Interior Forest Guild

State Boundaries

Counties = readOGR(dsn = "C:/Users/humph173/Documents/Michigan_State/SLP_Beam_Diam/Counties_v17a", 
                   layer = "Counties_v17a", 
                   stringsAsFactors = FALSE)
## OGR data source with driver: ESRI Shapefile 
## Source: "C:\Users\humph173\Documents\Michigan_State\SLP_Beam_Diam\Counties_v17a", layer: "Counties_v17a"
## with 83 features
## It has 15 fields
## Integer64 fields read as strings:  OBJECTID FIPSNUM
Michigan = gUnaryUnion(Counties)

eBird Data

MnYr = 1900
MxYr = 2019

CleanBird("C:/Users/humph173/Documents/Michigan_State/Marten/Marten_SDM/eBird/Data/ebd_btbwar_relFeb-2019.txt", "btbwar", MnYr, MxYr)
## Parsed with column specification:
## cols(
##   .default = col_character(),
##   `LAST EDITED DATE` = col_datetime(format = ""),
##   `TAXONOMIC ORDER` = col_double(),
##   `SUBSPECIES COMMON NAME` = col_logical(),
##   `SUBSPECIES SCIENTIFIC NAME` = col_logical(),
##   `BREEDING BIRD ATLAS CODE` = col_logical(),
##   `BREEDING BIRD ATLAS CATEGORY` = col_logical(),
##   COUNTY = col_logical(),
##   `COUNTY CODE` = col_logical(),
##   `BCR CODE` = col_logical(),
##   `USFWS CODE` = col_logical(),
##   `ATLAS BLOCK` = col_logical(),
##   LATITUDE = col_double(),
##   LONGITUDE = col_double(),
##   `OBSERVATION DATE` = col_date(format = ""),
##   `TIME OBSERVATIONS STARTED` = col_time(format = ""),
##   `DURATION MINUTES` = col_double(),
##   `EFFORT DISTANCE KM` = col_double(),
##   `EFFORT AREA HA` = col_double(),
##   `NUMBER OBSERVERS` = col_double(),
##   `ALL SPECIES REPORTED` = col_double()
##   # ... with 5 more columns
## )
## See spec(...) for full column specifications.
CleanBird("C:/Users/humph173/Documents/Michigan_State/Marten/Marten_SDM/eBird/Data/ebd_scatan_relFeb-2019.txt", "scatan", MnYr, MxYr)
## Parsed with column specification:
## cols(
##   .default = col_character(),
##   `LAST EDITED DATE` = col_datetime(format = ""),
##   `TAXONOMIC ORDER` = col_double(),
##   `SUBSPECIES COMMON NAME` = col_logical(),
##   `SUBSPECIES SCIENTIFIC NAME` = col_logical(),
##   COUNTY = col_logical(),
##   `COUNTY CODE` = col_logical(),
##   `BCR CODE` = col_double(),
##   `USFWS CODE` = col_logical(),
##   `ATLAS BLOCK` = col_logical(),
##   LATITUDE = col_double(),
##   LONGITUDE = col_double(),
##   `OBSERVATION DATE` = col_date(format = ""),
##   `TIME OBSERVATIONS STARTED` = col_time(format = ""),
##   `DURATION MINUTES` = col_double(),
##   `EFFORT DISTANCE KM` = col_double(),
##   `EFFORT AREA HA` = col_double(),
##   `NUMBER OBSERVERS` = col_double(),
##   `ALL SPECIES REPORTED` = col_double(),
##   `HAS MEDIA` = col_double(),
##   APPROVED = col_double()
##   # ... with 3 more columns
## )
## See spec(...) for full column specifications.
CleanBird("C:/Users/humph173/Documents/Michigan_State/Marten/Marten_SDM/eBird/Data/ebd_woothr_relFeb-2019.txt", "woothr", MnYr, MxYr)
## Parsed with column specification:
## cols(
##   .default = col_character(),
##   `LAST EDITED DATE` = col_datetime(format = ""),
##   `TAXONOMIC ORDER` = col_double(),
##   `SUBSPECIES COMMON NAME` = col_logical(),
##   `SUBSPECIES SCIENTIFIC NAME` = col_logical(),
##   `AGE/SEX` = col_logical(),
##   COUNTY = col_logical(),
##   `COUNTY CODE` = col_logical(),
##   `BCR CODE` = col_logical(),
##   `USFWS CODE` = col_logical(),
##   `ATLAS BLOCK` = col_logical(),
##   LATITUDE = col_double(),
##   LONGITUDE = col_double(),
##   `OBSERVATION DATE` = col_date(format = ""),
##   `TIME OBSERVATIONS STARTED` = col_time(format = ""),
##   `DURATION MINUTES` = col_double(),
##   `EFFORT DISTANCE KM` = col_double(),
##   `EFFORT AREA HA` = col_double(),
##   `NUMBER OBSERVERS` = col_double(),
##   `ALL SPECIES REPORTED` = col_double(),
##   `HAS MEDIA` = col_double()
##   # ... with 4 more columns
## )
## See spec(...) for full column specifications.

