Cargo packages
library("tidyverse")
Loading tidyverse: ggplot2
Loading tidyverse: tibble
Loading tidyverse: tidyr
Loading tidyverse: readr
Loading tidyverse: purrr
package 'ggplot2' was built under R version 3.4.4Conflicts with tidy packages -------------------------------------------------------------------------
filter(): dplyr, stats
lag(): dplyr, stats
Abro .csv de plantilla internet
kappa <- read.csv("https://docs.google.com/spreadsheets/d/e/2PACX-1vTjtxklEjstcGZumUaxWWb9hq6G6aaaFc5gIEwnfmo4pE0XdIMo0bHcEXJT96IfvLhmlAKSgiIPGTAm/pub?gid=25532625&single=true&output=csv")
El kappa (el primero)
kappam.fleiss(kappa, detail=TRUE)
Fleiss' Kappa for m Raters
Subjects = 20
Raters = 3
Kappa = 0.41
z = 4.82
p-value = 1.44e-06
Kappa z p.value
1 0.506 3.923 0.000
2 0.400 3.098 0.002
3 0.196 1.522 0.128
4 0.346 2.683 0.007
Como estimo muestra en base al kappa que quiero obtener, ejemplo
kappaSize::CIBinary(kappa0 = 0.80, # el valor de kappa esperado
kappaL = 0.60 , # el l<U+00ED>mite inferior
kappaU = NA, # el l<U+00ED>mite superior, lo dejo en blanco
props = .341 , # la proporci<U+00F3>n o prevalencia esperada. Considerando Goyal 2016 = 0.341
raters = 2, # Marco + Silvia
alpha = 0.05) # esto es standar
A minimum of 48 subjects are required for this study of interobserver agreement.
referencias
Goyal, S., Verma, P., Raj, S.S., 2016. Radiographic Evaluation of the Status of Third Molars in Sriganganagar Population - A Digital Panoramic Study. Malays. J. Med. Sci. 23, 103<e2><80><93>112.
Donner A, Rotondi MA. 2010. Sample Size Requirements for Interval Estimation of the Kappa Statistic for Interobserver Agreement Studies with a Binary Outcome and Multiple Raters. International Journal of Biostatistics 6:31.
Realizo tabla de presencia de infraoclusion por sexo
tabla1 <- matrix(c(103, 106, 81, 69), ncol = 2)
There were 16 warnings (use warnings() to see them)
Nombres de variables
tabla1
No presenta Presenta
Femenino 103 81
Masculino 106 69

veo proprciones
prop.table(tabla1)*100
No presenta Presenta
Femenino 28.69081 22.56267
Masculino 29.52646 19.22006
Prueba del chi-2
chisq.test(tabla1)
Pearson's Chi-squared test with Yates' continuity correction
data: tabla1
X-squared = 0.60056, df = 1, p-value = 0.4384
