Lecture 2

AHFS Spring 2

Terry Leitch

Copyright © 2019 T Leitch & J Liew

Agenda

mean return, std dev, & sharpe broken down over time

##  [1] "HFI"           "Converts"      "ShortBias"     "EMF"          
##  [5] "EquityNeutral" "EventDriven"   "Distressed"    "MultiSstrat"  
##  [9] "RiskArb"       "FIArb"         "Macro"         "LongShort"    
## [13] "MngdFuture"    "MultiHFI"      "AllHFI"        "ShortBias.1"  
## [17] "MktNeutral"    "GlobalMacro"   "spx"
HFI Converts ShortBias EMF EquityNeutral EventDriven Distressed MultiSstrat
0.01 0.00 -0.02 0.11 -0.01 0.04 0.04 0.04
-0.04 0.00 0.02 -0.01 0.00 0.00 0.00 0.00
-0.04 -0.01 0.07 -0.05 0.00 -0.01 -0.02 -0.01
## [1] "All Data"
HFI Converts ShortBias EMF EquityNeutral EventDriven
Annualized Return 0.0764 0.0656 -0.0583 0.0712 0.0435 0.0798
Annualized Std Dev 0.0680 0.0623 0.1624 0.1320 0.0920 0.0597
Annualized Sharpe (Rf=0%) 1.1241 1.0537 -0.3590 0.5395 0.4732 1.3366
## [1] "2008/Today"
HFI Converts ShortBias EMF EquityNeutral EventDriven
Annualized Return 0.0318 0.0366 -0.1170 0.0333 -0.0279 0.0293
Annualized Std Dev 0.0550 0.0788 0.1521 0.0900 0.1354 0.0630
Annualized Sharpe (Rf=0%) 0.5781 0.4639 -0.7695 0.3698 -0.2059 0.4651
## [1] "1993/2007"
HFI Converts ShortBias EMF EquityNeutral EventDriven
Annualized Return 0.1105 0.0876 -0.0181 0.1001 0.0996 0.1187
Annualized Std Dev 0.0749 0.0459 0.1680 0.1555 0.0282 0.0552
Annualized Sharpe (Rf=0%) 1.4748 1.9074 -0.1078 0.6433 3.5306 2.1513

Some stats broken down over time

## [1] "All Data"
HFI to spx Converts to spx ShortBias to spx EMF to spx EquityNeutral to spx EventDriven to spx
CoSkewness 0.0000 0.0000 0.0001 -0.0001 0.0000 0.0000
CoKurtosis 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
Beta CoVariance 0.3054 0.2378 -0.9468 0.5665 0.1213 0.2832
Beta CoSkewness 0.5792 0.6296 -1.1281 1.3981 0.0723 0.6460
Beta CoKurtosis 0.3553 0.4263 -0.9272 0.8416 0.1250 0.3759
## [1] "2008/Today"
HFI to spx Converts to spx ShortBias to spx EMF to spx EquityNeutral to spx EventDriven to spx
CoSkewness 0.0000 -0.0001 0.0001 -0.0001 0.0000 0.0000
CoKurtosis 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
Beta CoVariance 0.3118 0.3968 -0.9104 0.5570 0.1638 0.3432
Beta CoSkewness 0.4376 0.8102 -0.5801 0.9378 0.0846 0.3872
Beta CoKurtosis 0.3391 0.5927 -0.7316 0.7134 0.1499 0.3094
## [1] "1993/2007"
HFI to spx Converts to spx ShortBias to spx EMF to spx EquityNeutral to spx EventDriven to spx
CoSkewness 0.0000 0.0000 0.0001 -0.0001 0.0000 0.0000
CoKurtosis 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
Beta CoVariance 0.3051 0.1078 -0.9699 0.5796 0.0884 0.2374
Beta CoSkewness 0.8000 0.3217 -2.1520 2.1695 0.0496 1.0935
Beta CoKurtosis 0.3684 0.2019 -1.1878 1.0012 0.0866 0.4551

Performance Measure - Sharpe Ratio

\[\frac{\overline{r} - r_f}{\sigma}\] For monthly return data

Note the distinctions between raw price differences, simple returns, compounded returns, and continuously compounded returns. Must keep track of what time periods you are using

kable(SharpeRatio.annualized(hfrets[,1:6])) 
HFI Converts ShortBias EMF EquityNeutral EventDriven
Annualized Sharpe Ratio (Rf=0%) 1.124054 1.053679 -0.3590148 0.5395425 0.4731986 1.336585

Performance Measure - Sortino Ratio

\[ \frac{\overline{r} - r_f}{\sigma^-}\]

Sortino ratio employs a specific measure for only down-side deviations. Note that standard deviation does not distinguish down-side and up-side deviations.

kable(SortinoRatio(hfrets[,1:6])) 
HFI Converts ShortBias EMF EquityNeutral EventDriven
Sortino Ratio (MAR = 0%) 0.5614512 0.4221621 -0.12001 0.2491062 0.1641458 0.5620133

Performance Measure - Sterling/Calmar Ratio

\[ \frac{\overline{r} - r_f}{max(Drawdown)}\]

kable(CalmarRatio(hfrets[,1:6])) 
HFI Converts ShortBias EMF EquityNeutral EventDriven
Calmar Ratio 0.3882006 0.1995857 -0.0728487 0.1577485 0.0965238 0.4168338

Sterling ratio differs from Calmar by adding an excess amount to the drawdown as a cushion

Performance Measure - Omega Ratio

Omega Ratio employs the entire distribution of returns. Defined by the probability weighted returns above “threshold” (r) over probability weighted returns below.

kable(Omega(hfrets[,1:6])) 
HFI Converts ShortBias EMF EquityNeutral EventDriven
Omega (L = 0%) 2.499324 2.490829 0.8086351 1.627946 2.13032 2.738897

Are Betas for Hedge Funds Reliable?

Beta in the Tails

Beta in the Tails: Code

zz=seq(-2,2,by=.1)
beta=rep(0,length(zz))
sig=sd(hfrets[,"HFI"],na.rm=T)
i=0
for(z in zz){
  i=i+1
  if(z<0){
    idxZ=which(hfrets[,"spx"]<z*sig)
    fit=lm(hfrets[idxZ,"HFI"]~hfrets[idxZ,"spx"])
    beta[i]=fit$coefficients[2]
  }
    else if(z==0){
    fit=lm(hfrets[,"HFI"]~hfrets[,"spx"])
    beta[i]=fit$coefficients[2]
    }
    if(z>0){
    idxZ=which(hfrets[,"spx"]>z*sig)
    fit=lm(hfrets[idxZ,"HFI"]~hfrets[idxZ,"spx"])
    beta[i]=fit$coefficients[2]
  }
}
## plot(zz,y=beta,main="Beta for HFI based on tail cohorts (0=all data)",xlab="spx z value threshold")

Beta in the Tails: Code

Also look at CAPM.beta.bear & CAPM.beta.bull in PerformanceAnalytics package (how do they differ from this analysis?)

Case Study

How to Build an Institutional-Grade FOFs Investment Process

Case Study - Screening Process

Case Study - Bifurcated Fund Analysis Model

Case Study - Bifurcated Fund Analysis Model Results

Case Study - Incremental Portfolio Analysis Model

Case Study - Risk Exposures to Consider by Strategy

Mistakes/Limitations

Mistakes/Limitations

Mistakes/Limitations

Assignment 1