library(car)
## Loading required package: carData
library(stargazer)
## 
## Please cite as:
##  Hlavac, Marek (2018). stargazer: Well-Formatted Regression and Summary Statistics Tables.
##  R package version 5.2.2. https://CRAN.R-project.org/package=stargazer
library(survey)
## Loading required package: grid
## Loading required package: Matrix
## Loading required package: survival
## 
## Attaching package: 'survey'
## The following object is masked from 'package:graphics':
## 
##     dotchart
library(questionr)
library(foreign)
library(dplyr)
## 
## Attaching package: 'dplyr'
## The following object is masked from 'package:car':
## 
##     recode
## The following objects are masked from 'package:stats':
## 
##     filter, lag
## The following objects are masked from 'package:base':
## 
##     intersect, setdiff, setequal, union
brfss2017=read.xport("~/Desktop/DataFolder/brfss.XPT ")
brfss2016=read.xport("~/Desktop/DataFolder/brfss2016.XPT ")
#Marital Status; Are you? (marital status): 1 Married, 2 Divorced, 3 Widowed, 4 Seprarated, 5 Never married, 6 Partner, 9 Refuse
brfss2017$marital<-Recode(brfss2017$MARITAL,recodes="1='b-Married';5='a-Single';2:4='c-D/W/S';6='partner';else=NA",as.factor=T)
#Sexual Orientation; Do you consider yourself to be? (sexual orientation): 1 Straight, 2 Gay, 3 Bisexual, 4 Other, 7 Don't know, 9 Refuse
brfss2017$sxorient<-Recode(brfss2017$SXORIENT,recodes="1='a-Straight';2='b-Gay';3='Bisexual';4:7='Other';else=NA",as.factor=T)
#Income 
brfss2017$income<-Recode(brfss2017$INCOME2,recodes="1:3='<$20k';4:5='$20k<$35k';6='35k<50k';7='50k<75';8='>75k';else=NA",as.factor=T)
#Age
brfss2017$age<-Recode(brfss2017$X_AGE_G, recodes="1='18-24';2='25-34';3='35-44';4='45-54';5='55-64';6='65+';else=NA",as.factor=T)
#Education
brfss2017$educ<-Recode(brfss2017$EDUCA, recodes="1:2='0Prim'; 3='1somehs'; 4='2hsgrad'; 5='3somecol'; 6='4colgrad';9=NA", as.factor=T)
brfss2017$educ<-relevel(brfss2017$educ, ref='0Prim')
#Health Insurance; Do you have health care coverage? 1 Yes, 2 No, 7 Dont know, 9 Refuse
brfss2017$insurance<-Recode(brfss2017$HLTHPLN1,recodes="1='Y';2='N';else=NA",as.factor=T)
#DR Checkup; Had a doctor checkup with the last...?  1 year, 2 years, 5 years, 5+ years
brfss2017$checkup<-Recode(brfss2017$CHECKUP1,recodes="1='1 year';2='2 years';3='5 years';4='5+ years';else=NA",as.factor=T)
#Mental Health; How many days during the past 30 days was your mental health not good? 1-30, 88 None, 77 Don't Know, 99 Refuse

#Interaction between marital status and sexual orientation
brfss2017$marXsxo<-interaction(brfss2017$marital,brfss2017$sxorient)
brfss2017$marXsxo<-as.factor(brfss2017$marXsxo)
#Interaction between marital status and sexual orientation recoded to gay people only (gay single and gay married)
#brfss2017$int1<-Recode(brfss2017$int,recodes="0.1=0.1;1.1=1.1;else=NA",as.factor=T)
#Interaction between marital status and sexual orientation recoded to married people only (married straight and married gay)
#brfss2017$int2<-Recode(brfss2017$int,recodes="'M.G'='M.G';'M.S'='M.S';else=NA",as.factor=T)
#Homeowner; Do you own or rent your home? 1 Own, 2 Rent, 3 Other, 7 Don't know, 9 Refuse
brfss2017$ownhome<-Recode(brfss2017$RENTHOM1,recodes="1='Y';2:3='N';else=NA",as.factor=T)
#Smoking; Do you now smoke cigarettes every day, some days, or not at all? 1 Everyday, 2 Some days, 3 Not at all, 7 Don't know, 9 Refuse
brfss2017$smoke<-Recode(brfss2017$SMOKDAY2,recodes="1:2='Y';3='N';else=NA",as.factor=T)
#Was there a time in the past 12 months when you needed to see a doctor but could not because of cost? 1 Yes, 2 No, 7 Don't know, 9 Refuse
brfss2017$medcost<-Recode(brfss2017$MEDCOST,recodes="1='Y';2='N';else=NA",as.factor=T)
#During the past 30 days, on the days when you drank, about how many drinks did you drink on the average?
