prop.test(x = 5215-5032,
n = 5215,
conf.level = 0.90)
##
## 1-sample proportions test with continuity correction
##
## data: 5215 - 5032 out of 5215, null probability 0.5
## X-squared = 4506.8, df = 1, p-value < 2.2e-16
## alternative hypothesis: true p is not equal to 0.5
## 90 percent confidence interval:
## 0.03104476 0.03963055
## sample estimates:
## p
## 0.03509108
\[20,05 ~~~20,10 ~~~20,25 ~~~19,78 ~~~19,69 ~~~19,90 ~~~20,20 ~~~19,89\]
\[~~~19,70 ~~~20,30 ~~~19,93 ~~~20,25 ~~~20,18 ~~~20,01 ~~~20,09\]
prod <- c(20.05, 20.10, 20.25, 19.78, 19.69, 19.90, 20.20, 19.89,
19.70, 20.30, 19.93, 20.25, 20.18, 20.01, 20.09)
summary(prod)
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 19.69 19.89 20.05 20.02 20.19 20.30
sd(prod)
## [1] 0.2004946
hist(prod)
t.test(prod,
conf.level = 0.95)
##
## One Sample t-test
##
## data: prod
## t = 386.75, df = 14, p-value < 2.2e-16
## alternative hypothesis: true mean is not equal to 0
## 95 percent confidence interval:
## 19.91030 20.13236
## sample estimates:
## mean of x
## 20.02133
t.test(prod,
conf.level = 0.99)
##
## One Sample t-test
##
## data: prod
## t = 386.75, df = 14, p-value < 2.2e-16
## alternative hypothesis: true mean is not equal to 0
## 99 percent confidence interval:
## 19.86723 20.17544
## sample estimates:
## mean of x
## 20.02133
Um produtor está interessado em saber se, no seu tanque de criação de tilápias, já pode fazer a coleta para abate. Para isto, coletou-se uma amostra de 40 tilápias e registrou o peso (g) de cada uma.
set.seed(30)
peixe <- c(round(rnorm(40, mean=790, sd=50),0))
\[726 ~~~773 ~~~764 ~~~854 ~~~881 ~~~714 ~~~796 ~~~752 ~~~757 ~~~804\] \[739 ~~~699 ~~~757 ~~~787 ~~~834 ~~~803 ~~~789 ~~~764 ~~~720 ~~~698\] \[ 782 ~~~828 ~~~744 ~~~830 ~~~865 ~~~735 ~~~763 ~~~719 ~~~728 ~~~802\] \[704 ~~~821 ~~~826 ~~~788 ~~~801 ~~~878 ~~~801 ~~~817 ~~~898 ~~~643\]
summary(peixe)
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 643.0 738.0 784.5 779.6 818.0 898.0
sd(peixe)
## [1] 56.62644
hist(peixe)
t.test(peixe,
conf.level = 0.95)
##
## One Sample t-test
##
## data: peixe
## t = 87.073, df = 39, p-value < 2.2e-16
## alternative hypothesis: true mean is not equal to 0
## 95 percent confidence interval:
## 761.49 797.71
## sample estimates:
## mean of x
## 779.6
set.seed(30)
pneu <- c(round(rnorm(20, mean=39500, sd=1200),0))
\[39310 ~~~40405 ~~~38405 ~~~40460 ~~~41289 ~~~38184 ~~~38859 ~~~37795 ~~~38009 ~~~39778\]
\[37430 ~~~40238 ~~~40372 ~~~39449 ~~~39759 ~~~41624 ~~~39764 ~~~40138 ~~~42104 ~~~35979\]
summary(pneu)
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 37299 38193 38872 39030 39680 41689
sd(pneu)
## [1] 1187.868
hist(pneu)
t.test(pneu,
conf.level = 0.95)
##
## One Sample t-test
##
## data: pneu
## t = 146.94, df = 19, p-value < 2.2e-16
## alternative hypothesis: true mean is not equal to 0
## 95 percent confidence interval:
## 38474.51 39586.39
## sample estimates:
## mean of x
## 39030.45