Convert to Points

Selecting Michigan birds

btbwar.pnt = SpatialPointsDataFrame(btbwar[,c("Long", "Lat")], btbwar)
proj4string(btbwar.pnt) = proj4string(Michigan)

btbwar.pnt$MI = is.na(over(btbwar.pnt, Michigan))
btbwar.pnt = subset(btbwar.pnt, MI == FALSE)



scatan.pnt = SpatialPointsDataFrame(scatan[,c("Long", "Lat")], scatan)
proj4string(scatan.pnt) = proj4string(Michigan)

scatan.pnt$MI = is.na(over(scatan.pnt, Michigan))
scatan.pnt = subset(scatan.pnt, MI == FALSE)



woothr.pnt = SpatialPointsDataFrame(woothr[,c("Long", "Lat")], woothr)
proj4string(woothr.pnt) = proj4string(Michigan)

woothr.pnt$MI = is.na(over(woothr.pnt, Michigan))
woothr.pnt = subset(woothr.pnt, MI == FALSE)

btbwar

btbwar.df = as.data.frame(
                btbwar.pnt@data %>%
                  group_by(Year) %>%
                  summarise(Count = length(Year)))

#Total
sum(btbwar.df$Count)
## [1] 2733
btbwar.df
##    Year Count
## 1  1937     1
## 2  1959     1
## 3  1961     1
## 4  1963     1
## 5  1964     1
## 6  1965     1
## 7  1966     1
## 8  1967     1
## 9  1968     1
## 10 1970     1
## 11 1971     2
## 12 1972     3
## 13 1973     1
## 14 1974     5
## 15 1975     2
## 16 1976     4
## 17 1977     5
## 18 1978     3
## 19 1979     3
## 20 1980     1
## 21 1981     5
## 22 1982     3
## 23 1983     4
## 24 1984     4
## 25 1985     2
## 26 1986     1
## 27 1987     1
## 28 1988     5
## 29 1989     4
## 30 1990     7
## 31 1991     3
## 32 1992     9
## 33 1993     6
## 34 1994     6
## 35 1995     8
## 36 1996    15
## 37 1997    18
## 38 1998    13
## 39 1999    10
## 40 2000     7
## 41 2001    11
## 42 2002    17
## 43 2003    17
## 44 2004    29
## 45 2005    31
## 46 2006    43
## 47 2007    43
## 48 2008    47
## 49 2009    63
## 50 2010    73
## 51 2011   132
## 52 2012   157
## 53 2013   186
## 54 2014   306
## 55 2015   268
## 56 2016   327
## 57 2017   338
## 58 2018   475
##Plot
wmap_df = fortify(Counties)
## Regions defined for each Polygons
tmp.df = btbwar.pnt@data 

ggplot(wmap_df, aes(long,lat, group=group)) + 
        geom_polygon(fill = "lightgray", col="darkgray") + 
        geom_point(data=tmp.df, 
                   aes(Long, Lat, group=NA), 
                       col = "red",
                   size = 0.5) +
        xlab("Longitude") +
        ylab("Latitude") +
        ggtitle("btbwar Locations") +
        #scale_x_longitude(xmin=-110, xmax=80, step=10) +
        #scale_y_latitude(ymin=20, ymax=60, step=10) +
        coord_equal() + 
        theme(panel.grid.minor = element_blank(),
              panel.grid.major = element_blank(),
              panel.background = element_blank(),
              panel.border = element_blank(),
              legend.title = element_text(size=16, face="bold"),
              axis.title.x = element_text(size=22, face="bold"),
              axis.title.y = element_text(size=22, face="bold"),
              plot.title = element_text(size=24, face="bold", hjust = 0.5))

scatan

scatan.df = as.data.frame(
                scatan.pnt@data %>%
                  group_by(Year) %>%
                  summarise(Count = length(Year)))

