************************************************************************** Response Default Metrics
**************************************************************************
Factor Brier Score, Accuracy, Cohen’s Kappa
Binary Factor Brier Score, Accuracy, Cohen’s Kappa, Area Under ROC
Curve, Sensitivity, Specificity
Numeric Vector or Matrix Root Mean Squared Error, R2, Mean Absolute Error
Survival Means Concordance Index
Survival Probabilities Area Under ROC Curve, Brier Score, Accuracy
Survival Events Accuracy
**************************************************************************
Call:
summary.resamples(object = results)
Models: lda, cart, knn, svm, rf
Number of resamples: 10
Accuracy
Min. 1st Qu. Median Mean 3rd Qu. Max. NA's
lda 0.9166667 0.9375000 1.0000000 0.9750000 1 1 0
cart 0.7500000 0.9166667 0.9583333 0.9333333 1 1 0
knn 0.9166667 0.9166667 1.0000000 0.9666667 1 1 0
svm 0.8333333 0.9166667 1.0000000 0.9500000 1 1 0
rf 0.8333333 0.9166667 0.9583333 0.9500000 1 1 0
Kappa
Min. 1st Qu. Median Mean 3rd Qu. Max. NA's
lda 0.875 0.90625 1.0000 0.9625 1 1 0
cart 0.625 0.87500 0.9375 0.9000 1 1 0
knn 0.875 0.87500 1.0000 0.9500 1 1 0
svm 0.750 0.87500 1.0000 0.9250 1 1 0
rf 0.750 0.87500 0.9375 0.9250 1 1 0
Linear Discriminant Analysis
120 samples
4 predictor
3 classes: 'Iris-setosa', 'Iris-versicolor', 'Iris-virginica'
No pre-processing
Resampling: Cross-Validated (10 fold)
Summary of sample sizes: 108, 108, 108, 108, 108, 108, ...
Resampling results:
Accuracy Kappa
0.975 0.9625
Confusion Matrix and Statistics
Reference
Prediction Iris-setosa Iris-versicolor Iris-virginica
Iris-setosa 10 0 0
Iris-versicolor 0 10 0
Iris-virginica 0 0 10
Overall Statistics
Accuracy : 1
95% CI : (0.8843, 1)
No Information Rate : 0.3333
P-Value [Acc > NIR] : 4.857e-15
Kappa : 1
Mcnemar's Test P-Value : NA
Statistics by Class:
Class: Iris-setosa Class: Iris-versicolor
Sensitivity 1.0000 1.0000
Specificity 1.0000 1.0000
Pos Pred Value 1.0000 1.0000
Neg Pred Value 1.0000 1.0000
Prevalence 0.3333 0.3333
Detection Rate 0.3333 0.3333
Detection Prevalence 0.3333 0.3333
Balanced Accuracy 1.0000 1.0000
Class: Iris-virginica
Sensitivity 1.0000
Specificity 1.0000
Pos Pred Value 1.0000
Neg Pred Value 1.0000
Prevalence 0.3333
Detection Rate 0.3333
Detection Prevalence 0.3333
Balanced Accuracy 1.0000
CART
150 samples
4 predictor
3 classes: 'setosa', 'versicolor', 'virginica'
No pre-processing
Resampling: Cross-Validated (5 fold)
Summary of sample sizes: 120, 120, 120, 120, 120
Resampling results across tuning parameters:
cp logLoss
0.00 0.6124167
0.44 0.3904565
0.50 1.0986123
logLoss was used to select the optimal model using the smallest value.
The final value used for the model was cp = 0.44.