Cluster analysis for April 2nd - n=67, between the ages of 6-16

Measures included:

Cortical thickness from freesurfer
Subcortical volumes from freesurfer 7 clinical scores
No FA

Parameters below chosen based on SNF guidelines and increasing the NMI scores each data type has with the fused similarity network
K=20
iterations=10
hyperparameter=0.7

No individuals cluster unreliably according to resampling for the robust script

Similarity Network Clusters

An embedded robust core clustering function sampled 80% of participants for a total of 100 random draws to dete rmine the stability of participant cluster membership

## Warning in chisq.test(test$group, test$clin_diagnosis): Chi-squared
## approximation may be incorrect
## 
##  Pearson's Chi-squared test
## 
## data:  test$group and test$clin_diagnosis
## X-squared = 5.6019, df = 4, p-value = 0.2309
## Warning in chisq.test(test$group, test$GENDER): Chi-squared approximation
## may be incorrect
## 
##  Pearson's Chi-squared test
## 
## data:  test$group and test$GENDER
## X-squared = 1.0055, df = 2, p-value = 0.6049

Similarity Network plots show similarities between participants > 0.3 and have darker lines for similarities > 0.8.

Percentage agreement for each cluster (500 permuations)

What percentage of the time each person will be clustered with each other person in the sample. The darker blue indicates people that are regularly clustered together.

Stability of clustering across resampling (500 times)

Corrected-for-chance version of the Rand Index - he number of pairs of objects that are either in the same group or in different groups in both partitions divided by the total number of pairs of objects and is between 0 and 1. However, the expected value of the Rand index between two random partitions is not a constant. The adjusted Rand index that assumes the generalized hyper-geometric distribution as the model of randomness. The adjusted Rand index has the maximum value 1, and its expected value is 0 in the case of random clusters. (Yeung & Ruzzo, 2001)

The average adjusted rand index is 0.47 which is on the high side of medium correlation (0.3-0.5 is medium and 0.5-1 is high)

Break down of diagnosis by the 4 clusters

Demographics of groups and their symptom severity for clinical symptoms

N Age Internalizing Externalizing OC_symps Attention Hyperactivity Restricted_behaviours Social_comm
67 11.67789 13.31343 12.41791 -19.32836 4.731343 3.283582 25.47761 13.19403

Demographics of clinical diagnosis groups

##    N      Age Internalizing Externalizing  OC_symps Attention
## 1 67 11.67789      13.31343      12.41791 -19.32836  4.731343
##   Hyperactivity Restricted_behaviours Social_comm
## 1      3.283582              25.47761    13.19403

Visualization of the differences in clinical scores between groups

NMI scores/contribution

ADHD_I_SUB (Attention) 0.1520187199
ADHD_HI_SUB (Hyperactivity) 0.1069560336
SCQTOT (Social Communication) 0.0972779577
CB68EPTOT (Externalizing) 0.0941637003
CB68IPTOT (Internalizing) 0.0901393368
TPOCS_TOT (Obsessive Compulsive) 0.0781626424
RBSALLT (Repetative Behaviours) 0.0408655279

## Warning: Computation failed in `stat_signif()`:
## not enough 'y' observations

## Warning: Computation failed in `stat_signif()`:
## not enough 'y' observations

## Warning: Computation failed in `stat_signif()`:
## missing value where TRUE/FALSE needed

## Warning: Computation failed in `stat_signif()`:
## missing value where TRUE/FALSE needed

## Warning: Computation failed in `stat_signif()`:
## missing value where TRUE/FALSE needed

Clinical diagnosis breakdown of clinical scores

Breakdown of clinical diagnosis within each group/cluster

Imaging Measures

Top 25 contributing measures and their NMI values

In brackets are whether they overlap with top NMI measures when either 80% or 50% of the population is sampled 100 times (specific findings at the end of the doc)

