# Definindo as variáveis (Tr é o grupo, Y é o escore de cada subescala, X são as variáveis independentes)
Tr <- cbind(Grupo)
Ypreocupacao <- cbind(Preocupacao)
Ycontrole <- cbind(Controle)
Yconfianca <- cbind(Confiança)
Ycooperacao <- cbind(Cooperacao)
Ycolaboration <- cbind(Colaboration)
Ytask <- cbind(Task_Performance)
Yemotional <- cbind(Emotional_Regulation)
Yengaging <- cbind(Engaging_With_Others)
Yopen <- cbind(Open_Mindedness)
X <- cbind(Idade, Renda, Residencia, Escolaridade_cuida, Ano)

# Variaveis para uso posterior
var1 <- Idade
var2 <- Residencia
var3 <- Renda
var4 <- Escolaridade_cuida
var5 <- Ano
var6 <- Periodo
# Descritivas gerais, sem divisão por grupo

summary(Ypreocupacao)
##   Preocupacao   
##  Min.   :1.833  
##  1st Qu.:3.333  
##  Median :3.833  
##  Mean   :3.773  
##  3rd Qu.:4.333  
##  Max.   :5.000
summary(Ycontrole)
##     Controle    
##  Min.   :1.667  
##  1st Qu.:3.458  
##  Median :3.917  
##  Mean   :3.870  
##  3rd Qu.:4.500  
##  Max.   :5.000
summary(Yconfianca)
##    Confiança    
##  Min.   :2.167  
##  1st Qu.:3.500  
##  Median :4.000  
##  Mean   :3.997  
##  3rd Qu.:4.500  
##  Max.   :5.000
summary(Ycooperacao)
##    Cooperacao   
##  Min.   :1.833  
##  1st Qu.:3.500  
##  Median :4.000  
##  Mean   :3.975  
##  3rd Qu.:4.500  
##  Max.   :5.000
summary(Ycolaboration)
##   Colaboration  
##  Min.   :3.000  
##  1st Qu.:3.714  
##  Median :4.000  
##  Mean   :4.032  
##  3rd Qu.:4.286  
##  Max.   :5.000
summary(Ytask)
##  Task_Performance
##  Min.   :2.600   
##  1st Qu.:3.900   
##  Median :4.200   
##  Mean   :4.206   
##  3rd Qu.:4.500   
##  Max.   :5.100
summary(Yemotional)
##  Emotional_Regulation
##  Min.   :1.833       
##  1st Qu.:3.167       
##  Median :3.667       
##  Mean   :3.679       
##  3rd Qu.:4.167       
##  Max.   :5.167
summary(Yengaging)
##  Engaging_With_Others
##  Min.   :2.000       
##  1st Qu.:3.500       
##  Median :4.000       
##  Mean   :4.003       
##  3rd Qu.:4.500       
##  Max.   :5.000
summary(Yopen)
##  Open_Mindedness
##  Min.   :2.167  
##  1st Qu.:3.667  
##  Median :4.000  
##  Mean   :3.945  
##  3rd Qu.:4.333  
##  Max.   :5.000
summary(X)
##      Idade           Renda         Residencia  Escolaridade_cuida
##  Min.   :14.00   Min.   :1.000   Min.   :1.0   Min.   :1.00      
##  1st Qu.:16.00   1st Qu.:2.000   1st Qu.:1.0   1st Qu.:2.00      
##  Median :17.00   Median :2.000   Median :1.0   Median :4.00      
##  Mean   :16.57   Mean   :2.215   Mean   :1.5   Mean   :3.77      
##  3rd Qu.:17.00   3rd Qu.:3.000   3rd Qu.:2.0   3rd Qu.:5.00      
##  Max.   :19.00   Max.   :4.000   Max.   :3.0   Max.   :7.00      
##       Ano     
##  Min.   :1.0  
##  1st Qu.:2.0  
##  Median :3.0  
##  Mean   :2.5  
##  3rd Qu.:3.0  
##  Max.   :4.0
# Propensity score model
glm1 <- glm(Tr ~ X, family=binomial(link = "probit"), data=mydata)
summary(glm1)