brfss2017$drinks<-Recode(brfss2017$AVEDRNK2,recodes="1:5='1-5';5:10='5-10';10:30='10-30';77=NA;99=NA;else=NA",as.factor=T)
#BMI; Four-categories of Body Mass Index (BMI): 1 Underweight, 2 Normal Weight, 3 Overweight, 4 Obese
brfss2017$bmi<-brfss2017$X_BMI5CAT
#Not good mental health days: 1 (0 days), 2 (1-13 days), 3 (14-30 days), 9 Don't know
brfss2017$badmental<-Recode(brfss2017$X_MENT14D,recodes="1=0;2:3=1;9=NA;else=NA",as.factor=T)
#Race/Ethnicity; 1 White, 2 Black, 3 Other, 4 Multiracial, 5 Hispanic, 9 Don't know
brfss2017$race<-Recode(brfss2017$X_RACEGR3, recodes="2='black'; 1='awhite'; 3:4='other';5='hispanic'; else=NA",as.factor=T)
brfss2017$race<-relevel(brfss2017$race, ref='awhite')
#Sex; 1 Male, 2 Female
brfss2017$sex<-Recode(brfss2017$SEX,recodes="1=1;2=0;9=NA;else=NA",as.factor=T)
brfss2017$genh<-Recode(brfss2017$GENHLTH,recodes="1:3='aGood';4:5='Bad';else=NA",as.factor=T)
brfss2017$physh<-Recode(brfss2017$PHYSHLTH,recodes="88=0;77=NA;99=NA",as.factor=T)
#Mental Health; How many days during the past 30 days was your mental health not good? 1-30, 88 None, 77 Don't Know, 99 Refuse
brfss2017$menth<-Recode(brfss2017$MENTHLTH,recodes="88=0;77=NA;99=NA",as.factor=T)
brfss2017$emosupport<-Recode(brfss2017$EMTSUPRT,recodes="1:2='a-Yes';3='b-Sometimes';4:5='c-No';else=NA",as.factor=T)
brfss2017$satisfed<-Recode(brfss2017$LSATISFY,recodes="1:2='a-Satisfied';3:4='b-Dissatisfied';else=NA",as.factor=T)
brfss2017$employ<-Recode(brfss2017$EMPLOY1,recodes="1:2='Yes';3:4='No';5:8='other';else=NA",as.factor=T)
brfss2017$personalDR<-Recode(brfss2017$PERSDOC2,recodes="1:2='Yes';3='No';else=NA",as.factor=T)
brfss2017$flushot<-Recode(brfss2017$FLUSHOT6,recode="1='Yes';2='No';else=NA",as.factor=T)
#Marital Status; Are you? (marital status): 1 Married, 2 Divorced, 3 Widowed, 4 Seprarated, 5 Never married, 6 Partner, 9 Refuse
brfss2016$marital<-Recode(brfss2016$MARITAL,recodes="1='b-Married';5='a-Single';2:4='c-D/W/S';6='partner';else=NA",as.factor=T)
#Sexual Orientation; Do you consider yourself to be? (sexual orientation): 1 Straight, 2 Gay, 3 Bisexual, 4 Other, 7 Don't know, 9 Refuse
brfss2016$sxorient<-Recode(brfss2016$SXORIENT,recodes="1='a-Straight';2='b-Gay';3='Bisexual';4:7='Other';else=NA",as.factor=T)
#Income 
brfss2016$income<-Recode(brfss2016$INCOME2,recodes="1:3='<$20k';4:5='$20k<$35k';6='35k<50k';7='50k<75';8='>75k';else=NA",as.factor=T)
#Age
brfss2016$age<-Recode(brfss2016$X_AGE_G, recodes="1='18-24';2='25-34';3='35-44';4='45-54';5='55-64';6='65+';else=NA",as.factor=T)
#Education
brfss2016$educ<-Recode(brfss2016$EDUCA, recodes="1:2='0Prim'; 3='1somehs'; 4='2hsgrad'; 5='3somecol'; 6='4colgrad';9=NA", as.factor=T)
brfss2016$educ<-relevel(brfss2016$educ, ref='0Prim')
#Health Insurance; Do you have health care coverage? 1 Yes, 2 No, 7 Dont know, 9 Refuse
brfss2016$insurance<-Recode(brfss2016$HLTHPLN1,recodes="1='Y';2='N';else=NA",as.factor=T)
#DR Checkup; Had a doctor checkup with the last...?  1 year, 2 years, 5 years, 5+ years
brfss2016$checkup<-Recode(brfss2016$CHECKUP1,recodes="1='1 year';2='2 years';3='5 years';4='5+ years';else=NA",as.factor=T)
#Mental Health; How many days during the past 30 days was your mental health not good? 1-30, 88 None, 77 Don't Know, 99 Refuse

#Interaction between marital status and sexual orientation
brfss2016$marXsxo<-interaction(brfss2016$marital,brfss2016$sxorient)
brfss2016$marXsxo<-as.factor(brfss2016$marXsxo)
#Interaction between marital status and sexual orientation recoded to gay people only (gay single and gay married)
#brfss2016$int1<-Recode(brfss2016$int,recodes="0.1=0.1;1.1=1.1;else=NA",as.factor=T)
#Interaction between marital status and sexual orientation recoded to married people only (married straight and married gay)
#brfss2016$int2<-Recode(brfss2016$int,recodes="'M.G'='M.G';'M.S'='M.S';else=NA",as.factor=T)
#Homeowner; Do you own or rent your home? 1 Own, 2 Rent, 3 Other, 7 Don't know, 9 Refuse
brfss2016$ownhome<-Recode(brfss2016$RENTHOM1,recodes="1='Y';2:3='N';else=NA",as.factor=T)
#Smoking; Do you now smoke cigarettes every day, some days, or not at all? 1 Everyday, 2 Some days, 3 Not at all, 7 Don't know, 9 Refuse
brfss2016$smoke<-Recode(brfss2016$SMOKDAY2,recodes="1:2='Y';3='N';else=NA",as.factor=T)
#Was there a time in the past 12 months when you needed to see a doctor but could not because of cost? 1 Yes, 2 No, 7 Don't know, 9 Refuse
brfss2016$medcost<-Recode(brfss2016$MEDCOST,recodes="1='Y';2='N';else=NA",as.factor=T)
#During the past 30 days, on the days when you drank, about how many drinks did you drink on the average?
