library(readr)
refined_rainfall <- read_csv("~/Dr Mupangwa/refined_rainfall.csv")
## Parsed with column specification:
## cols(
##   country = col_character(),
##   site = col_character(),
##   agroecoregion = col_character(),
##   farmer = col_character(),
##   `Farmer Code` = col_logical(),
##   Rep = col_double(),
##   original_treatment = col_character(),
##   treatment = col_character(),
##   association = col_character(),
##   cropping_system = col_character(),
##   tillage_practice = col_character(),
##   season = col_character(),
##   season_since = col_double(),
##   rainfall = col_double(),
##   maize_grain = col_double()
## )
View(refined_rainfall)
attach(refined_rainfall)
names(refined_rainfall)
##  [1] "country"            "site"               "agroecoregion"     
##  [4] "farmer"             "Farmer Code"        "Rep"               
##  [7] "original_treatment" "treatment"          "association"       
## [10] "cropping_system"    "tillage_practice"   "season"            
## [13] "season_since"       "rainfall"           "maize_grain"
library(ggplot2)
library(maps)
library(ggalt)
library(extrafontdb)
library(MASS)
library(pscl)
## Classes and Methods for R developed in the
## Political Science Computational Laboratory
## Department of Political Science
## Stanford University
## Simon Jackman
## hurdle and zeroinfl functions by Achim Zeileis
library(psych)
## 
## Attaching package: 'psych'
## The following objects are masked from 'package:ggplot2':
## 
##     %+%, alpha
library(gridExtra)
library(repr) ### adjusting the length and width of your plot
library(beanplot)
library("devtools")
library("yarrr")
## Loading required package: jpeg
## Loading required package: BayesFactor
## Loading required package: coda
## Loading required package: Matrix
## ************
## Welcome to BayesFactor 0.9.12-4.2. If you have questions, please contact Richard Morey (richarddmorey@gmail.com).
## 
## Type BFManual() to open the manual.
## ************
## Loading required package: circlize
## ========================================
## circlize version 0.4.5
## CRAN page: https://cran.r-project.org/package=circlize
## Github page: https://github.com/jokergoo/circlize
## Documentation: http://jokergoo.github.io/circlize_book/book/
## 
## If you use it in published research, please cite:
## Gu, Z. circlize implements and enhances circular visualization 
##   in R. Bioinformatics 2014.
## ========================================
## yarrr v0.1.5. Citation info at citation('yarrr'). Package guide at yarrr.guide()
## Email me at Nathaniel.D.Phillips.is@gmail.com
## 
## Attaching package: 'yarrr'
## The following object is masked from 'package:ggplot2':
## 
##     diamonds
library(agricolae)
library(easynls)
library(MVN)
## sROC 0.1-2 loaded
library(lme4)
country=as.factor(country)
site=as.factor(site)
agroecoregion=as.factor(agroecoregion)
treatment=as.factor(treatment)
cropping_system=as.factor(cropping_system)
season=as.factor(season)
mod<-aov(maize_grain~cropping_system+rainfall+season_since+agroecoregion+cropping_system+rainfall:season_since+cropping_system:rainfall,data=refined_rainfall)
summary(mod)
##                            Df    Sum Sq   Mean Sq F value   Pr(>F)    
## cropping_system             4 1.163e+08 2.908e+07  10.023 4.83e-08 ***
## rainfall                    1 3.437e+07 3.437e+07  11.845 0.000588 ***
## season_since                1 1.143e+07 1.143e+07   3.940 0.047255 *  
## agroecoregion               1 1.034e+09 1.034e+09 356.446  < 2e-16 ***
## rainfall:season_since       1 1.263e+07 1.263e+07   4.354 0.037038 *  
## cropping_system:rainfall    4 1.847e+07 4.617e+06   1.591 0.173911    
## Residuals                2333 6.770e+09 2.902e+06                     
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
anova(mod)
## Analysis of Variance Table
## 
## Response: maize_grain
##                            Df     Sum Sq    Mean Sq  F value    Pr(>F)    
## cropping_system             4  116334822   29083705  10.0230 4.833e-08 ***
## rainfall                    1   34371126   34371126  11.8451 0.0005883 ***
## season_since                1   11434054   11434054   3.9405 0.0472550 *  
## agroecoregion               1 1034304193 1034304193 356.4464 < 2.2e-16 ***
## rainfall:season_since       1   12633062   12633062   4.3537 0.0370378 *  
## cropping_system:rainfall    4   18468489    4617122   1.5912 0.1739108    
## Residuals                2333 6769689214    2901710                       
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
x<- LSD.test(mod,"cropping_system",alpha=0.01,group=FALSE)
diffograph(x,cex.axis=0.8,xlab="Maize Grain Yield [kg/ha]",ylab="")

