasonality. The rapid increase or decrease can be caused by festivals. In addition, most of the decomposition methods are not applicable because the data lack seasonality. Also, weekly data is difficult to work with because the seasonal period (the number of weeks in a year) is both large and non-integer. The average number of weeks in a year is 52.18. Most of the methods we have considered require the seasonal period to be an integer. Even if we approximate it by 52, most of the methods will not handle such a large seasonal period efficiently.
# In this case, I only use moving average method to show the trend of top 5 sales products.
#product P409
#Seasonal Naive Method
naive_p409<-snaive(ts_p409,4)
autoplot(naive_p409) + autolayer(naive_p409,series = "snaive")
#Simple exponential smoothing
ses_p409<-ses(ts_p409,h=4)
autoplot(ses_p409)+
autolayer(fitted(ses_p409),series="Fitted")+
ylab("Sales")+ xlab("Week")
#Holt's linear trend method
holt_p409<-holt(ts_p409,h=4)
autoplot(holt_p409)+
autolayer(holt_p409,series="Holt's method",PI=FALSE)
#Damped Holt's Trend Method
damp_p409<-holt(ts_p409,damped = TRUE,h=4)
autoplot(damp_p409)+
autolayer(damp_p409$fitted)
#ETS method
ets_p409<-ets(ts_p409)
autoplot(forecast(ets_p409,h=4))+ggtitle("P409 ETS")
#ARIMA Models
arima_p409<-auto.arima(ts_p409,seasonal = FALSE)
arima_p409%>% forecast(h=4) %>% autoplot(include=80)+
ylab("Sales")+ xlab("Week")+ggtitle("P409 Arima")
ggAcf(ts_p409)
ggPacf(ts_p409)
checkresiduals(ets_p409)
##
## Ljung-Box test
##
## data: Residuals from ETS(M,N,N)
## Q* = 11.714, df = 8.4, p-value = 0.1894
##
## Model df: 2. Total lags used: 10.4
checkresiduals(arima_p409)
##
## Ljung-Box test
##
## data: Residuals from ARIMA(1,0,0) with non-zero mean
## Q* = 13.541, df = 8.4, p-value = 0.1113
##
## Model df: 2. Total lags used: 10.4
accuracy(ets_p409)
## ME RMSE MAE MPE MAPE MASE ACF1
## Training set 0.8212682 10.57843 7.725092 -3.44772 19.74376 NaN 0.04469462
accuracy(arima_p409)
## ME RMSE MAE MPE MAPE MASE
## Training set 0.01617023 10.29233 7.781377 -6.132657 19.99894 NaN
## ACF1
## Training set -0.04291878
#product P34
#Seasonal Naive Method
naive_p34<-snaive(ts_p34,4)
autoplot(naive_p34) + autolayer(naive_p34,series = "snaive")
#Simple exponential smoothing
ses_p34<-ses(ts_p34,h=4)
autoplot(ses_p34)+
autolayer(fitted(ses_p34),series="Fitted")+
ylab("Sales")+ xlab("Week")
#Holt's linear trend method
holt_p34<-holt(ts_p34,h=4)
autoplot(holt_p34)+
autolayer(holt_p34,series="Holt's method",PI=FALSE)
#Damped Holt's Trend Method
damp_p34<-holt(ts_p34,damped = TRUE,h=4)
autoplot(damp_p34)+
autolayer(damp_p34$fitted)
#ETS method
ets_p34<-ets(ts_p34)
autoplot(forecast(ets_p34,h=4))
#ARIMA Models
arima_p34<-auto.arima(ts_p34,seasonal = FALSE)
arima_p34%>% forecast(h=4) %>% autoplot(include=80)+
ylab("Sales")+ xlab("Week")
ggAcf(ts_p34)
ggPacf(ts_p34)
summary(arima_p34)
## Series: ts_p34
## ARIMA(3,1,2)
##
## Coefficients:
## ar1 ar2 ar3 ma1 ma2
## -0.9397 -0.5901 -0.2055 -0.0596 -0.5850
## s.e. 0.3688 0.2525 0.2577 0.3408 0.2344
##
## sigma^2 estimated as 55.82: log likelihood=-173.4
## AIC=358.8 AICc=360.71 BIC=370.39
##
## Training set error measures:
## ME RMSE MAE MPE MAPE MASE
## Training set -0.582173 7.02675 5.616037 -5.177022 16.33428 NaN
## ACF1
## Training set -0.004282835
checkresiduals(arima_p34)
