This is an R Markdown Notebook. When you execute code within the notebook, the results appear beneath the code.

Try executing this chunk by clicking the Run button within the chunk or by placing your cursor inside it and pressing Ctrl+Shift+Enter.

plot(cars)

Add a new chunk by clicking the Insert Chunk button on the toolbar or by pressing Ctrl+Alt+I.

When you save the notebook, an HTML file containing the code and output will be saved alongside it (click the Preview button or press Ctrl+Shift+K to preview the HTML file).

The preview shows you a rendered HTML copy of the contents of the editor. Consequently, unlike Knit, Preview does not run any R code chunks. Instead, the output of the chunk when it was last run in the editor is displayed. ############################# Chris Prenner Tidycensu video

library(tidycensus)
library(tidyverse)
census_api_key("6eff16100e6184b9bf0604e510aeba4d429a7dec",install = TRUE,overwrite = TRUE)
Your original .Renviron will be backed up and stored in your R HOME directory if needed.
Your API key has been stored in your .Renviron and can be accessed by Sys.getenv("CENSUS_API_KEY"). 
To use now, restart R or run `readRenviron("~/.Renviron")`
[1] "6eff16100e6184b9bf0604e510aeba4d429a7dec"

Census Data

thousands of variables. to find one use load variables function load_variables( year ,“product”, cache= TRUE)

census_variables_variables<- load_variables(2010, "sf1", cache = TRUE)

get_decinial(geography = " geo“, year =”year“, state=”state“, county=”county, variable= “variable”)

geo is state, county tract, blockbroup

Population variable for all states: P0010001

NOTE REDUCE A ZERO FROM CHRIS VARIABLES ###################$%^&*()

statPop<- get_decennial (geography= "state", year=2010, variable= "P001001")

County Level population

popCounty_NY<- get_decennial(geography = "county", year = 2010, state = "NY",
                             variables = "P001001")

POPULATIONS FOR TRACT ,BLOCK, BLOCK GROUP

Nassau_tract_Pop<- get_decennial(geography = "tract", year = 2010, state = "NY",
                                 county = "Nassau",variables = "P001001")

GROUP BLOCK DOES NOT RUN

Nassau_BlockGroup_Pop<- get_decennial(geography = "block group", year = 2010, state = "MO",
                                 county = "St. Louis city",variables = "P001001")
Getting data from the 2010 decennial Census
Using FIPS code '29' for state 'MO'
Using FIPS code '510' for 'St. Louis city'
Error : One or more of your requested variables is likely not available at the requested geography.  Please refine your selection.
Error in gather_(data, key_col = compat_as_lazy(enquo(key)), value_col = compat_as_lazy(enquo(value)),  : 
  unused argument (-NAME)
NassauBlock_Pop<- get_decennial(geography = "block", year = 2010, state = "NY",
                                county = "Nassau", variables = "P001001")
Getting data from the 2010 decennial Census
Using FIPS code '36' for state 'NY'
Using FIPS code '059' for 'Nassau County'

EACH RACE IS A VARIABLE. BUT WITH TABLE WE CAN DOWNLOAD THE SET OF VARIABLES INSTEAD OF VARIABLE ARGUMENT WE USE TABLE ARGUMENT AND WIDE

Below did not work

census_variables_variables %>%
  filter(concept == "P3. ")

The result should be: NAME label concept P003001 total pop P3 RACE P003002 white alone P3 POO3 black

So the table name is what they have in common: P003

This is SKINNY , long data

Nassau_Race_tract_Skinny<- get_decennial(geography = "tract",year = 2010,
                                  state = "NY", county = "Nassau",
                                  table = "P003",output = "tidy")
Getting data from the 2010 decennial Census
Using FIPS code '36' for state 'NY'
Using FIPS code '059' for 'Nassau County'
Nassau_Race_tract_wide<- get_decennial(geography = "tract",year = 2010,
                                  state = "NY", county = "Nassau",
                                  table = "P003",output = "wide")
Getting data from the 2010 decennial Census
Using FIPS code '36' for state 'NY'
Using FIPS code '059' for 'Nassau County'