brfss2016$drinks<-Recode(brfss2016$AVEDRNK2,recodes="1:5='1-5';5:10='5-10';10:30='10-30';77=NA;99=NA;else=NA",as.factor=T)
#BMI; Four-categories of Body Mass Index (BMI): 1 Underweight, 2 Normal Weight, 3 Overweight, 4 Obese
brfss2016$bmi<-brfss2016$X_BMI5CAT
#Not good mental health days: 1 (0 days), 2 (1-13 days), 3 (14-30 days), 9 Don't know
brfss2016$badmental<-Recode(brfss2016$X_MENT14D,recodes="1=0;2:3=1;9=NA;else=NA",as.factor=T)
#Race/Ethnicity; 1 White, 2 Black, 3 Other, 4 Multiracial, 5 Hispanic, 9 Don't know
brfss2016$race<-Recode(brfss2016$X_RACEGR3, recodes="2='black'; 1='awhite'; 3:4='other';5='hispanic'; else=NA",as.factor=T)
brfss2016$race<-relevel(brfss2016$race, ref='awhite')
#Sex; 1 Male, 2 Female
brfss2016$sex<-Recode(brfss2016$SEX,recodes="1=1;2=0;9=NA;else=NA",as.factor=T)
brfss2016$genh<-Recode(brfss2016$GENHLTH,recodes="1:3='aGood';4:5='Bad';else=NA",as.factor=T)
brfss2016$physh<-Recode(brfss2016$PHYSHLTH,recodes="88=0;77=NA;99=NA",as.factor=T)
#Mental Health; How many days during the past 30 days was your mental health not good? 1-30, 88 None, 77 Don't Know, 99 Refuse
brfss2016$menth<-Recode(brfss2016$MENTHLTH,recodes="88=0;77=NA;99=NA",as.factor=T)
brfss2016$emosupport<-Recode(brfss2016$EMTSUPRT,recodes="1:2='a-Yes';3='b-Sometimes';4:5='c-No';else=NA",as.factor=T)
brfss2016$satisfed<-Recode(brfss2016$LSATISFY,recodes="1:2='a-Satisfied';3:4='b-Dissatisfied';else=NA",as.factor=T)
brfss2016$employ<-Recode(brfss2016$EMPLOY1,recodes="1:2='Yes';3:4='No';5:8='other';else=NA",as.factor=T)
brfss2016$personalDR<-Recode(brfss2016$PERSDOC2,recodes="1:2='Yes';3='No';else=NA",as.factor=T)
brfss2016$flushot<-Recode(brfss2016$FLUSHOT6,recode="1='Yes';2='No';else=NA",as.factor=T)
brfss2017<-brfss2017%>%
  select(income,marital, sxorient,income, age, educ, checkup, insurance, marXsxo,ownhome, smoke, medcost, drinks, bmi, badmental, race, sex, genh, physh,menth,emosupport,satisfed,employ,personalDR,flushot,X_STRWT,X_LLCPWT)


brfss2016<-brfss2016%>%
  select(income,marital, sxorient,income, age, educ, checkup, insurance, marXsxo,ownhome, smoke, medcost, drinks, bmi, badmental, race, sex, genh, physh,menth,emosupport,satisfed,employ,personalDR,flushot,X_STRWT,X_LLCPWT)
brfss1617<-rbind(brfss2017,brfss2016)
#Create a survey design
brfss1617<-brfss1617%>%
  filter(complete.cases(.))
options(survey.lonely.psu = "adjust")
des<-svydesign(ids = ~1,strata=~X_STRWT,weights = ~X_LLCPWT,data = brfss1617)
#MODEL ONE
#General Health by Marital Status
fit.logit1<-svyglm(genh~marital,design=des,family=binomial)
## Warning in eval(family$initialize): non-integer #successes in a binomial
## glm!
summary(fit.logit1)
## 
## Call:
## svyglm(formula = genh ~ marital, design = des, family = binomial)
## 
## Survey design:
## svydesign(ids = ~1, strata = ~X_STRWT, weights = ~X_LLCPWT, data = brfss1617)
## 
## Coefficients:
##                  Estimate Std. Error t value Pr(>|t|)    
## (Intercept)       -1.8134     0.1265 -14.332  < 2e-16 ***
## maritalb-Married  -0.2583     0.1448  -1.784  0.07441 .  
## maritalc-D/W/S     0.4222     0.1636   2.581  0.00986 ** 
## maritalpartner     0.4496     0.2990   1.504  0.13272    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for binomial family taken to be 1.000108)
## 
## Number of Fisher Scoring iterations: 5
fit.logit2<-svyglm(genh~sxorient,design=des,family=binomial)
