# load libraries
library(kableExtra)
#suppressMessages(suppressWarnings(library(tidyverse)))
library(tidyr)
library(dplyr)
library(psych)
library(stringr)Data source from fivethirtyeight and github.
# Load data and Subset data by category
url1 <- "https://raw.githubusercontent.com/kleberperez1/CUNY-SPS-Data606-Project-Proposal/master/all_ages.csv"
all_ages <- url1 %>%
read.csv(stringsAsFactors = FALSE) %>%
tbl_df() %>%
arrange(Major_category)
kable(head(all_ages, 20)) %>%
kable_styling("striped", "hovered", font_size = 12) %>%
scroll_box(height = "500px")| Major_code | Major | Major_category | Total | Employed | Employed_full_time_year_round | Unemployed | Unemployment_rate | Median | P25th | P75th |
|---|---|---|---|---|---|---|---|---|---|---|
| 1100 | GENERAL AGRICULTURE | Agriculture & Natural Resources | 128148 | 90245 | 74078 | 2423 | 0.0261471 | 50000 | 34000 | 80000 |
| 1101 | AGRICULTURE PRODUCTION AND MANAGEMENT | Agriculture & Natural Resources | 95326 | 76865 | 64240 | 2266 | 0.0286361 | 54000 | 36000 | 80000 |
| 1102 | AGRICULTURAL ECONOMICS | Agriculture & Natural Resources | 33955 | 26321 | 22810 | 821 | 0.0302483 | 63000 | 40000 | 98000 |
| 1103 | ANIMAL SCIENCES | Agriculture & Natural Resources | 103549 | 81177 | 64937 | 3619 | 0.0426789 | 46000 | 30000 | 72000 |
| 1104 | FOOD SCIENCE | Agriculture & Natural Resources | 24280 | 17281 | 12722 | 894 | 0.0491884 | 62000 | 38500 | 90000 |
| 1105 | PLANT SCIENCE AND AGRONOMY | Agriculture & Natural Resources | 79409 | 63043 | 51077 | 2070 | 0.0317909 | 50000 | 35000 | 75000 |
| 1106 | SOIL SCIENCE | Agriculture & Natural Resources | 6586 | 4926 | 4042 | 264 | 0.0508671 | 63000 | 39400 | 88000 |
| 1199 | MISCELLANEOUS AGRICULTURE | Agriculture & Natural Resources | 8549 | 6392 | 5074 | 261 | 0.0392304 | 52000 | 35000 | 75000 |
| 1302 | FORESTRY | Agriculture & Natural Resources | 69447 | 48228 | 39613 | 2144 | 0.0425633 | 58000 | 40500 | 80000 |
| 1303 | NATURAL RESOURCES MANAGEMENT | Agriculture & Natural Resources | 83188 | 65937 | 50595 | 3789 | 0.0543413 | 52000 | 37100 | 75000 |
| 6000 | FINE ARTS | Arts | 571961 | 386961 | 256747 | 29912 | 0.0717533 | 45000 | 30000 | 70000 |
| 6001 | DRAMA AND THEATER ARTS | Arts | 174817 | 135071 | 81519 | 11789 | 0.0802737 | 42000 | 29000 | 62000 |
| 6002 | MUSIC | Arts | 276262 | 192704 | 116142 | 11155 | 0.0547192 | 45000 | 30000 | 67000 |
| 6003 | VISUAL AND PERFORMING ARTS | Arts | 55141 | 41098 | 23479 | 4297 | 0.0946580 | 40000 | 27000 | 59000 |
| 6004 | COMMERCIAL ART AND GRAPHIC DESIGN | Arts | 504657 | 379980 | 266671 | 30330 | 0.0739197 | 46600 | 32000 | 70000 |
| 6005 | FILM VIDEO AND PHOTOGRAPHIC ARTS | Arts | 133508 | 107651 | 69303 | 10080 | 0.0856189 | 47000 | 30000 | 70000 |
| 6007 | STUDIO ARTS | Arts | 81008 | 58799 | 36943 | 5372 | 0.0837138 | 37600 | 24900 | 58000 |
| 6099 | MISCELLANEOUS FINE ARTS | Arts | 8511 | 6431 | 3802 | 1190 | 0.1561475 | 45000 | 30000 | 60000 |
| 1301 | ENVIRONMENTAL SCIENCE | Biology & Life Science | 106106 | 87602 | 65238 | 4736 | 0.0512898 | 52000 | 38000 | 75000 |