## 
## Call:
## glm(formula = Tr ~ X, family = binomial(link = "probit"), data = mydata)
## 
## Deviance Residuals: 
##      Min        1Q    Median        3Q       Max  
## -3.12273  -0.74677  -0.00399   0.83995   1.73597  
## 
## Coefficients:
##                      Estimate Std. Error z value Pr(>|z|)    
## (Intercept)         -15.65786    2.09992  -7.456 8.89e-14 ***
## XIdade                0.99148    0.13946   7.109 1.17e-12 ***
## XRenda               -0.04931    0.15694  -0.314    0.753    
## XResidencia          -0.11530    0.16863  -0.684    0.494    
## XEscolaridade_cuida  -0.07111    0.06680  -1.065    0.287    
## XAno                 -0.09424    0.17131  -0.550    0.582    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 277.26  on 199  degrees of freedom
## Residual deviance: 188.22  on 194  degrees of freedom
## AIC: 200.22
## 
## Number of Fisher Scoring iterations: 6
#library(MatchIt)

#install.packages("tidyr")
library(tidyr)
na.omit(mydata)
## # A tibble: 176 x 88
##    Protocolo Grupo Idade  Sexo Residencia Renda Escolaridade_cu~   Ano
##        <dbl> <dbl> <dbl> <dbl>      <dbl> <dbl>            <dbl> <dbl>
##  1         1     1    17     1          2     3                5     3
##  2         2     1    17     2          2     2                5     2
##  3         3     1    19     1          2     2                2     3
##  4         4     1    16     1          2     2                5     3
##  5         5     1    17     2          1     2                4     2
##  6         6     1    17     2          1     3                3     2
##  7         7     1    17     2          2     2                4     3
##  8         8     1    18     2          1     2                2     4
##  9         9     1    17     2          1     3                2     2
## 10        10     1    17     2          2     2                3     2
## # ... with 166 more rows, and 80 more variables: Periodo <dbl>,
## #   CAAS_1 <dbl>, CAAS_2 <dbl>, CAAS_3 <dbl>, CAAS_4 <dbl>, CAAS_5 <dbl>,
## #   CAAS_6 <dbl>, CAAS_7 <dbl>, CAAS_8 <dbl>, CAAS_9 <dbl>, CAAS_10 <dbl>,
## #   CAAS_11 <dbl>, CAAS_12 <dbl>, CAAS_13 <dbl>, CAAS_14 <dbl>,
## #   CAAS_15 <dbl>, CAAS_16 <dbl>, CAAS_17 <dbl>, CAAS_18 <dbl>,
## #   CAAS_19 <dbl>, CAAS_20 <dbl>, CAAS_21 <dbl>, CAAS_22 <dbl>,
## #   CAAS_23 <dbl>, CAAS_24 <dbl>, CAAS_28 <dbl>, CAAS_29 <dbl>,
## #   CAAS_30 <dbl>, CAAS_31 <dbl>, CAAS_32 <dbl>, CAAS_33 <dbl>,
## #   CAAS_34 <dbl>, SENNA_1_1 <dbl>, SENNA_1_2 <dbl>, SENNA_1_3 <dbl>,
## #   SENNA_1_4 <dbl>, SENNA_1_5 <dbl>, SENNA_1_6 <dbl>, SENNA_1_7 <dbl>,
## #   SENNA_1_8 <dbl>, SENNA_1_9 <dbl>, SENNA_1_10 <dbl>, SENNA_1_11 <dbl>,
## #   SENNA_1_12 <dbl>, SENNA_1_13 <dbl>, SENNA_1_14 <dbl>,
## #   SENNA_1_15 <dbl>, SENNA_1_16 <dbl>, SENNA_1_17 <dbl>,
## #   SENNA_1_18 <dbl>, SENNA_1_19 <dbl>, SENNA_1_20 <dbl>,
## #   SENNA_1_21 <dbl>, SENNA_1_22 <dbl>, SENNA_1_23 <dbl>,
## #   SENNA_1_24 <dbl>, SENNA_1_25 <dbl>, SENNA_1_26 <dbl>,
## #   SENNA_1_27 <dbl>, SENNA_1_28 <dbl>, SENNA_1_29 <dbl>,
## #   SENNA_1_30 <dbl>, SENNA_1_31 <dbl>, SENNA_1_32 <dbl>,
## #   SENNA_1_33 <dbl>, SENNA_1_34 <dbl>, SENNA_1_35 <dbl>,
## #   SENNA_1_36 <dbl>, Preocupacao <dbl>, Controle <dbl>,
## #   Curiosidade <dbl>, Confiança <dbl>, Cooperacao <dbl>,
## #   Adaptabilidade_Geral <dbl>, Colaboration <dbl>,
## #   Task_Performance <dbl>, Engaging_With_Others <dbl>,
## #   Emotional_Regulation <dbl>, Open_Mindedness <dbl>,
## #   Competencias_Geral <dbl>
drop_na(mydata)
