x <- c(12, 11.4, 7.9, 9, 10.5, 7.9, 7.3, 10.2, 11.7, 11.3, 5.7,
8, 10.3, 12, 9.2, 8.5, 7, 10.7, 9.3, 8.2)
y <- c(125, 119, 83, 85, 99, 117, 69, 133, 154, 168, 61, 80, 114,
147, 122, 106, 82, 88, 97, 97)
N <- 1132
n <- 20
mu.x <- 10.3
plot(x,y, main = "Scatterplot", xlab = "Diameter x", ylab = "Age y")
the ratio r:
r <- mean(y)/mean(x)
r
## [1] 11.40883
mu.hat.y <- r * mu.x
mu.hat.y
## [1] 117.5109
The SE of mu.hat.y
var.mu.hat.y <- (1 - (20/1132)) * (sum((y - r*x)^2) / (20 * 19) )
SE.mu.hat.y <- sqrt(var.mu.hat.y)
SE.mu.hat.y
## [1] 3.971109
mean.x <- mean(x)
reg <- lm(y ~ 1 + x)
coef(reg)
## (Intercept) x
## -8.264754 12.287587
The mean (reg.mu.hat.y)
reg.mu.hat.y <- mean(y) + (12.28 * (10.3 - mean(x)))
reg.mu.hat.y
## [1] 118.2906
The SE of the mean using regression
anova(reg)
## Analysis of Variance Table
##
## Response: y
## Df Sum Sq Mean Sq F value Pr(>F)
## x 1 9595.0 9595.0 28.541 4.452e-05 ***
## Residuals 18 6051.2 336.2
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
SE.reg.mu.hat.y <- ((1132 -20)/(1132*20)) * 336.2
SE.reg.mu.hat.y
## [1] 16.513
plot(x,y, main = "Scatterplot", xlab = "Diameter x", ylab = "Age y")
4.8 No.8
library(SDaA)
data(agsrs)
head(agsrs,2)
## county state acres92 acres87 acres82 farms92 farms87 farms82
## 1 COFFEE COUNTY AL 175209 179311 194509 760 842 944
## 2 COLBERT COUNTY AL 138135 145104 161360 488 563 686
## largef92 largef87 largef82 smallf92 smallf87 smallf82
## 1 29 28 21 57 47 66
## 2 37 41 42 12 44 47
plot(agsrs$farms87, agsrs$acres92, main = "Scatterplot", xlab = "Farms 87", ylab = "Acres 92")
plot(agsrs$acres87, agsrs$acres92, main = "Scatterplot", xlab = "Acres 87", ylab = "Acres 92")
The ratio r2
r2 <- mean(agsrs$acres92)/mean(agsrs$farms87)
r2
## [1] 459.8975
mu.hat.acres.92 <- r2 * (2087759/3078)
mu.hat.acres.92
## [1] 311941.2
The S. error
var.mu.acres.92 <- (1 - (300/3078)) * (sum((agsrs$acres92 - r2*agsrs$farms87)^2) / (200 * 299) )
SE.mu.acres.92 <- sqrt(var.mu.acres.92)
reg2 <- lm(acres92 ~ 1 + farms87, agsrs)
coef(reg2)
## (Intercept) farms87
## 267029.81421 47.65325
anova(reg2)
## Analysis of Variance Table
##
## Response: acres92
## Df Sum Sq Mean Sq F value Pr(>F)
## farms87 1 1.2629e+11 1.2629e+11 1.064 0.3031
## Residuals 298 3.5370e+13 1.1869e+11
The mean estimated
reg.mu.hat.acres.92 <- mean(agsrs$acres92) + (47.65 * ((2087759/3078) - mean(agsrs$farms87)))
reg.mu.hat.acres.92
## [1] 299352.2
The standard error
SE.reg.mu.hat.acres.92 <- ((3078 -300)/(3078*300)) * 1.1869e+11
SE.reg.mu.hat.acres.92 # what a value! I am moving on for the mean time.
## [1] 357072580
The ratio estimation provides better precision. The linearity between acres92 and farms87 in the plot is weak. Regression estimation with acrs87 could be better.