| 3600 | BIOLOGY | Biology & Life Science | 839454 | 583079 | 422788 | 36757 | 0.0593012 | 51000 | 35000 | 80000 |
# Subsetting by Major Category
all_ages_ag <- all_ages %>%
filter(Major_category == "Agriculture & Natural Resources")
kable(head(all_ages_ag, 20)) %>%
kable_styling("striped", "hovered", font_size = 12) %>%
scroll_box(height = "500px")| Major_code | Major | Major_category | Total | Employed | Employed_full_time_year_round | Unemployed | Unemployment_rate | Median | P25th | P75th |
|---|---|---|---|---|---|---|---|---|---|---|
| 1100 | GENERAL AGRICULTURE | Agriculture & Natural Resources | 128148 | 90245 | 74078 | 2423 | 0.0261471 | 50000 | 34000 | 80000 |
| 1101 | AGRICULTURE PRODUCTION AND MANAGEMENT | Agriculture & Natural Resources | 95326 | 76865 | 64240 | 2266 | 0.0286361 | 54000 | 36000 | 80000 |
| 1102 | AGRICULTURAL ECONOMICS | Agriculture & Natural Resources | 33955 | 26321 | 22810 | 821 | 0.0302483 | 63000 | 40000 | 98000 |
| 1103 | ANIMAL SCIENCES | Agriculture & Natural Resources | 103549 | 81177 | 64937 | 3619 | 0.0426789 | 46000 | 30000 | 72000 |
| 1104 | FOOD SCIENCE | Agriculture & Natural Resources | 24280 | 17281 | 12722 | 894 | 0.0491884 | 62000 | 38500 | 90000 |
| 1105 | PLANT SCIENCE AND AGRONOMY | Agriculture & Natural Resources | 79409 | 63043 | 51077 | 2070 | 0.0317909 | 50000 | 35000 | 75000 |
| 1106 | SOIL SCIENCE | Agriculture & Natural Resources | 6586 | 4926 | 4042 | 264 | 0.0508671 | 63000 | 39400 | 88000 |
| 1199 | MISCELLANEOUS AGRICULTURE | Agriculture & Natural Resources | 8549 | 6392 | 5074 | 261 | 0.0392304 | 52000 | 35000 | 75000 |
| 1302 | FORESTRY | Agriculture & Natural Resources | 69447 | 48228 | 39613 | 2144 | 0.0425633 | 58000 | 40500 | 80000 |
| 1303 | NATURAL RESOURCES MANAGEMENT | Agriculture & Natural Resources | 83188 | 65937 | 50595 | 3789 | 0.0543413 | 52000 | 37100 | 75000 |
# Apply Filter on category
value_list <- c("Arts", "Biology & Life Science", "Business") #, "Communications & Journalism", "Computers & Mathematics",
#"Education", "Engineering", "Health", "Humanities & Liberal Arts", "Industrial Arts & Consumer Services",
#"Law & Public Policy", "Physical Sciences", "Psychology & Social Work", "Social Science")
all_ages_value <- all_ages %>%
filter(Major_category %in% value_list)
kable(all_ages_value) %>%
kable_styling("striped", "hovered", font_size = 12) %>%
scroll_box(height = "500px")| Major_code | Major | Major_category | Total | Employed | Employed_full_time_year_round | Unemployed | Unemployment_rate | Median | P25th | P75th |
|---|---|---|---|---|---|---|---|---|---|---|
| 6000 | FINE ARTS | Arts | 571961 | 386961 | 256747 | 29912 | 0.0717533 | 45000 | 30000 | 70000 |
| 6001 | DRAMA AND THEATER ARTS | Arts | 174817 | 135071 | 81519 | 11789 | 0.0802737 | 42000 | 29000 | 62000 |
| 6002 | MUSIC | Arts | 276262 | 192704 | 116142 | 11155 | 0.0547192 | 45000 | 30000 | 67000 |
| 6003 | VISUAL AND PERFORMING ARTS | Arts | 55141 | 41098 | 23479 | 4297 | 0.0946580 | 40000 | 27000 | 59000 |