## Warning in eval(family$initialize): non-integer #successes in a binomial
## glm!
summary(fit.logit2)
## 
## Call:
## svyglm(formula = genh ~ sxorient, design = des, family = binomial)
## 
## Survey design:
## svydesign(ids = ~1, strata = ~X_STRWT, weights = ~X_LLCPWT, data = brfss1617)
## 
## Coefficients:
##                  Estimate Std. Error t value Pr(>|t|)    
## (Intercept)       -1.8449     0.0532 -34.680  < 2e-16 ***
## sxorientb-Gay      0.3909     0.5334   0.733  0.46367    
## sxorientBisexual   0.4487     0.3635   1.234  0.21712    
## sxorientOther      1.2609     0.4517   2.791  0.00526 ** 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for binomial family taken to be 1.000108)
## 
## Number of Fisher Scoring iterations: 5
#MODEL ONE
#General Health by Marital Status (interaction)
fit1<-svyglm(genh~marXsxo,design=des,family=binomial)
## Warning in eval(family$initialize): non-integer #successes in a binomial
## glm!
summary(fit1)
## 
## Call:
## svyglm(formula = genh ~ marXsxo, design = des, family = binomial)
## 
## Survey design:
## svydesign(ids = ~1, strata = ~X_STRWT, weights = ~X_LLCPWT, data = brfss1617)
## 
## Coefficients:
##                              Estimate Std. Error t value Pr(>|t|)    
## (Intercept)                  -1.80302    0.13679 -13.180  < 2e-16 ***
## marXsxob-Married.a-Straight  -0.26918    0.15432  -1.744 0.081148 .  
## marXsxoc-D/W/S.a-Straight     0.29370    0.16651   1.764 0.077784 .  
## marXsxopartner.a-Straight     0.50437    0.31520   1.600 0.109592    
## marXsxoa-Single.b-Gay        -0.02846    0.47628  -0.060 0.952355    
## marXsxob-Married.b-Gay      -12.99132    0.29592 -43.901  < 2e-16 ***
## marXsxoc-D/W/S.b-Gay          2.44921    0.90429   2.708 0.006773 ** 
## marXsxopartner.b-Gay         -2.74313    0.79502  -3.450 0.000562 ***
## marXsxoa-Single.Bisexual     -0.25295    0.54439  -0.465 0.642198    
## marXsxob-Married.Bisexual    -0.20856    0.60976  -0.342 0.732331    
## marXsxoc-D/W/S.Bisexual       2.05660    0.67892   3.029 0.002459 ** 
## marXsxopartner.Bisexual       0.94631    0.99761   0.949 0.342860    
## marXsxoa-Single.Other         0.59566    0.84044   0.709 0.478497    
## marXsxob-Married.Other        1.27566    0.78505   1.625 0.104209    
## marXsxoc-D/W/S.Other          1.77508    0.65808   2.697 0.007002 ** 
## marXsxopartner.Other         -1.50559    1.22495  -1.229 0.219065    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for binomial family taken to be 0.9949604)
## 
## Number of Fisher Scoring iterations: 13
#MODEL TWO - includes biological demographic variables
#General Health by marital status and sex, age, race
fit2<-svyglm(genh~marXsxo+sex+age+race,design=des,family=binomial)
## Warning in eval(family$initialize): non-integer #successes in a binomial
## glm!
summary(fit2)
