mean <- 0
variance <- 1/4
sd <- sqrt(variance)
n <- 364
## calculating x as : (value - mean)/sqrt(n)
x1 <- (100 - 100)/sqrt(n)
pnorm(x1, mean = mean, sd = sd, lower.tail = FALSE)
## [1] 0.5
## calculating x as : (value - mean)/sqrt(n)
x2 <- (110 - 100)/sqrt(n)
pnorm(x2, mean = mean, sd = sd, lower.tail = FALSE)
## [1] 0.1472537
## calculating x as : (value - mean)/sqrt(n)
x3 <- (120 - 100)/sqrt(n)
pnorm(x3, mean = mean, sd = sd, lower.tail = FALSE)
## [1] 0.01801584
Answer: PMF for binomial distribution is defined as: \(\binom{n}{x} p^{x} q^{n-x}\)
MGF would be:
M(t) = \[\sum_{x=1}^{n} e^{tx} \binom{n}{x} p^{x} q^{n-x}\] = \[\sum_{x=1}^{n} \binom{n}{x} {(pe^t)}^x q^{n-x}\] = \({(pe^t + q)}^n\)
For Expected value, taking the first derivative of MGF and then substitute t by 0. E(x) = np
Similarly \(E(X^2) = n(n-1)p^2 + np\)
Var(X) = \(E(X^2) - E(X)^2\) = \(np(1-p)\)
Answer: PDF for exponential function = \(\lambda e^{-x\lambda}\)
\(M(t) = \int_{0}^{\infty} e^{tx} \lambda e^{-x\lambda}\)
\(= \lambda \int_{0}^{\infty} e^{-x(\lambda - t)}\)
\(= \lambda / {(\lambda - t)}\)
\(E(X) = 1/\lambda\)
\(E(X^2) = 2/{\lambda ^2}\)
\(Var(X) = E(X^2) - E(X)^2\)
\(= 2/{\lambda ^2} - 1/{\lambda ^2}\)
\(= 1/{\lambda ^2}\)