########### AMERICAN COMMUNITY SURVEY DATA ######################3 dIFFERENT SET OF VARIABLES

ACS_Variables<- load_variables(2016,"ACS5", cache = TRUE)

get_acs)geography =“geo”, hear = “year”, state=“state”,county=“county”, variable= “variable”, survey=“ACS5”

GEt # of house holds per county and a marginof error.

householdsNY_Counties<- get_acs(geography = "county", year= 2016, state = "NY",
                                variables = "B11001_001",survey = "acs5")
Getting data from the 2012-2016 5-year ACS
Using FIPS code '36' for state 'NY'
householdsNY_Counties_tract<- get_acs(geography = "tract", year= 2016, state = "NY",
                                variables = "B11001_001",survey = "acs5")
Getting data from the 2012-2016 5-year ACS
Using FIPS code '36' for state 'NY'

get_acs( geography = “geo”, year = “year”, state=“st”, county=“county”, output= “wide”, survey = “acs5”)

Nassau_ACS_Table<- get_acs(geography = "tract", year = 2016, state = "NY",
                           county = "Nassau", table = "B11001", output = "wide",
                           survey = "acs5")
Getting data from the 2012-2016 5-year ACS
Using FIPS code '36' for state 'NY'
Using FIPS code '059' for 'Nassau County'
                           )
Error: unexpected ')' in "                           )"
Nassau_Latino_Tract<- get_acs(geography = "tract", year = 2016, state = "NY",
                           county = "Nassau", table = "B03003", output = "wide",
                           survey = "acs5")
Getting data from the 2012-2016 5-year ACS
Using FIPS code '36' for state 'NY'
Using FIPS code '059' for 'Nassau County'
                           