## 
## Call:
## svyglm(formula = genh ~ marXsxo + sex + age + race, design = des, 
##     family = binomial)
## 
## Survey design:
## svydesign(ids = ~1, strata = ~X_STRWT, weights = ~X_LLCPWT, data = brfss1617)
## 
## Coefficients:
##                             Estimate Std. Error t value Pr(>|t|)    
## (Intercept)                  -1.9466     0.3435  -5.667  1.5e-08 ***
## marXsxob-Married.a-Straight  -0.4199     0.1724  -2.437 0.014848 *  
## marXsxoc-D/W/S.a-Straight     0.0478     0.1868   0.256 0.798100    
## marXsxopartner.a-Straight     0.5515     0.3306   1.669 0.095250 .  
## marXsxoa-Single.b-Gay        -0.1026     0.4586  -0.224 0.823013    
## marXsxob-Married.b-Gay      -13.1685     0.3118 -42.238  < 2e-16 ***
## marXsxoc-D/W/S.b-Gay          2.1870     0.9244   2.366 0.018009 *  
## marXsxopartner.b-Gay         -2.6822     0.7655  -3.504 0.000461 ***
## marXsxoa-Single.Bisexual     -0.1780     0.6157  -0.289 0.772489    
## marXsxob-Married.Bisexual    -0.2180     0.6525  -0.334 0.738288    
## marXsxoc-D/W/S.Bisexual       1.6734     0.6037   2.772 0.005582 ** 
## marXsxopartner.Bisexual       1.1562     0.9802   1.180 0.238202    
## marXsxoa-Single.Other         0.5225     0.8378   0.624 0.532849    
## marXsxob-Married.Other        0.8710     0.7115   1.224 0.220917    
## marXsxoc-D/W/S.Other          1.4732     0.6777   2.174 0.029750 *  
## marXsxopartner.Other         -2.3923     1.3378  -1.788 0.073775 .  
## sex1                          0.1401     0.1066   1.314 0.188863    
## age25-34                     -0.4944     0.3939  -1.255 0.209416    
## age35-44                     -0.2234     0.3972  -0.562 0.573816    
## age45-54                      0.2888     0.3867   0.747 0.455194    
## age55-64                      0.4541     0.3879   1.171 0.241764    
## age65+                        0.2506     0.3840   0.653 0.513925    
## raceblack                     0.7601     0.2119   3.588 0.000335 ***
## racehispanic                  0.5949     0.4610   1.291 0.196887    
## raceother                     0.5775     0.2288   2.524 0.011619 *  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for binomial family taken to be 0.9945309)
## 
## Number of Fisher Scoring iterations: 13
regTermTest(fit2, test.terms = ~sex+age+race, method="Wald", df = NULL)
## Wald test for sex age race
##  in svyglm(formula = genh ~ marXsxo + sex + age + race, design = des, 
##     family = binomial)
## F =  6.180301  on  9  and  9094  df: p= 9.8885e-09
####MODEL THREE - includes biological demographic variables and social demographic variables 
#General Health by Marital Status plus sex, age, race, plus educ, income
fit3<-svyglm(genh~marXsxo+sex+age+race+educ+income,design=des,family=binomial)
## Warning in eval(family$initialize): non-integer #successes in a binomial
## glm!
summary(fit3)
## 
## Call:
## svyglm(formula = genh ~ marXsxo + sex + age + race + educ + income, 
##     design = des, family = binomial)
## 
## Survey design:
## svydesign(ids = ~1, strata = ~X_STRWT, weights = ~X_LLCPWT, data = brfss1617)
## 
## Coefficients:
##                              Estimate Std. Error t value Pr(>|t|)    
## (Intercept)                  -0.63112    0.59322  -1.064  0.28741    
## marXsxob-Married.a-Straight   0.13647    0.18531   0.736  0.46149    
## marXsxoc-D/W/S.a-Straight     0.06411    0.18415   0.348  0.72772    
## marXsxopartner.a-Straight     0.72972    0.28366   2.573  0.01011 *  
## marXsxoa-Single.b-Gay        -0.03656    0.45866  -0.080  0.93647    
## marXsxob-Married.b-Gay      -12.61173    0.38124 -33.081  < 2e-16 ***
## marXsxoc-D/W/S.b-Gay          1.97938    1.04850   1.888  0.05908 .  
## marXsxopartner.b-Gay         -1.96533    0.82453  -2.384  0.01717 *  
## marXsxoa-Single.Bisexual     -0.32380    0.69336  -0.467  0.64052    
## marXsxob-Married.Bisexual     0.18610    0.61178   0.304  0.76099    
## marXsxoc-D/W/S.Bisexual       1.63706    0.54416   3.008  0.00263 ** 
## marXsxopartner.Bisexual       1.52734    1.04142   1.467  0.14252    
## marXsxoa-Single.Other         0.37515    0.79201   0.474  0.63575    
## marXsxob-Married.Other        0.61086    0.87599   0.697  0.48561    
## marXsxoc-D/W/S.Other          1.34229    0.75625   1.775  0.07594 .  
## marXsxopartner.Other         -2.72030    1.33110  -2.044  0.04102 *  
## sex1                          0.15493    0.11121   1.393  0.16363    
## age25-34                     -0.40826    0.37251  -1.096  0.27312    
## age35-44                     -0.01647    0.37158  -0.044  0.96465    
## age45-54                      0.40664    0.36138   1.125  0.26052    
## age55-64                      0.52923    0.35873   1.475  0.14016    
## age65+                        0.20899    0.35527   0.588  0.55638    
## raceblack                     0.24394    0.23492   1.038  0.29911    
## racehispanic                  0.23540    0.48987   0.481  0.63086    
## raceother                     0.49533    0.24984   1.983  0.04744 *  
## educ1somehs                  -0.29249    0.49471  -0.591  0.55438    
## educ2hsgrad                  -0.74900    0.46793  -1.601  0.10949    
## educ3somecol                 -0.75427    0.45933  -1.642  0.10060    
## educ4colgrad                 -1.25015    0.46470  -2.690  0.00715 ** 
## income>75k                   -1.54579    0.20860  -7.410 1.37e-13 ***
## income$20k<$35k              -0.40152    0.17148  -2.341  0.01923 *  
## income35k<50k                -0.79903    0.19498  -4.098 4.20e-05 ***
## income50k<75                 -1.05491    0.19586  -5.386 7.39e-08 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for binomial family taken to be 1.014183)
## 
## Number of Fisher Scoring iterations: 13
regTermTest(fit3, test.terms = ~sex+age+race+educ+income, method="Wald", df = NULL)
## Wald test for sex age race educ income
##  in svyglm(formula = genh ~ marXsxo + sex + age + race + educ + income, 
##     design = des, family = binomial)
## F =  10.82161  on  17  and  9086  df: p= < 2.22e-16
#MODEL FOUR -includes biological and social demographic variables plus marriage behavior benefit variables
fit4<-svyglm(genh~marXsxo+sex+age+race+educ+income+smoke+drinks+bmi,design=des,family=binomial)
## Warning in eval(family$initialize): non-integer #successes in a binomial
## glm!
summary(fit4)