| 6004 | COMMERCIAL ART AND GRAPHIC DESIGN | Arts | 504657 | 379980 | 266671 | 30330 | 0.0739197 | 46600 | 32000 | 70000 |
| 6005 | FILM VIDEO AND PHOTOGRAPHIC ARTS | Arts | 133508 | 107651 | 69303 | 10080 | 0.0856189 | 47000 | 30000 | 70000 |
| 6007 | STUDIO ARTS | Arts | 81008 | 58799 | 36943 | 5372 | 0.0837138 | 37600 | 24900 | 58000 |
| 6099 | MISCELLANEOUS FINE ARTS | Arts | 8511 | 6431 | 3802 | 1190 | 0.1561475 | 45000 | 30000 | 60000 |
| 1301 | ENVIRONMENTAL SCIENCE | Biology & Life Science | 106106 | 87602 | 65238 | 4736 | 0.0512898 | 52000 | 38000 | 75000 |
| 3600 | BIOLOGY | Biology & Life Science | 839454 | 583079 | 422788 | 36757 | 0.0593012 | 51000 | 35000 | 80000 |
| 3601 | BIOCHEMICAL SCIENCES | Biology & Life Science | 75322 | 52594 | 37103 | 4056 | 0.0715975 | 53000 | 33000 | 82000 |
| 3602 | BOTANY | Biology & Life Science | 14135 | 9284 | 6333 | 327 | 0.0340235 | 50000 | 32000 | 75000 |
| 3603 | MOLECULAR BIOLOGY | Biology & Life Science | 28197 | 20221 | 13366 | 1303 | 0.0605371 | 45000 | 30000 | 70000 |
| 3604 | ECOLOGY | Biology & Life Science | 45368 | 36708 | 25677 | 1888 | 0.0489170 | 47500 | 32000 | 73000 |
| 3605 | GENETICS | Biology & Life Science | 6362 | 4747 | 3498 | 206 | 0.0415910 | 48000 | 33000 | 80000 |
| 3606 | MICROBIOLOGY | Biology & Life Science | 68885 | 45422 | 33990 | 2435 | 0.0508807 | 60000 | 40000 | 85000 |
| 3607 | PHARMACOLOGY | Biology & Life Science | 5015 | 3481 | 2579 | 57 | 0.0161108 | 60000 | 35000 | 105000 |
| 3608 | PHYSIOLOGY | Biology & Life Science | 43984 | 31394 | 20207 | 1692 | 0.0511395 | 50000 | 30000 | 75000 |
| 3609 | ZOOLOGY | Biology & Life Science | 55395 | 35714 | 26152 | 1815 | 0.0483626 | 55000 | 34000 | 85000 |
| 3611 | NEUROSCIENCE | Biology & Life Science | 13676 | 8987 | 5446 | 665 | 0.0688976 | 35000 | 28000 | 52000 |
| 3699 | MISCELLANEOUS BIOLOGY | Biology & Life Science | 29389 | 22298 | 16508 | 1114 | 0.0475824 | 52000 | 33500 | 72800 |
| 4006 | COGNITIVE SCIENCE AND BIOPSYCHOLOGY | Biology & Life Science | 6898 | 5527 | 3639 | 284 | 0.0488728 | 53000 | 31500 | 93000 |
| 6200 | GENERAL BUSINESS | Business | 2148712 | 1580978 | 1304646 | 85626 | 0.0513775 | 60000 | 40000 | 95000 |
| 6201 | ACCOUNTING | Business | 1779219 | 1335825 | 1095027 | 75379 | 0.0534147 | 65000 | 42500 | 100000 |
| 6202 | ACTUARIAL SCIENCE | Business | 9763 | 7846 | 6880 | 466 | 0.0560635 | 72000 | 53000 | 115000 |
| 6203 | BUSINESS MANAGEMENT AND ADMINISTRATION | Business | 3123510 | 2354398 | 1939384 | 147261 | 0.0588653 | 58000 | 39500 | 86000 |
| 6204 | OPERATIONS LOGISTICS AND E-COMMERCE | Business | 57200 | 47341 | 41104 | 2141 | 0.0432683 | 65000 | 45000 | 90000 |
| 6205 | BUSINESS ECONOMICS | Business | 75547 | 57983 | 48471 | 3816 | 0.0617486 | 65000 | 45000 | 100000 |
| 6206 | MARKETING AND MARKETING RESEARCH | Business | 1114624 | 890125 | 704912 | 51839 | 0.0550329 | 56000 | 38500 | 90000 |
| 6207 | FINANCE | Business | 816548 | 670681 | 561073 | 34166 | 0.0484729 | 65000 | 45000 | 100000 |
