R Markdown

This is an R Markdown document. Markdown is a simple formatting syntax for authoring HTML, PDF, and MS Word documents. For more details on using R Markdown see http://rmarkdown.rstudio.com.

When you click the Knit button a document will be generated that includes both content as well as the output of any embedded R code chunks within the document. You can embed an R code chunk like this:

summary(cars)
##      speed           dist       
##  Min.   : 4.0   Min.   :  2.00  
##  1st Qu.:12.0   1st Qu.: 26.00  
##  Median :15.0   Median : 36.00  
##  Mean   :15.4   Mean   : 42.98  
##  3rd Qu.:19.0   3rd Qu.: 56.00  
##  Max.   :25.0   Max.   :120.00

Including Plots

You can also embed plots, for example:

Note that the echo = FALSE parameter was added to the code chunk to prevent printing of the R code that generated the plot.

Load Systematic Investor Toolbox (SIT)

con = gzcon(url('https://github.com/systematicinvestor/SIT/raw/master/sit.gz', 'rb'))
source(con)
close(con)

*****************************************************************

Load historical data

******************************************************************

load.packages('quantmod,quadprog,lpSolve')
## Warning: package 'quantmod' was built under R version 3.5.3
## Warning: package 'xts' was built under R version 3.5.3
## Warning: package 'zoo' was built under R version 3.5.3
## 
## Attaching package: 'zoo'
## The following objects are masked from 'package:base':
## 
##     as.Date, as.Date.numeric
## Warning: package 'TTR' was built under R version 3.5.3
## 
## Attaching package: 'TTR'
## The following object is masked _by_ '.GlobalEnv':
## 
##     DVI
## Version 0.4-0 included new data defaults. See ?getSymbols.
tickers = spl('SPY,QQQ,EEM,IWM,EFA,TLT,IYR,GLD')


data <- new.env()
getSymbols(tickers, src = 'yahoo', from = '1980-01-01', env = data, auto.assign = T)
## 'getSymbols' currently uses auto.assign=TRUE by default, but will
## use auto.assign=FALSE in 0.5-0. You will still be able to use
## 'loadSymbols' to automatically load data. getOption("getSymbols.env")
## and getOption("getSymbols.auto.assign") will still be checked for
## alternate defaults.
## 
## This message is shown once per session and may be disabled by setting 
## options("getSymbols.warning4.0"=FALSE). See ?getSymbols for details.
## pausing 1 second between requests for more than 5 symbols
## pausing 1 second between requests for more than 5 symbols
## pausing 1 second between requests for more than 5 symbols
## pausing 1 second between requests for more than 5 symbols
## [1] "SPY" "QQQ" "EEM" "IWM" "EFA" "TLT" "IYR" "GLD"
for(i in ls(data)) data[[i]] = adjustOHLC(data[[i]], use.Adjusted=T)

data.weekly <- new.env()
for(i in tickers) data.weekly[[i]] = to.weekly(data[[i]], indexAt='endof')

bt.prep(data, align='remove.na', dates='1990::2018')
bt.prep(data.weekly, align='remove.na', dates='1990::2018')

*****************************************************************

Code Strategies

******************************************************************

prices = data$prices   
n = ncol(prices)
n
## [1] 8
# find week ends
week.ends = endpoints(prices, 'weeks')
week.ends = week.ends[week.ends > 0]     


# Equal Weight 1/N Benchmark
data$weight[] = NA
data$weight[week.ends,] = ntop(prices[week.ends,], n)       

capital = 100000
data$weight[] = (capital / prices) * data$weight
equal.weight = bt.run(data, type='share')
## Latest weights :
##                      EEM  EFA  GLD  IWM  IYR  QQQ  SPY  TLT
## 2018-12-31 08:00:00 12.5 12.5 12.5 12.5 12.5 12.5 12.5 12.5
## 
## Performance summary :
##  CAGR    Best    Worst   
##  8.1 10.2    -8.6    

*****************************************************************

Create Constraints

*****************************************************************

constraints = new.constraints(n, lb = -Inf, ub = +Inf)

# SUM x.i = 1
constraints = add.constraints(rep(1, n), 1, type = '=', constraints)        


ret = prices / mlag(prices) - 1
weight = coredata(prices)
weight[] = NA

for( i in week.ends[week.ends >= (63 + 1)] ) {
  # one quarter is 63 days
  hist = ret[ (i- 63 +1):i, ]
  
  # create historical input assumptions
  ia = create.historical.ia(hist, 252)
  s0 = apply(coredata(hist),2,sd)     
  ia$cov = cor(coredata(hist), use='complete.obs',method='pearson') * (s0 %*% t(s0))
  
  weight[i,] = min.risk.portfolio(ia, constraints)
}

# Minimum Variance
data$weight[] = weight      
capital = 100000
data$weight[] = (capital / prices) * data$weight
min.var.daily = bt.run(data, type='share', capital=capital)
## Latest weights :
##                       EEM   EFA   GLD   IWM  IYR    QQQ   SPY   TLT
## 2018-12-31 08:00:00 -2.79 16.47 32.64 -6.75 2.35 -24.88 44.89 38.07
## 
## Performance summary :
##  CAGR    Best    Worst   
##  8.8 2.8 -2.6    

*****************************************************************

Code Strategies: Weekly

******************************************************************

retw = data.weekly$prices / mlag(data.weekly$prices) - 1
weightw = coredata(prices)
weightw[] = NA

week.ends<-week.ends[-length(week.ends)]
for( i in week.ends[week.ends >= (63 + 1)] ) {   
  # map
  j = which(index(ret[i,]) == index(retw))
  
  # one quarter = 13 weeks
  hist = retw[ (j- 13 +1):j, ]
  
  # create historical input assumptions
  ia = create.historical.ia(hist, 52)
  s0 = apply(coredata(hist),2,sd)     
  ia$cov = cor(coredata(hist), use='complete.obs',method='pearson') * (s0 %*% t(s0))
  
  weightw[i,] = min.risk.portfolio(ia, constraints)
}   

data$weight[] = weightw     
capital = 100000
data$weight[] = (capital / prices) * data$weight
min.var.weekly = bt.run(data, type='share', capital=capital)
## Latest weights :
##                       EEM   EFA   GLD    IWM  IYR    QQQ   SPY   TLT
## 2018-12-31 08:00:00 -6.45 50.97 44.24 -26.24 5.46 -10.94 22.15 20.82
## 
## Performance summary :
##  CAGR    Best    Worst   
##  10.8    4.3 -4.8    

*****************************************************************

Create Report

******************************************************************

plotbt.custom.report.part1(min.var.weekly, min.var.daily, equal.weight)

# plot Daily and Weekly transition maps
layout(1:2)
plotbt.transition.map(min.var.daily$weight)
legend('topright', legend = 'min.var.daily', bty = 'n')
plotbt.transition.map(min.var.weekly$weight)
legend('topright', legend = 'min.var.weekly', bty = 'n')