# Example 2
x<- REGW.test(mod,"season_since",alpha=0.01,group=FALSE)
diffograph(x,cex.axis=0.6,xlab="Maize Grain Yield [kg/ha]",ylab="",color1="brown",color2="green")

mod<-lm(maize_grain~cropping_system+rainfall+season_since+cropping_system+rainfall:season_since+cropping_system:rainfall,data=refined_rainfall)
summary(mod)
## 
## Call:
## lm(formula = maize_grain ~ cropping_system + rainfall + season_since + 
##     cropping_system + rainfall:season_since + cropping_system:rainfall, 
##     data = refined_rainfall)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -3360.1 -1318.0  -350.0   934.7  8821.5 
## 
## Coefficients:
##                                          Estimate Std. Error t value
## (Intercept)                             3462.8890   495.0114   6.996
## cropping_systemCA_rotation              1108.6767   606.3873   1.828
## cropping_systemCA_sole                  1006.5353   543.1850   1.853
## cropping_systemConv_intercrop          -3022.4398  1151.7974  -2.624
## cropping_systemConv_sole                1289.8175   600.3191   2.149
## rainfall                                  -0.2740     0.5046  -0.543
## season_since                            -595.6446   117.9873  -5.048
## rainfall:season_since                      0.5704     0.1205   4.735
## cropping_systemCA_rotation:rainfall       -0.8868     0.6221  -1.426
## cropping_systemCA_sole:rainfall           -0.9438     0.5627  -1.677
## cropping_systemConv_intercrop:rainfall     3.1379     1.5874   1.977
## cropping_systemConv_sole:rainfall         -1.4117     0.6215  -2.271
##                                        Pr(>|t|)    
## (Intercept)                            3.44e-12 ***
## cropping_systemCA_rotation              0.06763 .  
## cropping_systemCA_sole                  0.06400 .  
## cropping_systemConv_intercrop           0.00874 ** 
## cropping_systemConv_sole                0.03177 *  
## rainfall                                0.58719    
## season_since                           4.80e-07 ***
## rainfall:season_since                  2.32e-06 ***
## cropping_systemCA_rotation:rainfall     0.15410    
## cropping_systemCA_sole:rainfall         0.09364 .  
## cropping_systemConv_intercrop:rainfall  0.04819 *  
## cropping_systemConv_sole:rainfall       0.02322 *  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 1820 on 2334 degrees of freedom
## Multiple R-squared:  0.03289,    Adjusted R-squared:  0.02833 
## F-statistic: 7.215 on 11 and 2334 DF,  p-value: 3.29e-12
anova(mod)
## Analysis of Variance Table
## 
## Response: maize_grain
##                            Df     Sum Sq  Mean Sq F value    Pr(>F)    
## cropping_system             4  116334822 29083705  8.7767 4.962e-07 ***
## rainfall                    1   34371126 34371126 10.3723  0.001297 ** 
## season_since                1   11434054 11434054  3.4505  0.063358 .  
## rainfall:season_since       1   61683921 61683921 18.6147 1.666e-05 ***
## cropping_system:rainfall    4   39174496  9793624  2.9555  0.018926 *  
## Residuals                2334 7734236540  3313726                      
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
ggplot(refined_rainfall, aes(x =season_since,y = maize_grain, color = cropping_system))+ geom_smooth(method=lm, position = "jitter",aes(fill=cropping_system), level = 0.95)+ xlim(0,6)+ylab("Grain yield  [kg/ha]") +xlab("Season")+theme(legend.position = c(0.75,0.85))
## Warning: Removed 4 rows containing missing values (geom_smooth).

ggplot(refined_rainfall, aes(x =season_since,y = maize_grain, color = cropping_system))+ geom_smooth(method=lm, position = "jitter",aes(fill=cropping_system), level = 0.95)+ xlim(0,6)+ylab("Grain yield  [kg/ha]") +xlab("Season")+theme(legend.position = c(0.75,0.85))+facet_wrap(.~agroecoregion)
## Warning: Removed 6 rows containing missing values (geom_smooth).

ggplot(refined_rainfall, aes(x = season_since, y = maize_grain, color = cropping_system)) +geom_point(data = refined_rainfall, size=3, shape=20, position = "jitter")+ geom_smooth(method="lm", aes(fill=cropping_system))+ylab("Maize grain yield [kg/ha]") + xlab("Years since intervention")+ geom_vline(xintercept = 0, linetype=1, color = "black", size=1)+theme(legend.position = c(0.90, 0.90))