| 6209 | HUMAN RESOURCES AND PERSONNEL MANAGEMENT | Business | 187274 | 142879 | 116466 | 9241 | 0.0607481 | 54000 | 38000 | 80000 |
| 6210 | INTERNATIONAL BUSINESS | Business | 86064 | 66453 | 51012 | 5106 | 0.0713537 | 54000 | 38600 | 80000 |
| 6211 | HOSPITALITY MANAGEMENT | Business | 200854 | 163393 | 122499 | 8862 | 0.0514470 | 49000 | 33000 | 70000 |
| 6212 | MANAGEMENT INFORMATION SYSTEMS AND STATISTICS | Business | 156673 | 134478 | 118249 | 6186 | 0.0439771 | 72000 | 50000 | 100000 |
| 6299 | MISCELLANEOUS BUSINESS & MEDICAL ADMINISTRATION | Business | 102753 | 77471 | 61603 | 4308 | 0.0526786 | 53000 | 36000 | 83000 |
# Load graduate students file and subset data
url2 <- "https://raw.githubusercontent.com/kleberperez1/CUNY-SPS-Data606-Project-Proposal/master/grad_students.csv"
grad_stdnt <- url2 %>% read.csv(stringsAsFactors = FALSE) %>% tbl_df() %>% arrange(Major_category)
grad_ag <- grad_stdnt %>%
filter(Major_category == "Agriculture & Natural Resources")
kable(head(grad_ag, 20)) %>%
kable_styling("striped", "hovered", font_size = 12) %>%
scroll_box(height = "500px")| Major_code | Major | Major_category | Grad_total | Grad_sample_size | Grad_employed | Grad_full_time_year_round | Grad_unemployed | Grad_unemployment_rate | Grad_median | Grad_P25 | Grad_P75 | Nongrad_total | Nongrad_employed | Nongrad_full_time_year_round | Nongrad_unemployed | Nongrad_unemployment_rate | Nongrad_median | Nongrad_P25 | Nongrad_P75 | Grad_share | Grad_premium |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| 1101 | AGRICULTURE PRODUCTION AND MANAGEMENT | Agriculture & Natural Resources | 17488 | 386 | 13104 | 11207 | 473 | 0.0348383 | 67000 | 41600 | 100000 | 89169 | 71781 | 61335 | 1869 | 0.0253768 | 55000 | 38000 | 80000 | 0.1639649 | 0.2181818 |
| 1100 | GENERAL AGRICULTURE | Agriculture & Natural Resources | 44306 | 764 | 28930 | 23024 | 874 | 0.0293249 | 68000 | 45000 | 104000 | 123984 | 86631 | 72409 | 2352 | 0.0264320 | 50000 | 34000 | 80000 | 0.2632717 | 0.3600000 |
| 1302 | FORESTRY | Agriculture & Natural Resources | 24713 | 487 | 16831 | 14102 | 725 | 0.0412964 | 78000 | 52000 | 110000 | 67649 | 46815 | 39048 | 1885 | 0.0387064 | 59000 | 42000 | 80000 | 0.2675667 | 0.3220339 |
| 1303 | NATURAL RESOURCES MANAGEMENT | Agriculture & Natural Resources | 29357 | 659 | 23394 | 19087 | 711 | 0.0294960 | 70000 | 50000 | 100000 | 77101 | 60690 | 48256 | 3413 | 0.0532424 | 53000 | 38000 | 75000 | 0.2757613 | 0.3207547 |
| 1105 | PLANT SCIENCE AND AGRONOMY | Agriculture & Natural Resources | 30983 | 624 | 22782 | 18312 | 735 | 0.0312540 | 67000 | 45000 | 100000 | 76190 | 60241 | 49506 | 1899 | 0.0305600 | 50000 | 35000 | 75000 | 0.2890933 | 0.3400000 |
| 1102 | AGRICULTURAL ECONOMICS | Agriculture & Natural Resources | 14800 | 305 | 10592 | 8768 | 216 | 0.0199852 | 80000 | 53000 | 120000 | 33049 | 25557 | 22496 | 734 | 0.0279183 | 63000 | 40000 | 99000 | 0.3093064 | 0.2698413 |
| 1106 | SOIL SCIENCE | Agriculture & Natural Resources | 3335 | 61 | 2284 | 1641 | 34 | 0.0146678 | 65000 | 50000 | 91000 | 6242 | 4654 | 3917 | 264 | 0.0536804 | 65000 | 41000 | 89000 | 0.3482301 | 0.0000000 |
