__________________________________________________________________________________________________________________________
\[ \tau_0=\gamma R S \] \[ \tau_0=9810\cdot 0.6 \cdot 0.0005 \] \[ \tau_0=2.943 \ N/m² =2.943 \ Pa \] \[ \tau_0=2.943 \cdot 0.02 = 0.05886 \ lbs/ft^2 \]
\[ U=0.7 m/s \cdot 3.28 = 2.296 ft/s \]
\[ \tau_0 \cdot U=0.05886\cdot2.296=0.135\ lbs/(ft\cdot s) \]
Figure 1:Simons and Richardson (1961) Diagram
\[ F_g =\frac{U}{\sqrt{g\cdot d_{50} \cdot (\rho_s-\rho)/\rho}} \] \[ F_g =\frac{0.8}{\sqrt{9.81\cdot 0.00025 \cdot (2650-1000)/1000}} \] \[ F_g =12.58 \]
Figure 2:Brownlie (1983) Diagram
\[ Fr =\frac{U}{\sqrt{g\cdot h }} \] \[ Fr =\frac{0.8}{\sqrt{9.81\cdot 0.6 }} \] \[ Fr =0.3297 \] \[ Fr_l =2.716\Bigg(\frac{h}{d_{50}}\Bigg)^{-0.25} \] \[ Fr_l =2.716\Bigg(\frac{0.6}{0.00025}\Bigg)^{-0.25} \] \[ Fr_l =0.388 \]
\[ Fr_u =4.785\Bigg(\frac{h}{0.00025}\Bigg)^{-0.27} \] \[ Fr_u =4.785\Bigg(\frac{0.6}{d_{50}}\Bigg)^{-0.27} \] \[ Fr_u =0.585 \]
\[ U=\frac{Q}{A}=\frac{Q}{Bh}=\frac{q}{h}=\frac{10}{10}=1 m/s \]
\[ C^{'}_{h}=18log\Bigg(\frac{4h}{d_{90}}\Bigg) \] \[ C^{'}_{h}=18log\Bigg(\frac{4\cdot 10}{0.001}\Bigg) \] \[ C^{'}_{h}=82.83 \]
\[ u^{'}_{*}=\frac{U\cdot g^{0.5}}{C^{'}_{h}} \] \[ u^{'}_{*}=\frac{1\cdot 9.81^{0.5}}{82.83} \] \[ u^{'}_{*}=0.03781 \]
\[ D^{*}=d\cdot\Bigg(\Bigg(\frac{\rho_s}{\rho}-1\Bigg)\cdot \frac{g}{\nu^2}\Bigg) \] \[ D^{*}=0.0005\cdot\Bigg(\Bigg(\frac{2650}{1000}-1\Bigg)\cdot \frac{9.81}{(10^{-6})^2}\Bigg) \] \[ D^{*}=12.64 \]
\[ A=0.215+\frac{6.79}{D^{1.7}_*}-0.075\cdot e^{-0.00262D^*} \] \[ A=0.215+\frac{6.79}{12.64^{1.7}}-0.075\cdot e^{-0.00262\cdot 12.64}=0.2333 \] \[ A=0.233 \]
\[ \omega_s=\frac{\nu}{d_{50}}\Bigg(\sqrt{25+1.2D^2_{*}}-5\Bigg)^{1.5} \] \[ \omega_s=\frac{10^{-6}}{0.0005}\Bigg(\sqrt{25+1.2 \cdot 12.64^2 }-5\Bigg)^{1.5} \]
\[ \omega_s=0.0607 \]
\[ u^*_c=A\cdot\omega_s \] \[ u^*_c=0.233\cdot 0.0607 \] \[ u^*_c=0.0141 \]
\[ T=\Bigg(\frac{u_*}{u_{*cr}}\Bigg)^2-1 \] \[ T=\Bigg(\frac{0.03781}{0.014162}\Bigg)^2-1 \] \[ T=6.1278 \]