Nassau_Latino_ZCTA<- get_acs(geography = "zcta", year = 2016,
                           table = "B03003", output = "wide",
                           survey = "acs5")
Getting data from the 2012-2016 5-year ACS
dim(Nassau_Latino_ZCTA)
[1] 33120     8
LS0tDQp0aXRsZTogIlIgTm90ZWJvb2siDQpvdXRwdXQ6IGh0bWxfbm90ZWJvb2sNCi0tLQ0KDQpUaGlzIGlzIGFuIFtSIE1hcmtkb3duXShodHRwOi8vcm1hcmtkb3duLnJzdHVkaW8uY29tKSBOb3RlYm9vay4gV2hlbiB5b3UgZXhlY3V0ZSBjb2RlIHdpdGhpbiB0aGUgbm90ZWJvb2ssIHRoZSByZXN1bHRzIGFwcGVhciBiZW5lYXRoIHRoZSBjb2RlLiANCg0KVHJ5IGV4ZWN1dGluZyB0aGlzIGNodW5rIGJ5IGNsaWNraW5nIHRoZSAqUnVuKiBidXR0b24gd2l0aGluIHRoZSBjaHVuayBvciBieSBwbGFjaW5nIHlvdXIgY3Vyc29yIGluc2lkZSBpdCBhbmQgcHJlc3NpbmcgKkN0cmwrU2hpZnQrRW50ZXIqLiANCg0KYGBge3J9DQpwbG90KGNhcnMpDQpgYGANCg0KQWRkIGEgbmV3IGNodW5rIGJ5IGNsaWNraW5nIHRoZSAqSW5zZXJ0IENodW5rKiBidXR0b24gb24gdGhlIHRvb2xiYXIgb3IgYnkgcHJlc3NpbmcgKkN0cmwrQWx0K0kqLg0KDQpXaGVuIHlvdSBzYXZlIHRoZSBub3RlYm9vaywgYW4gSFRNTCBmaWxlIGNvbnRhaW5pbmcgdGhlIGNvZGUgYW5kIG91dHB1dCB3aWxsIGJlIHNhdmVkIGFsb25nc2lkZSBpdCAoY2xpY2sgdGhlICpQcmV2aWV3KiBidXR0b24gb3IgcHJlc3MgKkN0cmwrU2hpZnQrSyogdG8gcHJldmlldyB0aGUgSFRNTCBmaWxlKS4NCg0KVGhlIHByZXZpZXcgc2hvd3MgeW91IGEgcmVuZGVyZWQgSFRNTCBjb3B5IG9mIHRoZSBjb250ZW50cyBvZiB0aGUgZWRpdG9yLiBDb25zZXF1ZW50bHksIHVubGlrZSAqS25pdCosICpQcmV2aWV3KiBkb2VzIG5vdCBydW4gYW55IFIgY29kZSBjaHVua3MuIEluc3RlYWQsIHRoZSBvdXRwdXQgb2YgdGhlIGNodW5rIHdoZW4gaXQgd2FzIGxhc3QgcnVuIGluIHRoZSBlZGl0b3IgaXMgZGlzcGxheWVkLg0KIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMNCkNocmlzIFByZW5uZXIgVGlkeWNlbnN1IHZpZGVvDQoNCmBgYHtyfQ0KbGlicmFyeSh0aWR5Y2Vuc3VzKQ0KbGlicmFyeSh0aWR5dmVyc2UpDQpgYGANCg0KYGBge3J9DQpjZW5zdXNfYXBpX2tleSgiNmVmZjE2MTAwZTYxODRiOWJmMDYwNGU1MTBhZWJhNGQ0MjlhN2RlYyIsaW5zdGFsbCA9IFRSVUUsb3ZlcndyaXRlID0gVFJVRSkNCmBgYA0KQ2Vuc3VzIERhdGENCg0KdGhvdXNhbmRzIG9mIHZhcmlhYmxlcy4gIHRvIGZpbmQgb25lIHVzZSBsb2FkIHZhcmlhYmxlcyBmdW5jdGlvbg0KbG9hZF92YXJpYWJsZXMoIHllYXIgLCJwcm9kdWN0IiwgY2FjaGU9IFRSVUUpDQoNCmBgYHtyfQ0KY2Vuc3VzX3ZhcmlhYmxlc192YXJpYWJsZXM8LSBsb2FkX3ZhcmlhYmxlcygyMDEwLCAic2YxIiwgY2FjaGUgPSBUUlVFKQ0KYGBgDQoNCmdldF9kZWNpbmlhbChnZW9ncmFwaHkgPSAiIGdlbyIsIHllYXIgPSAieWVhciIsIHN0YXRlPSJzdGF0ZSIsDQogICAgICAgICAgY291bnR5PSJjb3VudHksIHZhcmlhYmxlPSAidmFyaWFibGUiKQ0KICAgICAgICAgIA0KZ2VvIGlzIHN0YXRlLCBjb3VudHkgdHJhY3QsIGJsb2NrYnJvdXANCg0KUG9wdWxhdGlvbiB2YXJpYWJsZSBmb3IgYWxsIHN0YXRlczogUDAwMTAwMDENCg0KTk9URSBSRURVQ0UgQSBaRVJPIEZST00gQ0hSSVMgVkFSSUFCTEVTICMjIyMjIyMjIyMjIyMjIyMjIyMkJV4mKigpDQpgYGB7cn0NCnN0YXRQb3A8LSBnZXRfZGVjZW5uaWFsIChnZW9ncmFwaHk9ICJzdGF0ZSIsIHllYXI9MjAxMCwgdmFyaWFibGU9ICJQMDAxMDAxIikNCmBgYA0KDQoNCkNvdW50eSBMZXZlbCBwb3B1bGF0aW9uDQpgYGB7cn0NCnBvcENvdW50eV9OWTwtIGdldF9kZWNlbm5pYWwoZ2VvZ3JhcGh5ID0gImNvdW50eSIsIHllYXIgPSAyMDEwLCBzdGF0ZSA9ICJOWSIsDQogICAgICAgICAgICAgICAgICAgICAgICAgICAgIHZhcmlhYmxlcyA9ICJQMDAxMDAxIikNCmBgYA0KDQpQT1BVTEFUSU9OUyBGT1IgVFJBQ1QgLEJMT0NLLCBCTE9DSyBHUk9VUA0KDQpgYGB7cn0NCk5hc3NhdV90cmFjdF9Qb3A8LSBnZXRfZGVjZW5uaWFsKGdlb2dyYXBoeSA9ICJ0cmFjdCIsIHllYXIgPSAyMDEwLCBzdGF0ZSA9ICJOWSIsDQogICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICBjb3VudHkgPSAiTmFzc2F1Iix2YXJpYWJsZXMgPSAiUDAwMTAwMSIpDQpgYGANCg0KDQpHUk9VUCBCTE9DSyBET0VTIE5PVCBSVU4NCmBgYHtyfQ0KTmFzc2F1X0Jsb2NrR3JvdXBfUG9wPC0gZ2V0X2RlY2VubmlhbChnZW9ncmFwaHkgPSAiYmxvY2sgZ3JvdXAiLCB5ZWFyID0gMjAxMCwgc3RhdGUgPSAiTU5ZLA0KICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgY291bnR5ID0gIk5hc3NhdSIsdmFyaWFibGVzID0gIlAwMDEwMDEiKQ0KYGBgDQoNCmBgYHtyfQ0KTmFzc2F1QmxvY2tfUG9wPC0gZ2V0X2RlY2VubmlhbChnZW9ncmFwaHkgPSAiYmxvY2siLCB5ZWFyID0gMjAxMCwgc3RhdGUgPSAiTlkiLA0KICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICBjb3VudHkgPSAiTmFzc2F1IiwgdmFyaWFibGVzID0gIlAwMDEwMDEiKQ0KYGBgDQoNCg0KRUFDSCBSQUNFIElTIEEgVkFSSUFCTEUuICBCVVQgV0lUSCBUQUJMRSBXRSBDQU4gRE9XTkxPQUQgVEhFIFNFVCBPRiBWQVJJQUJMRVMNCklOU1RFQUQgT0YgVkFSSUFCTEUgQVJHVU1FTlQgV0UgVVNFIFRBQkxFIEFSR1VNRU5UIEFORCBXSURFDQoNCkJlbG93IGRpZCBub3Qgd29yaw0KYGBge3Igc2hvdy12YXJpYWJsZXN9DQpjZW5zdXNfdmFyaWFibGVzX3ZhcmlhYmxlcyAlPiUNCiAgZmlsdGVyKGNvbmNlcHQgPT0gIlAzLiBSQUNFIFs4XSIpDQpgYGANCiBUaGUgcmVzdWx0IHNob3VsZCBiZToNCiBOQU1FICAgICAgICAgICBsYWJlbCAgICAgICAgICAgY29uY2VwdA0KIFAwMDMwMDEgICAgICAgIHRvdGFsIHBvcCAgICAgICBQMyBSQUNFDQogUDAwMzAwMiAgICAgICAgd2hpdGUgYWxvbmUgICAgIFAzDQogUE9PMyAgICAgICAgICAgYmxhY2sNCiANCiBTbyB0aGUgdGFibGUgbmFtZSBpcyB3aGF0ICB0aGV5IGhhdmUgaW4gY29tbW9uOiAgUDAwMw0KIA0KIFRoaXMgaXMgU0tJTk5ZICwgbG9uZyBkYXRhDQpgYGB7cn0NCk5hc3NhdV9SYWNlX3RyYWN0X1NraW5ueTwtIGdldF9kZWNlbm5pYWwoZ2VvZ3JhcGh5ID0gInRyYWN0Iix5ZWFyID0gMjAxMCwNCiAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICBzdGF0ZSA9ICJOWSIsIGNvdW50eSA9ICJOYXNzYXUiLA0KICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgIHRhYmxlID0gIlAwMDMiLG91dHB1dCA9ICJ0aWR5IikNCmBgYA0KIA0KYGBge3J9DQpOYXNzYXVfUmFjZV90cmFjdF93aWRlPC0gZ2V0X2RlY2VubmlhbChnZW9ncmFwaHkgPSAidHJhY3QiLHllYXIgPSAyMDEwLA0KICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgIHN0YXRlID0gIk5ZIiwgY291bnR5ID0gIk5hc3NhdSIsDQogICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgdGFibGUgPSAiUDAwMyIsb3V0cHV0ID0gIndpZGUiKQ0KYGBgDQogDQogIyMjIyMjIyMjIyMgQU1FUklDQU4gQ09NTVVOSVRZIFNVUlZFWSBEQVRBICMjIyMjIyMjIyMjIyMjIyMjIyMjIyMzDQogZElGRkVSRU5UIFNFVCBPRiBWQVJJQUJMRVMNCmBgYHtyfQ0KQUNTX1ZhcmlhYmxlczwtIGxvYWRfdmFyaWFibGVzKDIwMTYsIkFDUzUiLCBjYWNoZSA9IFRSVUUpDQpgYGANCiANCiBnZXRfYWNzKWdlb2dyYXBoeSA9ImdlbyIsIGhlYXIgPSAieWVhciIsIHN0YXRlPSJzdGF0ZSIsY291bnR5PSJjb3VudHkiLA0KICAgICAgICB2YXJpYWJsZT0gInZhcmlhYmxlIiwgc3VydmV5PSJBQ1M1Ig0KDQoNCg0KR0V0ICMgb2YgaG91c2UgaG9sZHMgcGVyIGNvdW50eSBhbmQgYSBtYXJnaW5vZiBlcnJvci4gICAgICAgIA0KYGBge3J9DQpob3VzZWhvbGRzTllfQ291bnRpZXM8LSBnZXRfYWNzKGdlb2dyYXBoeSA9ICJjb3VudHkiLCB5ZWFyPSAyMDE2LCBzdGF0ZSA9ICJOWSIsDQogICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgIHZhcmlhYmxlcyA9ICJCMTEwMDFfMDAxIixzdXJ2ZXkgPSAiYWNzNSIpDQpgYGANCg0KYGBge3J9DQpob3VzZWhvbGRzTllfQ291bnRpZXNfdHJhY3Q8LSBnZXRfYWNzKGdlb2dyYXBoeSA9ICJ0cmFjdCIsIHllYXI9IDIwMTYsIHN0YXRlID0gIk5ZIiwNCiAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgdmFyaWFibGVzID0gIkIxMTAwMV8wMDEiLHN1cnZleSA9ICJhY3M1IikNCmBgYA0KIA0KIGdldF9hY3MoIGdlb2dyYXBoeSA9ICJnZW8iLCB5ZWFyID0gInllYXIiLCBzdGF0ZT0ic3QiLCBjb3VudHk9ImNvdW50eSIsDQogICAgICAgIG91dHB1dD0gIndpZGUiLCBzdXJ2ZXkgPSAiYWNzNSIpDQoNCg0KYGBge3J9DQpOYXNzYXVfQUNTX1RhYmxlPC0gZ2V0X2FjcyhnZW9ncmFwaHkgPSAidHJhY3QiLCB5ZWFyID0gMjAxNiwgc3RhdGUgPSAiTlkiLA0KICAgICAgICAgICAgICAgICAgICAgICAgICAgY291bnR5ID0gIk5hc3NhdSIsIHRhYmxlID0gIkIxMTAwMSIsIG91dHB1dCA9ICJ3aWRlIiwNCiAgICAgICAgICAgICAgICAgICAgICAgICAgIHN1cnZleSA9ICJhY3M1IikNCiAgICAgICAgICAgICAgICAgICAgICAgICAgICkNCmBgYA0KYGBge3J9DQpOYXNzYXVfTGF0aW5vX1RyYWN0PC0gZ2V0X2FjcyhnZW9ncmFwaHkgPSAidHJhY3QiLCB5ZWFyID0gMjAxNiwgc3RhdGUgPSAiTlkiLA0KICAgICAgICAgICAgICAgICAgICAgICAgICAgY291bnR5ID0gIk5hc3NhdSIsIHRhYmxlID0gIkIwMzAwMyIsIG91dHB1dCA9ICJ3aWRlIiwNCiAgICAgICAgICAgICAgICAgICAgICAgICAgIHN1cnZleSA9ICJhY3M1IikNCiAgICAgICAgICAgICAgICAgICAgICAgICAgIA0KYGBgDQoNCmBgYHtyfQ0KTmFzc2F1X0xhdGlub19aQ1RBPC0gZ2V0X2FjcyhnZW9ncmFwaHkgPSAiemN0YSIsIHllYXIgPSAyMDE2LA0KICAgICAgICAgICAgICAgICAgICAgICAgICAgdGFibGUgPSAiQjAzMDAzIiwgb3V0cHV0ID0gIndpZGUiLA0KICAgICAgICAgICAgICAgICAgICAgICAgICAgc3VydmV5ID0gImFjczUiKQ0KYGBgDQoNCmBgYHtyfQ0KZGltKE5hc3NhdV9MYXRpbm9fWkNUQSkNCmBgYA0KDQoNCg==