1 0.2059965612 R_insula_thickavg 2 0.1937956255 R_parstriangularis_thickavg 3 0.1739881674 R_superiorfrontal_thickavg 4 0.1717589775 L_supramarginal_thickavg 5 0.1688189296 R_rostralmiddlefrontal_thickavg 6 0.1688178992 L_insula_thickavg 7 0.1681203616 R_middletemporal_thickavg 8 0.1679294051 L_fusiform_thickavg 9 0.1634399745 ADHD_I_SUB 10 0.1562703 L_rostralmiddlefrontal_thickavg 11 0.1553348564 ADHD_HI_SUB 12 0.1540158642 R_inferiortemporal_thickavg 13 0.1537846297 R_lateraloccipital_thickavg 14 0.153155944 L_lateraloccipital_thickavg 15 0.1528981314 L_lateralorbitofrontal_thickavg 16 0.1523838001 R_precentral_thickavg 17 0.1517082822 L_inferiortemporal_thickavg 18 0.1515054929 L_middletemporal_thickavg 19 0.1503744862 L_postcentral_thickavg 20 0.1466343099 R_supramarginal_thickavg

Cortical Thickness - top contributing regions

## Warning: Computation failed in `stat_signif()`:
## not enough 'y' observations

## Warning: Computation failed in `stat_signif()`:
## not enough 'y' observations

## `geom_smooth()` using method = 'loess'

## `geom_smooth()` using method = 'loess'

## `geom_smooth()` using method = 'loess'

Volume - top contributing regions

## Warning: Computation failed in `stat_signif()`:
## not enough 'y' observations

## Warning: Computation failed in `stat_signif()`:
## missing value where TRUE/FALSE needed

## `geom_smooth()` using method = 'loess'

## Warning: Computation failed in `stat_signif()`:
## not enough 'y' observations

Validation measures

Structural Covariance of cortical thickness

Global Efficiency
Group 1 0.4416995903 Group 2 0.3953906936
Group 3 0.4766681299
Group 4 0.3923031899

Group 2 and 3 are significantly different (p<0.05)
Group 3 and 4 are significantly different (p<0.05)

A permutation test was run to compare the identified distribution of differences in global efficiency to those if the structure correlations were randomized.

Adaptive behavior Assessment System - general adaptive composite

Scaled scores

N Missing Communication Community_use Academics Home_living Health_safety leisure Selfcare
67 1 6.621212 6.446154 6.712121 4.393939 6.969697 6.818182 4.939394
N Missing Selfdirection Social Work GAC_composite Conceptual Social_composite Practical
67 1 4.924242 5.19697 5 73.53846 78.77273 79.60606 72.44615
## Warning: Removed 2 rows containing non-finite values (stat_boxplot).
## Warning: Removed 2 rows containing non-finite values (stat_signif).
## Warning: Removed 2 rows containing missing values (geom_point).

## Warning: Removed 1 rows containing non-finite values (stat_boxplot).
## Warning: Removed 1 rows containing non-finite values (stat_signif).
## Warning: Removed 1 rows containing missing values (geom_point).

## Warning: Removed 2 rows containing non-finite values (stat_boxplot).
## Warning: Removed 2 rows containing non-finite values (stat_signif).
## Warning: Computation failed in `stat_signif()`:
## missing value where TRUE/FALSE needed
## Warning: Removed 2 rows containing missing values (geom_point).

## Warning: Removed 1 rows containing non-finite values (stat_boxplot).
## Warning: Removed 1 rows containing non-finite values (stat_signif).
## Warning: Computation failed in `stat_signif()`:
## missing value where TRUE/FALSE needed
## Warning: Removed 1 rows containing missing values (geom_point).

## Warning: Removed 2 rows containing non-finite values (stat_boxplot).
## Warning: Removed 2 rows containing non-finite values (stat_signif).
## Warning: Computation failed in `stat_signif()`:
## missing value where TRUE/FALSE needed
## Warning: Removed 2 rows containing missing values (geom_point).

## Warning: Removed 1 rows containing non-finite values (stat_boxplot).
## Warning: Removed 1 rows containing non-finite values (stat_signif).
## Warning: Computation failed in `stat_signif()`:
## missing value where TRUE/FALSE needed
## Warning: Removed 1 rows containing missing values (geom_point).

## Warning: Removed 1 rows containing non-finite values (stat_boxplot).
## Warning: Removed 1 rows containing non-finite values (stat_signif).
## Warning: Computation failed in `stat_signif()`:
## missing value where TRUE/FALSE needed
## Warning: Removed 1 rows containing missing values (geom_point).