##
## Ljung-Box test
##
## data: Residuals from ARIMA(3,1,2)
## Q* = 7.9037, df = 5.4, p-value = 0.1932
##
## Model df: 5. Total lags used: 10.4
checkresiduals(ets_p34)
##
## Ljung-Box test
##
## data: Residuals from ETS(M,N,N)
## Q* = 19.527, df = 8.4, p-value = 0.01536
##
## Model df: 2. Total lags used: 10.4
checkresiduals(arima_p34)
##
## Ljung-Box test
##
## data: Residuals from ARIMA(3,1,2)
## Q* = 7.9037, df = 5.4, p-value = 0.1932
##
## Model df: 5. Total lags used: 10.4
accuracy(ets_p34)
## ME RMSE MAE MPE MAPE MASE
## Training set -1.100599 7.789164 5.909122 -7.572166 17.78021 NaN
## ACF1
## Training set -0.1352629
accuracy(arima_p34)
## ME RMSE MAE MPE MAPE MASE
## Training set -0.582173 7.02675 5.616037 -5.177022 16.33428 NaN
## ACF1
## Training set -0.004282835
#product P178
#Seasonal Naive Method
naive_p178<-snaive(ts_p178,4)
autoplot(naive_p178) + autolayer(naive_p178,series = "snaive")
#Simple exponential smoothing
ses_p178<-ses(ts_p178,h=4)
autoplot(ses_p178)+
autolayer(fitted(ses_p178),series="Fitted")+
ylab("Sales")+ xlab("Week")
#Holt's linear trend method
holt_p178<-holt(ts_p178,h=4)
autoplot(holt_p178)+
autolayer(holt_p178,series="Holt's method",PI=FALSE)
#Damped Holt's Trend Method
damp_p178<-holt(ts_p178,damped = TRUE,h=4)
autoplot(damp_p178)+
autolayer(damp_p178$fitted)
#ETS method
ets_p178<-ets(ts_p178)
autoplot(forecast(ets_p178,h=4))
#ARIMA Models
arima_p178<-auto.arima(ts_p178,seasonal = FALSE)
arima_p178%>% forecast(h=4) %>% autoplot(include=80)+
ylab("Sales")+ xlab("Week")
ggAcf(ts_p178)
ggPacf(ts_p178)
checkresiduals(arima_p178)
##
## Ljung-Box test
##
## data: Residuals from ARIMA(0,1,1)
## Q* = 4.456, df = 9.4, p-value = 0.8993
##
## Model df: 1. Total lags used: 10.4
checkresiduals(ets_p178)
##
## Ljung-Box test
##
## data: Residuals from ETS(A,N,N)
## Q* = 4.4406, df = 8.4, p-value = 0.8438
##
## Model df: 2. Total lags used: 10.4
checkresiduals(arima_p178)
##
## Ljung-Box test
##
## data: Residuals from ARIMA(0,1,1)
## Q* = 4.456, df = 9.4, p-value = 0.8993
##
## Model df: 1. Total lags used: 10.4
accuracy(ets_p178)
## ME RMSE MAE MPE MAPE MASE
## Training set -0.4285944 7.278231 5.643992 -5.073001 16.56116 NaN
## ACF1
## Training set -0.01996414
accuracy(arima_p178)
## ME RMSE MAE MPE MAPE MASE
## Training set -0.2971663 7.28012 5.583733 -4.662119 16.3296 NaN
## ACF1
## Training set -0.03425538
#product P135
#Seasonal Naive Method
naive_p135<-snaive(ts_p135,4)
autoplot(naive_p135) + autolayer(naive_p135,series = "snaive")
#Simple exponential smoothing
ses_p135<-ses(ts_p135,h=4)
autoplot(ses_p135)+
autolayer(fitted(ses_p135),series="Fitted")+
ylab("Sales")+ xlab("Week")
#Holt's linear trend method
holt_p135<-holt(ts_p135,h=4)
autoplot(holt_p135)+
autolayer(holt_p135,series="Holt's method",PI=FALSE)
#Damped Holt's Trend Method
damp_p135<-holt(ts_p135,damped = TRUE,h=4)
autoplot(damp_p135)+
autolayer(damp_p135$fitted)
#ETS method
ets_p135<-ets(ts_p135)
autoplot(forecast(ets_p135,h=4))
#ARIMA Models
arima_p135<-auto.arima(ts_p135,seasonal = FALSE)
arima_p135%>% forecast(h=4) %>% autoplot(include=80)+
ylab("Sales")+ xlab("Week")
ggAcf(ts_p135)
ggPacf(ts_p135)
summary(arima_p135)