## 
## Call:
## svyglm(formula = genh ~ marXsxo + sex + age + race + educ + income + 
##     smoke + drinks + bmi, design = des, family = binomial)
## 
## Survey design:
## svydesign(ids = ~1, strata = ~X_STRWT, weights = ~X_LLCPWT, data = brfss1617)
## 
## Coefficients:
##                              Estimate Std. Error t value Pr(>|t|)    
## (Intercept)                  -1.70418    0.62404  -2.731 0.006329 ** 
## marXsxob-Married.a-Straight   0.17232    0.18576   0.928 0.353638    
## marXsxoc-D/W/S.a-Straight     0.09297    0.18597   0.500 0.617156    
## marXsxopartner.a-Straight     0.69110    0.27806   2.485 0.012958 *  
## marXsxoa-Single.b-Gay        -0.17572    0.47313  -0.371 0.710344    
## marXsxob-Married.b-Gay      -12.58468    0.35442 -35.508  < 2e-16 ***
## marXsxoc-D/W/S.b-Gay          2.08443    1.09877   1.897 0.057852 .  
## marXsxopartner.b-Gay         -2.06391    0.85723  -2.408 0.016076 *  
## marXsxoa-Single.Bisexual     -0.31610    0.68643  -0.461 0.645166    
## marXsxob-Married.Bisexual     0.06565    0.64728   0.101 0.919216    
## marXsxoc-D/W/S.Bisexual       1.69338    0.55619   3.045 0.002337 ** 
## marXsxopartner.Bisexual       1.31825    0.95663   1.378 0.168235    
## marXsxoa-Single.Other         0.36961    0.80564   0.459 0.646405    
## marXsxob-Married.Other        0.77683    0.81231   0.956 0.338933    
## marXsxoc-D/W/S.Other          1.24000    0.75791   1.636 0.101856    
## marXsxopartner.Other         -2.73227    1.26282  -2.164 0.030520 *  
## sex1                          0.11368    0.11400   0.997 0.318687    
## age25-34                     -0.41804    0.37131  -1.126 0.260258    
## age35-44                     -0.01576    0.37157  -0.042 0.966167    
## age45-54                      0.38257    0.36306   1.054 0.292022    
## age55-64                      0.56789    0.35875   1.583 0.113461    
## age65+                        0.36736    0.35534   1.034 0.301251    
## raceblack                     0.14706    0.23416   0.628 0.530004    
## racehispanic                  0.19459    0.49390   0.394 0.693596    
## raceother                     0.48208    0.25011   1.927 0.053954 .  
## educ1somehs                  -0.32420    0.51273  -0.632 0.527214    
## educ2hsgrad                  -0.78017    0.48731  -1.601 0.109415    
## educ3somecol                 -0.78166    0.47866  -1.633 0.102499    
## educ4colgrad                 -1.19213    0.48375  -2.464 0.013745 *  
## income>75k                   -1.46190    0.21152  -6.911 5.12e-12 ***
## income$20k<$35k              -0.38289    0.17309  -2.212 0.026990 *  
## income35k<50k                -0.75656    0.19447  -3.890 0.000101 ***
## income50k<75                 -1.00468    0.19906  -5.047 4.57e-07 ***
## smokeY                        0.44598    0.11253   3.963 7.45e-05 ***
## drinks10-30                   0.36842    0.37234   0.989 0.322462    
## drinks5-10                    0.14658    0.22829   0.642 0.520823    
## bmi                           0.26463    0.07013   3.773 0.000162 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for binomial family taken to be 1.010352)
## 
## Number of Fisher Scoring iterations: 13
regTermTest(fit4, test.terms = ~sex+age+race+educ+income, method="Wald", df = NULL)
## Wald test for sex age race educ income
##  in svyglm(formula = genh ~ marXsxo + sex + age + race + educ + income + 
##     smoke + drinks + bmi, design = des, family = binomial)
## F =  9.438308  on  17  and  9082  df: p= < 2.22e-16
#MODEL FIVE - includes biological and social demographic variables plus marriage behavior benefit variables marriage benefit financial variables
fit5<-svyglm(genh~marXsxo+sex+age+race+educ+income+smoke+drinks+bmi+medcost+insurance+checkup+ownhome,design=des,family=binomial)
## Warning in eval(family$initialize): non-integer #successes in a binomial
## glm!
summary(fit5)
