Synopsis

This project explores NOAA storm database to track characteristics of major storms and weather events in the United States because Storms and other severe weather events can cause both public health and economic problems for communities and municipalities. Many severe events can result in fatalities, injuries, and property damage, and preventing such outcomes to the extent possible is a key concern.

2: Data Processing

2.1: Data Loading

raw data file was downloaded and extracted into a dataframe.later convert into data.table

library("data.table")
## Warning: package 'data.table' was built under R version 3.5.3
library("ggplot2")
## Warning: package 'ggplot2' was built under R version 3.5.3
fileUrl <- "https://d396qusza40orc.cloudfront.net/repdata%2Fdata%2FStormData.csv.bz2"
download.file(fileUrl, destfile = paste0("C:/Users/Mahe/Documents/R/all programes", '/repdata%2Fdata%2FStormData.csv.bz2'))
stormDF <- read.csv("C:/Users/Mahe/Documents/R/all programes/repdata%2Fdata%2FStormData.csv.bz2")
# Converting data.frame to data.table
stormDT <- as.data.table(stormDF)

2.2: Examining Column Names

colnames(stormDT)
##  [1] "STATE__"    "BGN_DATE"   "BGN_TIME"   "TIME_ZONE"  "COUNTY"    
##  [6] "COUNTYNAME" "STATE"      "EVTYPE"     "BGN_RANGE"  "BGN_AZI"   
## [11] "BGN_LOCATI" "END_DATE"   "END_TIME"   "COUNTY_END" "COUNTYENDN"
## [16] "END_RANGE"  "END_AZI"    "END_LOCATI" "LENGTH"     "WIDTH"     
## [21] "F"          "MAG"        "FATALITIES" "INJURIES"   "PROPDMG"   
## [26] "PROPDMGEXP" "CROPDMG"    "CROPDMGEXP" "WFO"        "STATEOFFIC"
## [31] "ZONENAMES"  "LATITUDE"   "LONGITUDE"  "LATITUDE_E" "LONGITUDE_"
## [36] "REMARKS"    "REFNUM"

2.3: Data Subsetting

only required parameters in the dataset are subsetted

# Finding columns to remove
cols2Remove <- colnames(stormDT[, !c("EVTYPE"
  , "FATALITIES"
  , "INJURIES"
  , "PROPDMG"
  , "PROPDMGEXP"
  , "CROPDMG"
  , "CROPDMGEXP")])
# Removing columns
stormDT[, c(cols2Remove) := NULL]
# Only use data where fatalities or injuries occurred.  
stormDT <- stormDT[(EVTYPE != "?" & 
             (INJURIES > 0 | FATALITIES > 0 | PROPDMG > 0 | CROPDMG > 0)), c("EVTYPE"
                                                                            , "FATALITIES"
                                                                            , "INJURIES"
                                                                            , "PROPDMG"
                                                                            , "PROPDMGEXP"
                                                                            , "CROPDMG"
                                                                            , "CROPDMGEXP") ]

2.4: Converting Exponent Columns into Actual Exponents instead of (-,+, H, K, etc)

Making the PROPDMGEXP and CROPDMGEXP columns cleaner to calculate property and crop cost.

# Change all damage exponents to uppercase.
cols <- c("PROPDMGEXP", "CROPDMGEXP")
stormDT[,  (cols) := c(lapply(.SD, toupper)), .SDcols = cols]
# Map property damage alphanumeric exponents to numeric values.
propDmgKey <-  c("\"\"" = 10^0,
                 "-" = 10^0, 
                 "+" = 10^0,
                 "0" = 10^0,
                 "1" = 10^1,
                 "2" = 10^2,
                 "3" = 10^3,
                 "4" = 10^4,
                 "5" = 10^5,
                 "6" = 10^6,
                 "7" = 10^7,
                 "8" = 10^8,
                 "9" = 10^9,
                 "H" = 10^2,
                 "K" = 10^3,
                 "M" = 10^6,
                 "B" = 10^9)
# Map crop damage alphanumeric exponents to numeric values
cropDmgKey <-  c("\"\"" = 10^0,
                "?" = 10^0, 
                "0" = 10^0,
                "K" = 10^3,
                "M" = 10^6,
                "B" = 10^9)
stormDT[, PROPDMGEXP := propDmgKey[as.character(stormDT[,PROPDMGEXP])]]
stormDT[is.na(PROPDMGEXP), PROPDMGEXP := 10^0 ]
stormDT[, CROPDMGEXP := cropDmgKey[as.character(stormDT[,CROPDMGEXP])] ]
stormDT[is.na(CROPDMGEXP), CROPDMGEXP := 10^0 ]

