The Gapminder organisation is great, the data is availale through gapminder
library("gapminder")
Let’s combine with world shape files.
library("rnaturalearthdata")
library("tidyverse")
library("sf")
world_shapefiles <- countries110 %>%
st_as_sf()
gapminder_world_2017 <- world_shapefiles %>%
left_join(gapminder %>%
filter(year == max(year)),
by = c("name" = "country"))
gapminder_world_2017
## Simple feature collection with 177 features and 68 fields
## geometry type: MULTIPOLYGON
## dimension: XY
## bbox: xmin: -180 ymin: -90 xmax: 180 ymax: 83.64513
## epsg (SRID): 4326
## proj4string: +proj=longlat +datum=WGS84 +no_defs
## First 10 features:
## scalerank featurecla labelrank sovereignt sov_a3
## 1 1 Admin-0 country 3 Afghanistan AFG
## 2 1 Admin-0 country 3 Angola AGO
## 3 1 Admin-0 country 6 Albania ALB
## 4 1 Admin-0 country 4 United Arab Emirates ARE
## 5 1 Admin-0 country 2 Argentina ARG
## 6 1 Admin-0 country 6 Armenia ARM
## 7 1 Admin-0 country 4 Antarctica ATA
## 8 3 Admin-0 country 6 France FR1
## 9 1 Admin-0 country 2 Australia AU1
## 10 1 Admin-0 country 4 Austria AUT
## adm0_dif level type admin
## 1 0 2 Sovereign country Afghanistan
## 2 0 2 Sovereign country Angola
## 3 0 2 Sovereign country Albania
## 4 0 2 Sovereign country United Arab Emirates
## 5 0 2 Sovereign country Argentina
## 6 0 2 Sovereign country Armenia
## 7 0 2 Indeterminate Antarctica
## 8 1 2 Dependency French Southern and Antarctic Lands
## 9 1 2 Country Australia
## 10 0 2 Sovereign country Austria
## adm0_a3 geou_dif geounit gu_a3 su_dif
## 1 AFG 0 Afghanistan AFG 0
## 2 AGO 0 Angola AGO 0
## 3 ALB 0 Albania ALB 0
## 4 ARE 0 United Arab Emirates ARE 0
## 5 ARG 0 Argentina ARG 0
## 6 ARM 0 Armenia ARM 0
## 7 ATA 0 Antarctica ATA 0
## 8 ATF 0 French Southern and Antarctic Lands ATF 0
## 9 AUS 0 Australia AUS 0
## 10 AUT 0 Austria AUT 0
## subunit su_a3 brk_diff
## 1 Afghanistan AFG 0
## 2 Angola AGO 0
## 3 Albania ALB 0
## 4 United Arab Emirates ARE 0
## 5 Argentina ARG 0
## 6 Armenia ARM 0
## 7 Antarctica ATA 0
## 8 French Southern and Antarctic Lands ATF 0
## 9 Australia AUS 0
## 10 Austria AUT 0
## name name_long brk_a3
## 1 Afghanistan Afghanistan AFG
## 2 Angola Angola AGO
## 3 Albania Albania ALB
## 4 United Arab Emirates United Arab Emirates ARE
## 5 Argentina Argentina ARG
## 6 Armenia Armenia ARM
## 7 Antarctica Antarctica ATA
## 8 Fr. S. Antarctic Lands French Southern and Antarctic Lands ATF
## 9 Australia Australia AUS
## 10 Austria Austria AUT
## brk_name brk_group abbrev postal
## 1 Afghanistan <NA> Afg. AF
## 2 Angola <NA> Ang. AO
## 3 Albania <NA> Alb. AL
## 4 United Arab Emirates <NA> U.A.E. AE
## 5 Argentina <NA> Arg. AR
## 6 Armenia <NA> Arm. ARM
## 7 Antarctica <NA> Ant. AQ
## 8 Fr. S. and Antarctic Lands <NA> Fr. S.A.L. TF
## 9 Australia <NA> Auz. AU
## 10 Austria <NA> Aust. A
## formal_en formal_fr
## 1 Islamic State of Afghanistan <NA>
## 2 People's Republic of Angola <NA>
## 3 Republic of Albania <NA>
## 4 United Arab Emirates <NA>
## 5 Argentine Republic <NA>
## 6 Republic of Armenia <NA>
## 7 <NA> <NA>
## 8 Territory of the French Southern and Antarctic Lands <NA>
## 9 Commonwealth of Australia <NA>
## 10 Republic of Austria <NA>
## note_adm0 note_brk
## 1 <NA> <NA>
## 2 <NA> <NA>
## 3 <NA> <NA>
## 4 <NA> <NA>
## 5 <NA> <NA>
## 6 <NA> <NA>
## 7 <NA> Multiple claims held in abeyance
## 8 Fr. <NA>
## 9 <NA> <NA>
## 10 <NA> <NA>
## name_sort name_alt mapcolor7 mapcolor8
## 1 Afghanistan <NA> 5 6
## 2 Angola <NA> 3 2
## 3 Albania <NA> 1 4
## 4 United Arab Emirates <NA> 2 1
## 5 Argentina <NA> 3 1
## 6 Armenia <NA> 3 1
## 7 Antarctica <NA> 4 5
## 8 French Southern and Antarctic Lands <NA> 7 5
## 9 Australia <NA> 1 2
## 10 Austria <NA> 3 1
## mapcolor9 mapcolor13 pop_est gdp_md_est pop_year lastcensus gdp_year
## 1 8 7 28400000 22270.0 NA 1979 NA
## 2 6 1 12799293 