## # A tibble: 176 x 88
##    Protocolo Grupo Idade  Sexo Residencia Renda Escolaridade_cu~   Ano
##        <dbl> <dbl> <dbl> <dbl>      <dbl> <dbl>            <dbl> <dbl>
##  1         1     1    17     1          2     3                5     3
##  2         2     1    17     2          2     2                5     2
##  3         3     1    19     1          2     2                2     3
##  4         4     1    16     1          2     2                5     3
##  5         5     1    17     2          1     2                4     2
##  6         6     1    17     2          1     3                3     2
##  7         7     1    17     2          2     2                4     3
##  8         8     1    18     2          1     2                2     4
##  9         9     1    17     2          1     3                2     2
## 10        10     1    17     2          2     2                3     2
## # ... with 166 more rows, and 80 more variables: Periodo <dbl>,
## #   CAAS_1 <dbl>, CAAS_2 <dbl>, CAAS_3 <dbl>, CAAS_4 <dbl>, CAAS_5 <dbl>,
## #   CAAS_6 <dbl>, CAAS_7 <dbl>, CAAS_8 <dbl>, CAAS_9 <dbl>, CAAS_10 <dbl>,
## #   CAAS_11 <dbl>, CAAS_12 <dbl>, CAAS_13 <dbl>, CAAS_14 <dbl>,
## #   CAAS_15 <dbl>, CAAS_16 <dbl>, CAAS_17 <dbl>, CAAS_18 <dbl>,
## #   CAAS_19 <dbl>, CAAS_20 <dbl>, CAAS_21 <dbl>, CAAS_22 <dbl>,
## #   CAAS_23 <dbl>, CAAS_24 <dbl>, CAAS_28 <dbl>, CAAS_29 <dbl>,
## #   CAAS_30 <dbl>, CAAS_31 <dbl>, CAAS_32 <dbl>, CAAS_33 <dbl>,
## #   CAAS_34 <dbl>, SENNA_1_1 <dbl>, SENNA_1_2 <dbl>, SENNA_1_3 <dbl>,
## #   SENNA_1_4 <dbl>, SENNA_1_5 <dbl>, SENNA_1_6 <dbl>, SENNA_1_7 <dbl>,
## #   SENNA_1_8 <dbl>, SENNA_1_9 <dbl>, SENNA_1_10 <dbl>, SENNA_1_11 <dbl>,
## #   SENNA_1_12 <dbl>, SENNA_1_13 <dbl>, SENNA_1_14 <dbl>,
## #   SENNA_1_15 <dbl>, SENNA_1_16 <dbl>, SENNA_1_17 <dbl>,
## #   SENNA_1_18 <dbl>, SENNA_1_19 <dbl>, SENNA_1_20 <dbl>,
## #   SENNA_1_21 <dbl>, SENNA_1_22 <dbl>, SENNA_1_23 <dbl>,
## #   SENNA_1_24 <dbl>, SENNA_1_25 <dbl>, SENNA_1_26 <dbl>,
## #   SENNA_1_27 <dbl>, SENNA_1_28 <dbl>, SENNA_1_29 <dbl>,
## #   SENNA_1_30 <dbl>, SENNA_1_31 <dbl>, SENNA_1_32 <dbl>,
## #   SENNA_1_33 <dbl>, SENNA_1_34 <dbl>, SENNA_1_35 <dbl>,
## #   SENNA_1_36 <dbl>, Preocupacao <dbl>, Controle <dbl>,
## #   Curiosidade <dbl>, Confiança <dbl>, Cooperacao <dbl>,
## #   Adaptabilidade_Geral <dbl>, Colaboration <dbl>,
## #   Task_Performance <dbl>, Engaging_With_Others <dbl>,
## #   Emotional_Regulation <dbl>, Open_Mindedness <dbl>,
## #   Competencias_Geral <dbl>
#mydata %>% matchit(Tr ~ X, data=mydata, method = "full", discard = "none")
#complete.cases(mydata)

Trocar o polo da residência???