\[ \Delta_d/h=0.11 \cdot \Bigg(\frac{d_{50}}{h}\Bigg)^{0.3}\cdot(1-e^{-0.5T})\cdot (25-T) \] \[ \Delta_d=\Bigg(0.11 \cdot \Bigg(\frac{d_{50}}{h}\Bigg)^{0.3}\cdot(1-e^{-0.5T})\cdot (25-T)\Bigg)\cdot h \] \[ \Delta_d=\Bigg(0.11 \cdot \Bigg(\frac{0.0005}{10}\Bigg)^{0.3}\cdot(1-e^{-0.5\cdot 6.127})\cdot (25-6.127)\Bigg)\cdot h \] \[ \Delta_d=1.014 \]
\[ \lambda=7.3\cdot h \] \[ \lambda=7.3\cdot 10 \] \[ \lambda=73 \]
\[ C_h=18\cdot log\Bigg(\frac{12R_b}{k_s}\Bigg) \] \[ C_h=18\cdot log\Bigg(\frac{12\cdot 10}{0.33}\Bigg) \] \[ C_h=46.083 \]
\[ U'=C_h \cdot \sqrt{(R\cdot S_0)} \] \[ U'=46.083 \cdot \sqrt{(10\cdot 0.001)} \]
\[ U'=4.608 \]
\[ U=\frac{Q}{A}=\frac{Q}{bh}=\frac{q}{h}=\frac{5}{3}=1.66 \]
\[ D^{*}=d\cdot\Bigg(\Bigg(\frac{\rho_s}{\rho}-1\Bigg)\cdot \frac{g}{\nu^2}\Bigg) \] \[ D^{*}=0.0004\cdot\Bigg(\Bigg(\frac{2650}{1000}-1\Bigg)\cdot \frac{9.81}{(10^{-6})^2}\Bigg) \] \[ D^{*}=10.12 \]
\[ \tau_c=(\gamma_s-\gamma)\cdot d \cdot 0.0685\cdot D^{-0.27}_* \] \[ \tau_c=(25996.5-9810)\cdot 0.0004 \cdot 0.0685\cdot 10.12^{-0.27} \] \[ \tau_c=0.2374 \]
\[ F_r=\frac{U}{\sqrt{gh}} \] \[ F_r=\frac{1.66}{\sqrt{9.81 \cdot 3}} \] \[ F_r=0.307 \]
\[ R_b=\frac{h}{1+\frac{0.055h}{B^2}} \] Assuming a wide channel the second fraction term of the denominater should be closer to 0
\[ R_b=\frac{3}{1}=3 \]
\[ \tau_b=\gamma_bR_bS \] \[ \tau_b=9810\cdot 3\cdot 0.0005 \] \[ \tau_b=14.74 \]
\[ n'=\frac{d^{1/6}_{50}}{20} \] \[ n'=\frac{0.0004^{1/6}}{20} \] \[ n'=0.0135 \]
\[ \frac{A_n}{g^{1/2}F_r^{1/3}}=\frac{8[1+0.0235(\tau^{'}_b/\tau_{c50})^{1.25}]}{(\tau^{'}_b/\tau_{c50})^{1/3}} \]
\[ \frac{20}{9.81^{1/2}0.307^{1/3}}=\frac{8[1+0.0235(\tau^{'}_b/0.2374)^{1.25}]}{(\tau^{'}_b/0.2374)^{1/3}} \]
\[ \tau^{'}_b=0.149 \]
\[ \tau^{'}_b=\Bigg(\frac{n^{'}}{n} \Bigg)^{1.5} \tau_b \]
\[ 0.149=\Bigg(\frac{0.0135}{n} \Bigg)^{1.5} 14.74 \]
\[ n=0.028 \]
\[ Q=\frac{1}{n}AR^{2/3}S^{1/2} \]
Assuming wide channel
\[ Q=\frac{1}{n}Bh h^{2/3}S^{1/2} \] \[ \frac{Q}{B}=\frac{1}{n}Bh^{5/3}S^{1/2} \] \[ q=\frac{1}{n}Bh^{5/3}S^{1/2} \]
Isolating h
\[ h=\Bigg(\frac{q\cdot n}{S^{1/2}}\Bigg)^{3/5} \]
\[ h=2.8 \]