## Series: ts_p135
## ARIMA(0,1,1)
##
## Coefficients:
## ma1
## -0.7394
## s.e. 0.1240
##
## sigma^2 estimated as 56.83: log likelihood=-175.28
## AIC=354.56 AICc=354.81 BIC=358.42
##
## Training set error measures:
## ME RMSE MAE MPE MAPE MASE
## Training set -0.5842343 7.392498 5.773752 -6.020816 17.57901 NaN
## ACF1
## Training set -0.05516129
checkresiduals(arima_p135)
##
## Ljung-Box test
##
## data: Residuals from ARIMA(0,1,1)
## Q* = 9.1443, df = 9.4, p-value = 0.462
##
## Model df: 1. Total lags used: 10.4
checkresiduals(ets_p135)
##
## Ljung-Box test
##
## data: Residuals from ETS(A,N,N)
## Q* = 8.5352, df = 8.4, p-value = 0.4223
##
## Model df: 2. Total lags used: 10.4
checkresiduals(arima_p135)
##
## Ljung-Box test
##
## data: Residuals from ARIMA(0,1,1)
## Q* = 9.1443, df = 9.4, p-value = 0.462
##
## Model df: 1. Total lags used: 10.4
accuracy(ets_p135)
## ME RMSE MAE MPE MAPE MASE
## Training set -0.6751885 7.389274 5.741731 -6.331545 17.5548 NaN
## ACF1
## Training set -0.03564441
accuracy(arima_p135)
## ME RMSE MAE MPE MAPE MASE
## Training set -0.5842343 7.392498 5.773752 -6.020816 17.57901 NaN
## ACF1
## Training set -0.05516129
#product P43
#Seasonal Naive Method
naive_p43<-snaive(ts_p43,4)
autoplot(naive_p43) + autolayer(naive_p43,series = "snaive")
#Simple exponential smoothing
ses_p43<-ses(ts_p43,h=4)
autoplot(ses_p43)+
autolayer(fitted(ses_p43),series="Fitted")+
ylab("Sales")+ xlab("Week")
#Holt's linear trend method
holt_p43<-holt(ts_p43,h=4)
autoplot(holt_p43)+
autolayer(holt_p43,series="Holt's method",PI=FALSE)
#Damped Holt's Trend Method
damp_p43<-holt(ts_p43,damped = TRUE,h=4)
autoplot(damp_p43)+
autolayer(damp_p43$fitted)
#ETS method
ets_p43<-ets(ts_p43)
autoplot(forecast(ets_p43,h=4))
#ARIMA Models
arima_p43<-auto.arima(ts_p43,seasonal = FALSE)
arima_p43%>% forecast(h=4) %>% autoplot(include=80)+
ylab("Sales")+ xlab("Week")
ggAcf(ts_p43)
ggPacf(ts_p43)
checkresiduals(ets_p43)
##
## Ljung-Box test
##
## data: Residuals from ETS(M,N,N)
## Q* = 11.824, df = 8.4, p-value = 0.1836
##
## Model df: 2. Total lags used: 10.4
checkresiduals(arima_p43)
##
## Ljung-Box test
##
## data: Residuals from ARIMA(1,1,1)
## Q* = 6.3172, df = 8.4, p-value = 0.6519
##
## Model df: 2. Total lags used: 10.4
accuracy(ets_p43)
## ME RMSE MAE MPE MAPE MASE
## Training set -0.4379003 8.04433 6.976893 -5.388537 20.01099 NaN
## ACF1
## Training set 0.02390699
accuracy(arima_p43)
## ME RMSE MAE MPE MAPE MASE
## Training set -0.08635984 8.03272 6.833405 -4.336936 19.45645 NaN
## ACF1
## Training set 0.0176316
This is an R Markdown document. Markdown is a simple formatting syntax for authoring HTML, PDF, and MS Word documents. For more details on using R Markdown see http://rmarkdown.rstudio.com.
When you click the Knit button a document will be generated that includes both content as well as the output of any embedded R code chunks within the document. You can embed an R code chunk like this:
summary(cars)
## speed dist
## Min. : 4.0 Min. : 2.00
## 1st Qu.:12.0 1st Qu.: 26.00
## Median :15.0 Median : 36.00
## Mean :15.4 Mean : 42.98
## 3rd Qu.:19.0 3rd Qu.: 56.00
## Max. :25.0 Max. :120.00
You can also embed plots, for example:
Note that the echo = FALSE parameter was added to the code chunk to prevent printing of the R code that generated the plot.