#Total
sum(scatan.df$Count)
## [1] 8311
scatan.df
##    Year Count
## 1  1909     1
## 2  1937     1
## 3  1955     4
## 4  1959     3
## 5  1960     2
## 6  1963     3
## 7  1964     9
## 8  1965     4
## 9  1966     3
## 10 1967     5
## 11 1968     2
## 12 1969     2
## 13 1970     2
## 14 1971     9
## 15 1972     2
## 16 1973     4
## 17 1974     7
## 18 1975     3
## 19 1976    12
## 20 1977    19
## 21 1978     8
## 22 1979     8
## 23 1980     5
## 24 1981     8
## 25 1982     5
## 26 1983     8
## 27 1984     7
## 28 1985     3
## 29 1986     4
## 30 1987     9
## 31 1988     6
## 32 1989     3
## 33 1990    10
## 34 1991    14
## 35 1992    18
## 36 1993    14
## 37 1994    14
## 38 1995    13
## 39 1996    24
## 40 1997    16
## 41 1998    26
## 42 1999    17
## 43 2000    17
## 44 2001    26
## 45 2002    36
## 46 2003    35
## 47 2004    57
## 48 2005    84
## 49 2006   119
## 50 2007   136
## 51 2008   129
## 52 2009   178
## 53 2010   209
## 54 2011   283
## 55 2012   496
## 56 2013   779
## 57 2014   891
## 58 2015   999
## 59 2016  1113
## 60 2017  1175
## 61 2018  1212
##Plot
wmap_df = fortify(Counties)
## Regions defined for each Polygons
tmp.df = scatan.pnt@data 

ggplot(wmap_df, aes(long,lat, group=group)) + 
        geom_polygon(fill = "lightgray", col="darkgray") + 
        geom_point(data=tmp.df, 
                   aes(Long, Lat, group=NA), 
                       col = "red",
                       size = 0.5) +
        xlab("Longitude") +
        ylab("Latitude") +
        ggtitle("scatan Locations") +
        #scale_x_longitude(xmin=-110, xmax=80, step=10) +
        #scale_y_latitude(ymin=20, ymax=60, step=10) +
        coord_equal() + 
        theme(panel.grid.minor = element_blank(),
              panel.grid.major = element_blank(),
              panel.background = element_blank(),
              panel.border = element_blank(),
              legend.title = element_text(size=16, face="bold"),
              axis.title.x = element_text(size=22, face="bold"),
              axis.title.y = element_text(size=22, face="bold"),
              plot.title = element_text(size=24, face="bold", hjust = 0.5))

woothr

woothr.df = as.data.frame(
                woothr.pnt@data %>%
                  group_by(Year) %>%
                  summarise(Count = length(Year)))

#Total
sum(woothr.df$Count)
## [1] 6336
woothr.df
##    Year Count
## 1  1953     1
## 2  1954     1
## 3  1955     2
## 4  1959     2
## 5  1962     1
## 6  1963     6
## 7  1964     4
## 8  1965     2
## 9  1966     2
## 10 1967     4
## 11 1968     5
## 12 1969     2
## 13 1970     5
## 14 1971     7
## 15 1972     4
## 16 1973     4
## 17 1974     7
## 18 1975     5
## 19 1976    11
## 20 1977    13
## 21 1978     6
## 22 1979     4
## 23 1980     4
## 24 1981     5
## 25 1982     4
## 26 1983    10
## 27 1984     3
## 28 1985     5
## 29 1986     3
## 30 1987     4
## 31 1988     6
## 32 1989     5
## 33 1990     5
## 34 1991     4
## 35 1992    18
## 36 1993     8
## 37 1994    12
## 38 1995    19
## 39 1996    21
## 40 1997    22
## 41 1998    29
## 42 1999    24
## 43 2000    20
## 44 2001    40
## 45 2002    38
## 46 2003    36
## 47 2004    59
## 48 2005    73
## 49 2006   106
## 50 2007    98
## 51 2008   109
## 52 2009   143
## 53 2010   180
## 54 2011   221
## 55 2012   340
## 56 2013   584
## 57 2014   654
## 58 2015   664
## 59 2016   815
## 60 2017   822
## 61 2018  1025
##Plot
wmap_df = fortify(Counties)
## Regions defined for each Polygons
tmp.df = woothr.pnt@data 

ggplot(wmap_df, aes(long,lat, group=group)) + 
        geom_polygon(fill = "lightgray", col="darkgray") + 
        geom_point(data=tmp.df, 
                   aes(Long, Lat, group=NA), 
                       col = "red",
                       size = 0.5) +
        xlab("Longitude") +
        ylab("Latitude") +
        ggtitle("woothr Locations") +
        #scale_x_longitude(xmin=-110, xmax=80, step=10) +
        #scale_y_latitude(ymin=20, ymax=60, step=10) +
        coord_equal() + 
        theme(panel.grid.minor = element_blank(),
              panel.grid.major = element_blank(),
              panel.background = element_blank(),
              panel.border = element_blank(),
              legend.title = element_text(size=16, face="bold"),
              axis.title.x = element_text(size=22, face="bold"),
              axis.title.y = element_text(size=22, face="bold"),
              plot.title = element_text(size=24, face="bold", hjust = 0.5))