2.5: Making Economic Cost Columns

stormDT <- stormDT[, .(EVTYPE, FATALITIES, INJURIES, PROPDMG, PROPDMGEXP, propCost = PROPDMG * PROPDMGEXP, CROPDMG, CROPDMGEXP, cropCost = CROPDMG * CROPDMGEXP)]

2.6: Calcuating Total Property and Crop Cost

totalCostDT <- stormDT[, .(propCost = sum(propCost), cropCost = sum(cropCost), Total_Cost = sum(propCost) + sum(cropCost)), by = .(EVTYPE)]
totalCostDT <- totalCostDT[order(-Total_Cost), ]
totalCostDT <- totalCostDT[1:10, ]
head(totalCostDT, 5)
##               EVTYPE     propCost   cropCost   Total_Cost
## 1:             FLOOD 144657709807 5661968450 150319678257
## 2: HURRICANE/TYPHOON  69305840000 2607872800  71913712800
## 3:           TORNADO  56947380677  414953270  57362333947
## 4:       STORM SURGE  43323536000       5000  43323541000
## 5:              HAIL  15735267513 3025954473  18761221986

2.7: Calcuating Total Fatalities and Injuries

totalInjuriesDT <- stormDT[, .(FATALITIES = sum(FATALITIES), INJURIES = sum(INJURIES), totals = sum(FATALITIES) + sum(INJURIES)), by = .(EVTYPE)]
totalInjuriesDT <- totalInjuriesDT[order(-FATALITIES), ]
totalInjuriesDT <- totalInjuriesDT[1:10, ]
head(totalInjuriesDT, 5)
##            EVTYPE FATALITIES INJURIES totals
## 1:        TORNADO       5633    91346  96979
## 2: EXCESSIVE HEAT       1903     6525   8428
## 3:    FLASH FLOOD        978     1777   2755
## 4:           HEAT        937     2100   3037
## 5:      LIGHTNING        816     5230   6046

3: Results

3.1:Harmful to Population Health

Melting data.table so that it is easier to put in bar graph format

bad_stuff <- melt(totalInjuriesDT, id.vars="EVTYPE", variable.name = "bad_thing")
head(bad_stuff, 5)
##            EVTYPE  bad_thing value
## 1:        TORNADO FATALITIES  5633
## 2: EXCESSIVE HEAT FATALITIES  1903
## 3:    FLASH FLOOD FATALITIES   978
## 4:           HEAT FATALITIES   937
## 5:      LIGHTNING FATALITIES   816
# Create chart
healthChart <- ggplot(bad_stuff, aes(x=reorder(EVTYPE, -value), y=value))
# Plot data as bar chart
healthChart = healthChart + geom_bar(stat="identity", aes(fill=bad_thing), position="dodge")
# Format y-axis scale and set y-axis label
healthChart = healthChart + ylab("Frequency Count") 
# Set x-axis label
healthChart = healthChart + xlab("Event Type") 
# Rotate x-axis tick labels 
healthChart = healthChart + theme(axis.text.x = element_text(angle=45, hjust=1))
# Set chart title and center it
healthChart = healthChart + ggtitle("Top 10 US Killers") + theme(plot.title = element_text(hjust = 0.5))
healthChart

3.2: Greatest Economic Consequences

Melting data.table so that it is easier to put in bar graph format

econ_consequences <- melt(totalCostDT, id.vars="EVTYPE", variable.name = "Damage_Type")
head(econ_consequences, 5)
##               EVTYPE Damage_Type        value
## 1:             FLOOD    propCost 144657709807
## 2: HURRICANE/TYPHOON    propCost  69305840000
## 3:           TORNADO    propCost  56947380677
## 4:       STORM SURGE    propCost  43323536000
## 5:              HAIL    propCost  15735267513
# Create chart
econChart <- ggplot(econ_consequences, aes(x=reorder(EVTYPE, -value), y=value))
# Plot data as bar chart
econChart = econChart + geom_bar(stat="identity", aes(fill=Damage_Type), position="dodge")
# Format y-axis scale and set y-axis label
econChart = econChart + ylab("Cost (dollars)") 
# Set x-axis label
econChart = econChart + xlab("Event Type") 
# Rotate x-axis tick labels 
econChart = econChart + theme(axis.text.x = element_text(angle=45, hjust=1))
# Set chart title and center it
econChart = econChart + ggtitle("Top 10 US Storm Events causing Economic Consequences") + theme(plot.title = element_text(hjust = 0.5))
econChart