LS0tCnRpdGxlOiAiMjAxOV9QcmV2YWxlbmNpYSBpbmZyYW9jbHVzaW9uX0thcHBhIgpvdXRwdXQ6IGh0bWxfbm90ZWJvb2sKLS0tCiNDYXJnbyBwYWNrYWdlcwpgYGB7cn0KbGlicmFyeSgiaXJyIiIpCmxpYnJhcnkoInRpZHl2ZXJzZSIpCmBgYAojQWJybyAuY3N2IGRlIHBsYW50aWxsYSBpbnRlcm5ldCAKYGBge3J9CmthcHBhIDwtIHJlYWQuY3N2KCJodHRwczovL2RvY3MuZ29vZ2xlLmNvbS9zcHJlYWRzaGVldHMvZC9lLzJQQUNYLTF2VGp0eGtsRWpzdGNHWnVtVWF4V1diOWhxNkc2YWFhRmM1Z0lFd25mbW80cEUwWGRJTW8wYkhjRVhKVDk2SWZ2TGhtbEFLU2dpSVBHVEFtL3B1Yj9naWQ9MjU1MzI2MjUmc2luZ2xlPXRydWUmb3V0cHV0PWNzdiIpCmBgYAojRWwga2FwcGEgKGVsIHByaW1lcm8pIApgYGB7cn0Ka2FwcGFtLmZsZWlzcyhrYXBwYSwgZGV0YWlsPVRSVUUpCmBgYAojQ29tbyBlc3RpbW8gbXVlc3RyYSBlbiBiYXNlIGFsIGthcHBhIHF1ZSBxdWllcm8gb2J0ZW5lciwgZWplbXBsbwpgYGB7cn0Ka2FwcGFTaXplOjpDSUJpbmFyeShrYXBwYTAgPSAwLjgwLCAjIGVsIHZhbG9yIGRlIGthcHBhIGVzcGVyYWRvCiAgICAgICAgIGthcHBhTCA9IDAuNjAgLCAjIGVsIGzDrW1pdGUgaW5mZXJpb3IKICAgICAgICAga2FwcGFVID0gIE5BLCAjIGVsIGzDrW1pdGUgc3VwZXJpb3IsIGxvIGRlam8gZW4gYmxhbmNvCiAgICAgICAgIHByb3BzICA9IC4zNDEgLCAjIGxhIHByb3BvcmNpw7NuIG8gcHJldmFsZW5jaWEgZXNwZXJhZGEuIENvbnNpZGVyYW5kbyBHb3lhbCAyMDE2ID0gMC4zNDEKICAgICAgICAgcmF0ZXJzID0gMiwgIyBNYXJjbyArIFNpbHZpYQogICAgICAgICBhbHBoYSA9IDAuMDUpICMgZXN0byBlcyBzdGFuZGFyCmBgYAojcmVmZXJlbmNpYXMgCmBgYHtyfQpHb3lhbCwgUy4sIFZlcm1hLCBQLiwgUmFqLCBTLlMuLCAyMDE2LiBSYWRpb2dyYXBoaWMgRXZhbHVhdGlvbiBvZiB0aGUgU3RhdHVzIG9mIFRoaXJkIE1vbGFycyBpbiBTcmlnYW5nYW5hZ2FyIFBvcHVsYXRpb24gLSBBIERpZ2l0YWwgUGFub3JhbWljIFN0dWR5LiBNYWxheXMuIEouIE1lZC4gU2NpLiAyMywgMTAz4oCTMTEyLgoKRG9ubmVyIEEsIFJvdG9uZGkgTUEuIDIwMTAuIFNhbXBsZSBTaXplIFJlcXVpcmVtZW50cyBmb3IgSW50ZXJ2YWwgRXN0aW1hdGlvbiBvZiB0aGUgS2FwcGEgU3RhdGlzdGljIGZvciBJbnRlcm9ic2VydmVyIEFncmVlbWVudCBTdHVkaWVzIHdpdGggYSBCaW5hcnkgT3V0Y29tZSBhbmQgTXVsdGlwbGUgUmF0ZXJzLiBJbnRlcm5hdGlvbmFsIEpvdXJuYWwgb2YgQmlvc3RhdGlzdGljcyA2OjMxLgpgYGAKI1JlYWxpem8gdGFibGEgZGUgcHJlc2VuY2lhIGRlIGluZnJhb2NsdXNpb24gcG9yIHNleG8KYGBge3J9CnRhYmxhMSA8LSBtYXRyaXgoYygxMDMsIDEwNiwgODEsIDY5KSwgbmNvbCA9IDIpCmNvbG5hbWVzKHRhYmxhMSkgPC0gYygiTm8gcHJlc2VudGEiLCAiUHJlc2VudGEiKQpyb3duYW1lcyh0YWJsYTEpIDwtIGMoIkZlbWVuaW5vIiwgIk1hc2N1bGlubyIpCmBgYAojTm9tYnJlcyBkZSB2YXJpYWJsZXMgCmBgYHtyfQp0YWJsYTEKYGBgCmBgYHtyfQptb3NhaWNwbG90KHRhYmxhMSwgc2hhZGUgPSBUKQpgYGAKI3ZlbyBwcm9ww7JyY2lvbmVzCmBgYHtyfQpwcm9wLnRhYmxlKHRhYmxhMSkqMTAwCmBgYAojUHJ1ZWJhIGRlbCBjaGktMgpgYGB7cn0KY2hpc3EudGVzdCh0YWJsYTEpCmBgYAoKCgoKCg==