## Warning: Removed 2 rows containing non-finite values (stat_boxplot).
## Warning: Removed 2 rows containing non-finite values (stat_signif).
## Warning: Computation failed in `stat_signif()`:
## not enough 'y' observations
## Warning: Removed 2 rows containing missing values (geom_point).

## Warning: Removed 1 rows containing non-finite values (stat_boxplot).
## Warning: Removed 1 rows containing non-finite values (stat_signif).
## Warning: Computation failed in `stat_signif()`:
## not enough 'y' observations
## Warning: Removed 1 rows containing missing values (geom_point).

## Warning: Removed 1 rows containing non-finite values (stat_boxplot).
## Warning: Removed 1 rows containing non-finite values (stat_signif).
## Warning: Computation failed in `stat_signif()`:
## not enough 'y' observations
## Warning: Removed 1 rows containing missing values (geom_point).

## Warning: Removed 1 rows containing non-finite values (stat_boxplot).
## Warning: Removed 1 rows containing non-finite values (stat_signif).
## Warning: Computation failed in `stat_signif()`:
## not enough 'y' observations
## Warning: Removed 1 rows containing missing values (geom_point).

## Warning: Removed 1 rows containing non-finite values (stat_boxplot).
## Warning: Removed 1 rows containing non-finite values (stat_signif).
## Warning: Computation failed in `stat_signif()`:
## not enough 'y' observations
## Warning: Removed 1 rows containing missing values (geom_point).

## Warning: Removed 1 rows containing non-finite values (stat_boxplot).
## Warning: Removed 1 rows containing non-finite values (stat_signif).
## Warning: Computation failed in `stat_signif()`:
## not enough 'y' observations
## Warning: Removed 1 rows containing missing values (geom_point).

## Warning: Removed 1 rows containing non-finite values (stat_boxplot).
## Warning: Removed 1 rows containing non-finite values (stat_signif).
## Warning: Computation failed in `stat_signif()`:
## not enough 'y' observations
## Warning: Removed 1 rows containing missing values (geom_point).

## Warning: Removed 2 rows containing non-finite values (stat_boxplot).
## Warning: Removed 2 rows containing non-finite values (stat_signif).
## Warning: Computation failed in `stat_signif()`:
## not enough 'y' observations
## Warning: Removed 2 rows containing missing values (geom_point).

## Warning: Removed 1 rows containing non-finite values (stat_boxplot).
## Warning: Removed 1 rows containing non-finite values (stat_signif).
## Warning: Computation failed in `stat_signif()`:
## not enough 'y' observations
## Warning: Removed 1 rows containing missing values (geom_point).

Sampled 50% of the population 100 times and calculated the top 15 NMI measures - below is how many times these measures had the top 15 scores

X Measure Count
1 R_precentral_thickavg 778
2 R_parstriangularis_thickavg 733
3 R_superiorfrontal_thickavg 713
4 R_rostralmiddlefrontal_thickavg 689
5 L_lateraloccipital_thickavg 643
6 R_lateraloccipital_thickavg 556
7 L_superiorfrontal_thickavg 518
8 L_fusiform_thickavg 514
9 L_parsopercularis_thickavg 512
10 L_middletemporal_thickavg 475
11 L_rostralmiddlefrontal_thickavg 461
12 R_caudalmiddlefrontal_thickavg 461
13 L_caudalmiddlefrontal_thickavg 455
14 R_middletemporal_thickavg 422
15 L_inferiorparietal_thickavg 394
16 R_inferiorparietal_thickavg 390
17 L_precentral_thickavg 365
18 L_parstriangularis_thickavg 336
19 L_inferiortemporal_thickavg 324
20 L_insula_thickavg 313
21 R_parsopercularis_thickavg 305
22 R_insula_thickavg 249
23 R_fusiform_thickavg 235
24 R_inferiortemporal_thickavg 218
25 L_lateralorbitofrontal_thickavg 216
26 ADHD_I_SUB 205
27 R_lateralorbitofrontal_thickavg 196
28 ADHD_HI_SUB 148
29 Rthal 147
30 L_supramarginal_thickavg 135

Again - but sampled 80% of the population 100 times and calculated the top 15 NMI measures - below is how many times these measures had the top 15 scores