########## agro ecological regions
ggplot(refined_rainfall, aes(x = season_since, y = maize_grain, color = cropping_system)) + geom_smooth(method="lm", aes(fill=cropping_system))+ylab("Maize grain yield [kg/ha]") + xlab("Years since intervention")+ geom_vline(xintercept = 0, linetype=1, color = "black", size=1)+facet_wrap(.~agroecoregion)

#### by treatment
ggplot(refined_rainfall, aes(x = season_since, y = maize_grain, color = cropping_system)) + geom_smooth(method="lm", aes(fill=cropping_system))+ylab("Maize grain yield [kg/ha]") + xlab("Years since intervention")+ geom_vline(xintercept = 0, linetype=1, color = "black", size=1)+facet_wrap(.~treatment)

# Enhanced Scatterplot of MPG vs. Weight 
# by Number of Car Cylinders 
library(car) 
## Loading required package: carData
## 
## Attaching package: 'car'
## The following object is masked from 'package:psych':
## 
##     logit
scatterplot(maize_grain~ rainfall | cropping_system, data=refined_rainfall, 
   xlab="Seasonal Rainfall", ylab="Maize grain yield [kg/ha]", 
   main="Maize grain yield [kg/ha]")

   #labels=row.names(rf)) 
# High Density Scatterplot with Binning
library(hexbin)
## Warning: package 'hexbin' was built under R version 3.5.3
bin<-hexbin(rainfall, maize_grain, xbins=50) 
plot(bin, main="Hexagonal Binning") 

###################

library(psych)
scatter.hist(x=rainfall, y=maize_grain, density=TRUE, ellipse=TRUE, 
   xlab="Seasonal Rainfall", ylab="Maize grain yield [kg/ha]")

##overal

ggplot(refined_rainfall, aes(x = rainfall, y = maize_grain, color = cropping_system)) +geom_point(data = refined_rainfall, size=3, shape=20, position = "jitter")+ geom_smooth(method="lm", aes(fill=cropping_system))+ylab("Maize grain yield [kg/ha]") + xlab("Seasonal Ranfall")+ geom_vline(xintercept = 250, linetype=1, color = "black", size=1)+theme(legend.position = c(0.85, 0.90))

###agroecology
ggplot(refined_rainfall, aes(x = rainfall, y = maize_grain, color = cropping_system)) +geom_point(data = refined_rainfall, size=3, shape=20, position = "jitter")+ geom_smooth(method="lm", aes(fill=cropping_system))+ylab("Maize grain yield [kg/ha]") + xlab("Seasonal Ranfall")+theme(legend.position = c(0.60, 0.90))+facet_wrap(.~agroecoregion)

###treatment
ggplot(refined_rainfall, aes(x = rainfall, y = maize_grain, color = cropping_system)) +geom_point(data = refined_rainfall, size=3, shape=20, position = "jitter")+ geom_smooth(method="lm", aes(fill=cropping_system))+ylab("Maize grain yield [kg/ha]") + xlab("Seasonal Ranfall")+theme(legend.position = c(0.60, 0.90))+facet_wrap(.~treatment)

###
ggplot(refined_rainfall, aes(y = rainfall, x = season_since, color = cropping_system)) +geom_point(data = refined_rainfall, size=2, shape=cropping_system, position = "jitter")+ geom_smooth(method="lm", aes(fill=cropping_system))+ylab("Season Rainfall") + xlab("Season Since")+theme(legend.position = c(0.60, 0.90))

######
###
ggplot(refined_rainfall, aes(y = rainfall, x = season_since, color = cropping_system)) +geom_point(data = refined_rainfall, size=3, shape=20, position = "jitter")+ geom_smooth(method="lm", aes(fill=cropping_system))+ylab("Season Rainfall") + xlab("Season Since")+theme(legend.position = c(0.60, 0.90))+facet_wrap(.~agroecoregion)

d <- c(maize_grain,rainfall)
df <- data.frame(d, cropping_system) 

ggplot(df) +
    stat_density(aes(x = d, group = cropping_system), position = "stack", geom = "line", show.legend = F, color = "red") +
    stat_density(aes(x = d, linetype = cropping_system,color=cropping_system), position = "identity", geom = "line")+xlab("Total seasonal rainfall(mm) and Maize grain yield [kg/ha] ")+ theme(legend.position = c(0.80, 0.80))

##### overal

d <- c(maize_grain,rainfall)
df <- data.frame(d, cropping_system) 

ggplot(df) +
    stat_density(aes(x = d), position = "stack", geom = "line", show.legend = F, color = "red") +
    stat_density(aes(x = d), position = "identity", geom = "line")+xlab("Total seasonal rainfall(mm) and Maize grain yield [kg/ha] ")