# Tratamento sobre a aprendizagem
rrpreocupacao <- Match(Y = Ypreocupacao, Tr = Tr, X = glm1$fitted)
rrcontrole <- Match(Y = Ycontrole, Tr = Tr, X = glm1$fitted)
rrconfianca <- Match(Y = Yconfianca, Tr = Tr, X = glm1$fitted)
rrcooperacao <- Match(Y = Ycooperacao, Tr = Tr, X = glm1$fitted)
rrcolaboration <- Match(Y = Ycolaboration, Tr = Tr, X = glm1$fitted)
rrtask <- Match(Y = Ytask, Tr = Tr, X = glm1$fitted)
rremotional <- Match(Y = Yemotional, Tr = Tr, X = glm1$fitted)
rrengaging <- Match(Y = Yengaging, Tr = Tr, X = glm1$fitted)
rropen <- Match(Y = Yopen, Tr = Tr, X = glm1$fitted)
summary(rrpreocupacao)
## 
## Estimate...  0.48339 
## AI SE......  0.16792 
## T-stat.....  2.8786 
## p.val......  0.0039942 
## 
## Original number of observations..............  200 
## Original number of treated obs...............  100 
## Matched number of observations...............  100 
## Matched number of observations  (unweighted).  152
summary(rrcontrole)
## 
## Estimate...  0.25028 
## AI SE......  0.13683 
## T-stat.....  1.8291 
## p.val......  0.067379 
## 
## Original number of observations..............  200 
## Original number of treated obs...............  100 
## Matched number of observations...............  100 
## Matched number of observations  (unweighted).  152
summary(rrconfianca)
## 
## Estimate...  0.42411 
## AI SE......  0.13695 
## T-stat.....  3.0968 
## p.val......  0.0019564 
## 
## Original number of observations..............  200 
## Original number of treated obs...............  100 
## Matched number of observations...............  100 
## Matched number of observations  (unweighted).  152
summary(rrcooperacao)
## 
## Estimate...  0.39772 
## AI SE......  0.1497 
## T-stat.....  2.6568 
## p.val......  0.0078878 
## 
## Original number of observations..............  200 
## Original number of treated obs...............  100 
## Matched number of observations...............  100 
## Matched number of observations  (unweighted).  152
summary(rrcolaboration)
## 
## Estimate...  0.30986 
## AI SE......  0.099738 
## T-stat.....  3.1067 
## p.val......  0.0018917 
## 
## Original number of observations..............  200 
## Original number of treated obs...............  100 
## Matched number of observations...............  100 
## Matched number of observations  (unweighted).  152
summary(rrtask)
## 
## Estimate...  0.4358 
## AI SE......  0.11385 
## T-stat.....  3.8278 
## p.val......  0.00012931 
## 
## Original number of observations..............  200 
## Original number of treated obs...............  100 
## Matched number of observations...............  100 
## Matched number of observations  (unweighted).  152
summary(rremotional)
## 
## Estimate...  0.393 
## AI SE......  0.16816 
## T-stat.....  2.3371 
## p.val......  0.019434 
## 
## Original number of observations..............  200 
## Original number of treated obs...............  100 
## Matched number of observations...............  100 
## Matched number of observations  (unweighted).  152
summary(rrengaging)
## 
## Estimate...  0.092833 
## AI SE......  0.15373 
## T-stat.....  0.60387 
## p.val......  0.54593 
## 
## Original number of observations..............  200 
## Original number of treated obs...............  100 
## Matched number of observations...............  100 
## Matched number of observations  (unweighted).  152
summary(rropen)
## 
## Estimate...  0.46867 
## AI SE......  0.13122 
## T-stat.....  3.5717 
## p.val......  0.0003547 
## 
## Original number of observations..............  200 
## Original number of treated obs...............  100 
## Matched number of observations...............  100 
## Matched number of observations  (unweighted).  152