110300.0 NA 1970 NA
## 3 1 6 3639453 21810.0 NA 2001 NA
## 4 3 3 4798491 184300.0 NA 2010 NA
## 5 3 13 40913584 573900.0 NA 2010 NA
## 6 2 10 2967004 18770.0 NA 2001 NA
## 7 1 NA 3802 760.4 NA NA NA
## 8 9 11 140 16.0 NA NA NA
## 9 2 7 21262641 800200.0 NA 2006 NA
## 10 3 4 8210281 329500.0 NA 2011 NA
## economy income_grp wikipedia fips_10
## 1 7. Least developed region 5. Low income NA <NA>
## 2 7. Least developed region 3. Upper middle income NA <NA>
## 3 6. Developing region 4. Lower middle income NA <NA>
## 4 6. Developing region 2. High income: nonOECD NA <NA>
## 5 5. Emerging region: G20 3. Upper middle income NA <NA>
## 6 6. Developing region 4. Lower middle income NA <NA>
## 7 6. Developing region 2. High income: nonOECD NA <NA>
## 8 6. Developing region 2. High income: nonOECD NA <NA>
## 9 2. Developed region: nonG7 1. High income: OECD NA <NA>
## 10 2. Developed region: nonG7 1. High income: OECD NA <NA>
## iso_a2 iso_a3 iso_n3 un_a3 wb_a2 wb_a3 woe_id adm0_a3_is adm0_a3_us
## 1 AF AFG 004 004 AF AFG NA AFG AFG
## 2 AO AGO 024 024 AO AGO NA AGO AGO
## 3 AL ALB 008 008 AL ALB NA ALB ALB
## 4 AE ARE 784 784 AE ARE NA ARE ARE
## 5 AR ARG 032 032 AR ARG NA ARG ARG
## 6 AM ARM 051 051 AM ARM NA ARM ARM
## 7 AQ ATA 010 <NA> <NA> <NA> NA ATA ATA
## 8 TF ATF 260 <NA> <NA> <NA> NA ATF ATF
## 9 AU AUS 036 036 AU AUS NA AUS AUS
## 10 AT AUT 040 040 AT AUT NA AUT AUT
## adm0_a3_un adm0_a3_wb continent.x region_un
## 1 NA NA Asia Asia
## 2 NA NA Africa Africa
## 3 NA NA Europe Europe
## 4 NA NA Asia Asia
## 5 NA NA South America Americas
## 6 NA NA Asia Asia
## 7 NA NA Antarctica Antarctica
## 8 NA NA Seven seas (open ocean) Seven seas (open ocean)
## 9 NA NA Oceania Oceania
## 10 NA NA Europe Europe
## subregion region_wb name_len long_len
## 1 Southern Asia South Asia 11 11
## 2 Middle Africa Sub-Saharan Africa 6 6
## 3 Southern Europe Europe & Central Asia 7 7
## 4 Western Asia Middle East & North Africa 20 20
## 5 South America Latin America & Caribbean 9 9
## 6 Western Asia Europe & Central Asia 7 7
## 7 Antarctica Antarctica 10 10
## 8 Seven seas (open ocean) Sub-Saharan Africa 22 35
## 9 Australia and New Zealand East Asia & Pacific 9 9
## 10 Western Europe Europe & Central Asia 7 7
## abbrev_len tiny homepart continent.y year lifeExp pop gdpPercap
## 1 4 NA 1 Asia 2007 43.828 31889923 974.5803
## 2 4 NA 1 Africa 2007 42.731 12420476 4797.2313
## 3 4 NA 1 Europe 2007 76.423 3600523 5937.0295
## 4 6 NA 1 <NA> NA NA NA NA
## 5 4 NA 1 Americas 2007 75.320 40301927 12779.3796
## 6 4 NA 1 <NA> NA NA NA NA
## 7 4 NA 1 <NA> NA NA NA NA
## 8 10 2 NA <NA> NA NA NA NA
## 9 4 NA 1 Oceania 2007 81.235 20434176 34435.3674
## 10 5 NA 1 Europe 2007 79.829 8199783 36126.4927
## geometry
## 1 MULTIPOLYGON (((61.21082 35...
## 2 MULTIPOLYGON (((16.32653 -5...
## 3 MULTIPOLYGON (((20.59025 41...
## 4 MULTIPOLYGON (((51.57952 24...
## 5 MULTIPOLYGON (((-65.5 -55.2...
## 6 MULTIPOLYGON (((43.58275 41...
## 7 MULTIPOLYGON (((-59.57209 -...
## 8 MULTIPOLYGON (((68.935 -48....
## 9 MULTIPOLYGON (((145.398 -40...
## 10 MULTIPOLYGON (((16.97967 48...
Let’s make a map
library("mapview")
gapminder_world_2017 %>%
mapview()
## Warning in sf::st_is_longlat(x): bounding box has potentially an invalid
## value range for longlat data
fweohwoefh wfenfoewifew
wefuohewoufw ewfwefpiipwehfwe wobfhowefbewof ifwhphpiewh
fweohwoefh wfenfoewifew
wefuohewoufw ewfwefpiipwehfwe wobfhowefbewof ifwhphpiewh fweohwoefh wfenfoewifew
wefuohewoufw ewfwefpiipwehfwe wobfhowefbewof ifwhphpiewh fweohwoefh wfenfoewifew
wefuohewoufw ewfwefpiipwehfwe wobfhowefbewof ifwhphpiewh fweohwoefh wfenfoewifew
wefuohewoufw ewfwefpiipwehfwe wobfhowefbewof ifwhphpiewh fweohwoefh wfenfoewifew
wefuohewoufw ewfwefpiipwehfwe wobfhowefbewof ifwhphpiewh fweohwoefh wfenfoewifew
wefuohewoufw ewfwefpiipwehfwe wobfhowefbewof ifwhphpiewh