## 
## Call:
## svyglm(formula = genh ~ marXsxo + sex + age + race + educ + income + 
##     smoke + drinks + bmi + medcost + insurance + checkup + ownhome, 
##     design = des, family = binomial)
## 
## Survey design:
## svydesign(ids = ~1, strata = ~X_STRWT, weights = ~X_LLCPWT, data = brfss1617)
## 
## Coefficients:
##                              Estimate Std. Error t value Pr(>|t|)    
## (Intercept)                  -2.25817    0.65068  -3.470 0.000522 ***
## marXsxob-Married.a-Straight   0.21540    0.19698   1.093 0.274207    
## marXsxoc-D/W/S.a-Straight     0.08108    0.19009   0.427 0.669739    
## marXsxopartner.a-Straight     0.61441    0.27182   2.260 0.023823 *  
## marXsxoa-Single.b-Gay        -0.15039    0.45084  -0.334 0.738712    
## marXsxob-Married.b-Gay      -13.48381    0.35942 -37.516  < 2e-16 ***
## marXsxoc-D/W/S.b-Gay          2.30088    1.09613   2.099 0.035836 *  
## marXsxopartner.b-Gay         -2.36430    0.93748  -2.522 0.011686 *  
## marXsxoa-Single.Bisexual     -0.29171    0.67253  -0.434 0.664481    
## marXsxob-Married.Bisexual    -0.07154    0.60961  -0.117 0.906577    
## marXsxoc-D/W/S.Bisexual       1.56992    0.61741   2.543 0.011015 *  
## marXsxopartner.Bisexual       0.95687    0.84354   1.134 0.256679    
## marXsxoa-Single.Other         0.45527    0.77433   0.588 0.556585    
## marXsxob-Married.Other        0.99116    0.85548   1.159 0.246650    
## marXsxoc-D/W/S.Other          1.31411    0.80662   1.629 0.103313    
## marXsxopartner.Other         -2.77710    1.32246  -2.100 0.035760 *  
## sex1                          0.16245    0.10934   1.486 0.137400    
## age25-34                     -0.25584    0.34829  -0.735 0.462632    
## age35-44                      0.14649    0.35348   0.414 0.678569    
## age45-54                      0.59985    0.34848   1.721 0.085226 .  
## age55-64                      0.86562    0.33923   2.552 0.010735 *  
## age65+                        0.75176    0.33731   2.229 0.025860 *  
## raceblack                     0.03729    0.22792   0.164 0.870052    
## racehispanic                  0.26287    0.44389   0.592 0.553740    
## raceother                     0.48943    0.26578   1.841 0.065587 .  
## educ1somehs                  -0.21758    0.50780  -0.428 0.668318    
## educ2hsgrad                  -0.62993    0.47984  -1.313 0.189288    
## educ3somecol                 -0.65708    0.47482  -1.384 0.166438    
## educ4colgrad                 -1.08295    0.48094  -2.252 0.024362 *  
## income>75k                   -1.25712    0.21298  -5.903 3.71e-09 ***
## income$20k<$35k              -0.38392    0.17162  -2.237 0.025313 *  
## income35k<50k                -0.66920    0.19202  -3.485 0.000494 ***
## income50k<75                 -0.86276    0.20233  -4.264 2.03e-05 ***
## smokeY                        0.40392    0.11378   3.550 0.000387 ***
## drinks10-30                   0.36794    0.40782   0.902 0.366964    
## drinks5-10                    0.11568    0.22703   0.510 0.610381    
## bmi                           0.26011    0.07075   3.677 0.000238 ***
## medcostY                      0.97847    0.15593   6.275 3.65e-10 ***
## insuranceY                    0.22270    0.21683   1.027 0.304411    
## checkup2 years               -0.08671    0.18155  -0.478 0.632951    
## checkup5 years                0.17879    0.20655   0.866 0.386733    
## checkup5+ years              -0.25007    0.21187  -1.180 0.237914    
## ownhomeY                     -0.36399    0.15354  -2.371 0.017774 *  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for binomial family taken to be 1.003035)
## 
## Number of Fisher Scoring iterations: 14
regTermTest(fit5, test.terms = ~sex+age+race+educ+income, method="Wald", df = NULL)
## Wald test for sex age race educ income
##  in svyglm(formula = genh ~ marXsxo + sex + age + race + educ + income + 
##     smoke + drinks + bmi + medcost + insurance + checkup + ownhome, 
##     design = des, family = binomial)
## F =  8.738684  on  17  and  9076  df: p= < 2.22e-16
car::vif(fit5)
##               GVIF Df GVIF^(1/(2*Df))
## marXsxo   6.448420 15        1.064098
## sex       1.297648  1        1.139143
## age       5.037189  5        1.175490
## race      2.505569  3        1.165425
## educ      2.025355  4        1.092226
## income    3.382894  4        1.164558
## smoke     1.335152  1        1.155488
## drinks    1.370919  2        1.082064
## bmi       1.168850  1        1.081134
## medcost   1.410815  1        1.187777
## insurance 1.505556  1        1.227011
## checkup   2.207601  3        1.141091
## ownhome   1.992533  1        1.411571
stargazer(fit1, fit2, fit3,fit4,fit5,type = "html", style="demography", covariate.labels =c("MarriedStraight","D/W/SStraight","partnerStraight","SingleGay","MarriedGay","D/W/Sb-Gay","partnerGay ","SingleBisexual","MarriedBisexual","D/W/SBisexual","singleoth","marriedother","DWSother","partnerother", "Male","25-34","35-44","45-54","55-64","65+","Black","Hisp","Other","someHS","HSgrad","someCol","Colgrad","75+","20-35","35-50","50-75","smokeY","drinks10-30","drinks5-10","bmi","medcostY","insuranceyes","Chup2","ChupU5","Chup5+","ownhome"), ci = T )
