For information about the data, click the link here. https://github.com/rfordatascience/tidytuesday/tree/master/data/2018/2018-10-16
## # A tibble: 173 x 22
## X Rank Major_code Major Total Men Women Major_category ShareWomen
## <int> <int> <int> <fct> <int> <int> <int> <fct> <dbl>
## 1 1 1 2419 PETR~ 2339 2057 282 Engineering 0.121
## 2 2 2 2416 MINI~ 756 679 77 Engineering 0.102
## 3 3 3 2415 META~ 856 725 131 Engineering 0.153
## 4 4 4 2417 NAVA~ 1258 1123 135 Engineering 0.107
## 5 5 5 2405 CHEM~ 32260 21239 11021 Engineering 0.342
## 6 6 6 2418 NUCL~ 2573 2200 373 Engineering 0.145
## 7 7 7 6202 ACTU~ 3777 2110 1667 Business 0.441
## 8 8 8 5001 ASTR~ 1792 832 960 Physical Scie~ 0.536
## 9 9 9 2414 MECH~ 91227 80320 10907 Engineering 0.120
## 10 10 10 2408 ELEC~ 81527 65511 16016 Engineering 0.196
## # ... with 163 more rows, and 13 more variables: Sample_size <int>,
## # Employed <int>, Full_time <int>, Part_time <int>,
## # Full_time_year_round <int>, Unemployed <int>, Unemployment_rate <dbl>,
## # Median <int>, P25th <int>, P75th <int>, College_jobs <int>,
## # Non_college_jobs <int>, Low_wage_jobs <int>
Petroleum Engineering.
Military Technologies because it has no share of women.