genh
Model 1 Model 2 Model 3 Model 4 Model 5
MarriedStraight -0.269 -0.420* 0.136 0.172 0.215
(-0.572, 0.033) (-0.758, -0.082) (-0.227, 0.500) (-0.192, 0.536) (-0.171, 0.601)
D/W/SStraight 0.294 0.048 0.064 0.093 0.081
(-0.033, 0.620) (-0.318, 0.414) (-0.297, 0.425) (-0.272, 0.457) (-0.291, 0.454)
partnerStraight 0.504 0.552 0.730* 0.691* 0.614*
(-0.113, 1.122) (-0.096, 1.199) (0.174, 1.286) (0.146, 1.236) (0.082, 1.147)
SingleGay -0.028 -0.103 -0.037 -0.176 -0.150
(-0.962, 0.905) (-1.001, 0.796) (-0.936, 0.862) (-1.103, 0.752) (-1.034, 0.733)
MarriedGay -12.991*** -13.169*** -12.612*** -12.585*** -13.484***
(-13.571, -12.411) (-13.780, -12.557) (-13.359, -11.865) (-13.279, -11.890) (-14.188, -12.779)
D/W/Sb-Gay 2.449** 2.187* 1.979 2.084 2.301*
(0.677, 4.222) (0.375, 3.999) (-0.076, 4.034) (-0.069, 4.238) (0.153, 4.449)
partnerGay -2.743*** -2.682*** -1.965* -2.064* -2.364*
(-4.301, -1.185) (-4.183, -1.182) (-3.581, -0.349) (-3.744, -0.384) (-4.202, -0.527)
SingleBisexual -0.253 -0.178 -0.324 -0.316 -0.292
(-1.320, 0.814) (-1.385, 1.029) (-1.683, 1.035) (-1.661, 1.029) (-1.610, 1.026)
MarriedBisexual -0.209 -0.218 0.186 0.066 -0.072
(-1.404, 0.987) (-1.497, 1.061) (-1.013, 1.385) (-1.203, 1.334) (-1.266, 1.123)
D/W/SBisexual 2.057** 1.673** 1.637** 1.693** 1.570*
(0.726, 3.387) (0.490, 2.857) (0.571, 2.704) (0.603, 2.783) (0.360, 2.780)
singleoth 0.946 1.156 1.527 1.318 0.957
(-1.009, 2.902) (-0.765, 3.077) (-0.514, 3.568) (-0.557, 3.193) (-0.696, 2.610)
marriedother 0.596 0.523 0.375 0.370 0.455
(-1.052, 2.243) (-1.119, 2.164) (-1.177, 1.927) (-1.209, 1.949) (-1.062, 1.973)
DWSother 1.276 0.871 0.611 0.777 0.991
(-0.263, 2.814) (-0.523, 2.265) (-1.106, 2.328) (-0.815, 2.369) (-0.686, 2.668)
partnerother 1.775** 1.473* 1.342 1.240 1.314
(0.485, 3.065) (0.145, 2.802) (-0.140, 2.825) (-0.245, 2.725) (-0.267, 2.895)
Male -1.506 -2.392 -2.720* -2.732* -2.777*
(-3.906, 0.895) (-5.014, 0.230) (-5.329, -0.111) (-5.207, -0.257) (-5.369, -0.185)
25-34 0.140 0.155 0.114 0.162
(-0.069, 0.349) (-0.063, 0.373) (-0.110, 0.337) (-0.052, 0.377)
35-44 -0.494 -0.408 -0.418 -0.256
(-1.266, 0.278) (-1.138, 0.322) (-1.146, 0.310) (-0.938, 0.427)
45-54 -0.223 -0.016 -0.016 0.146
(-1.002, 0.555) (-0.745, 0.712) (-0.744, 0.713) (-0.546, 0.839)
55-64 0.289 0.407 0.383 0.600
(-0.469, 1.047) (-0.302, 1.115) (-0.329, 1.094) (-0.083, 1.283)
65+ 0.454 0.529 0.568 0.866*
(-0.306, 1.214) (-0.174, 1.232) (-0.135, 1.271) (0.201, 1.530)
Black 0.251 0.209 0.367 0.752*
(-0.502, 1.003) (-0.487, 0.905) (-0.329, 1.064) (0.091, 1.413)
Hisp 0.760*** 0.244 0.147 0.037
(0.345, 1.175) (-0.216, 0.704) (-0.312, 0.606) (-0.409, 0.484)
Other 0.595 0.235 0.195 0.263
(-0.309, 1.498) (-0.725, 1.196) (-0.773, 1.163) (-0.607, 1.133)
someHS 0.577* 0.495* 0.482 0.489
(0.129, 1.026) (0.006, 0.985) (-0.008, 0.972) (-0.031, 1.010)
HSgrad -0.292 -0.324 -0.218
(-1.262, 0.677) (-1.329, 0.681) (-1.213, 0.778)
someCol -0.749 -0.780 -0.630
(-1.666, 0.168) (-1.735, 0.175) (-1.570, 0.311)
Colgrad -0.754 -0.782 -0.657
(-1.655, 0.146) (-1.720, 0.156) (-1.588, 0.274)
75+ -1.250** -1.192* -1.083*
(-2.161, -0.339) (-2.140, -0.244) (-2.026, -0.140)
20-35 -1.546*** -1.462*** -1.257***
(-1.955, -1.137) (-1.876, -1.047) (-1.675, -0.840)
35-50 -0.402* -0.383* -0.384*
(-0.738, -0.065) (-0.722, -0.044) (-0.720, -0.048)
50-75 -0.799*** -0.757*** -0.669***
(-1.181, -0.417) (-1.138, -0.375) (-1.046, -0.293)
smokeY -1.055*** -1.005*** -0.863***
(-1.439, -0.671) (-1.395, -0.615) (-1.259, -0.466)
drinks10-30 0.446*** 0.404***
(0.225, 0.667) (0.181, 0.627)
drinks5-10 0.368 0.368
(-0.361, 1.098) (-0.431, 1.167)
bmi 0.147 0.116
(-0.301, 0.594) (-0.329, 0.561)
medcostY 0.265*** 0.260***
(0.127, 0.402) (0.121, 0.399)
insuranceyes 0.978***
(0.673, 1.284)
Chup2 0.223
(-0.202, 0.648)
ChupU5 -0.087
(-0.443, 0.269)
Chup5+ 0.179
(-0.226, 0.584)
ownhome -0.250
(-0.665, 0.165)
ownhomeY -0.364*
(-0.665, -0.063)
Constant -1.803*** -1.947*** -0.631 -1.704** -2.258***
(-2.071, -1.535) (-2.620, -1.273) (-1.794, 0.532) (-2.927, -0.481) (-3.533, -0.983)
N 9,226 9,226 9,226 9,226 9,226
Log Likelihood -3,433.255 -3,362.642 -3,186.169 -3,150.093 -3,072.187
AIC 6,898.509 6,775.283 6,438.338 6,374.185 6,230.374
p < .05; p < .01; p < .001