| 1103 | ANIMAL SCIENCES | Agriculture & Natural Resources | 56807 | 1335 | 47755 | 39047 | 596 | 0.0123265 | 70300 | 48000 | 104000 | 94910 | 74896 | 61629 | 3101 | 0.0397579 | 48000 | 32000 | 75000 | 0.3744274 | 0.4645833 |
| 1199 | MISCELLANEOUS AGRICULTURE | Agriculture & Natural Resources | 5032 | 98 | 2758 | 2276 | 261 | 0.0864525 | 54000 | 45000 | 81000 | 8092 | 5978 | 4707 | 239 | 0.0384430 | 55000 | 39000 | 78000 | 0.3834197 | -0.0181818 |
| 1104 | FOOD SCIENCE | Agriculture & Natural Resources | 14521 | 266 | 10857 | 8074 | 370 | 0.0329563 | 72000 | 50000 | 110000 | 22853 | 16298 | 12431 | 681 | 0.0401084 | 63000 | 40000 | 92000 | 0.3885321 | 0.1428571 |
# Load graduate students file and subset data
url3 <- "https://raw.githubusercontent.com/kleberperez1/CUNY-SPS-Data606-Project-Proposal/master/recent_grads.csv"
rct_grad <- url3 %>% read.csv(stringsAsFactors = FALSE) %>% tbl_df() %>% arrange(Major_category)
rct_ag <- rct_grad %>%
filter(Major_category == "Agriculture & Natural Resources")
kable(head(rct_ag, 20)) %>%
kable_styling("striped", "hovered", font_size = 12) %>%
scroll_box(height = "500px")| Rank | Major_code | Major | Total | Men | Women | Major_category | ShareWomen | Sample_size | Employed | Full_time | Part_time | Full_time_year_round | Unemployed | Unemployment_rate | Median | P25th | P75th | College_jobs | Non_college_jobs | Low_wage_jobs |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| 22 | 1104 | FOOD SCIENCE | NA | NA | NA | Agriculture & Natural Resources | NA | 36 | 3149 | 2558 | 1121 | 1735 | 338 | 0.0969315 | 53000 | 32000 | 70000 | 1183 | 1274 | 485 |
| 64 | 1101 | AGRICULTURE PRODUCTION AND MANAGEMENT | 14240 | 9658 | 4582 | Agriculture & Natural Resources | 0.3217697 | 273 | 12323 | 11119 | 2196 | 9093 | 649 | 0.0500308 | 40000 | 25000 | 50000 | 1925 | 6221 | 1362 |
| 65 | 1100 | GENERAL AGRICULTURE | 10399 | 6053 | 4346 | Agriculture & Natural Resources | 0.4179248 | 158 | 8884 | 7589 | 2031 | 5888 | 178 | 0.0196425 | 40000 | 30000 | 50000 | 2418 | 4717 | 839 |
| 72 | 1102 | AGRICULTURAL ECONOMICS | 2439 | 1749 | 690 | Agriculture & Natural Resources | 0.2829028 | 44 | 2174 | 1819 | 620 | 1528 | 182 | 0.0772496 | 40000 | 27000 | 54000 | 535 | 893 | 94 |
| 108 | 1303 | NATURAL RESOURCES MANAGEMENT | 13773 | 8617 | 5156 | Agriculture & Natural Resources | 0.3743556 | 152 | 11797 | 10722 | 2613 | 6954 | 842 | 0.0666192 | 35000 | 25000 | 42000 | 4333 | 5808 | 1405 |
| 112 | 1302 | FORESTRY | 3607 | 3156 | 451 | Agriculture & Natural Resources | 0.1250347 | 48 | 3007 | 2473 | 891 | 1763 | 322 | 0.0967257 | 35000 | 28600 | 48000 | 1096 | 1692 | 327 |
| 113 | 1106 | SOIL SCIENCE | 685 | 476 | 209 | Agriculture & Natural Resources | 0.3051095 | 4 | 613 | 488 | 185 | 383 | 0 | 0.0000000 | 35000 | 18500 | 44000 | 355 | 144 | 0 |
| 144 | 1105 | PLANT SCIENCE AND AGRONOMY | 7416 | 4897 | 2519 | Agriculture & Natural Resources | 0.3396710 | 110 | 6594 | 5798 | 1246 | 4522 | 314 | 0.0454545 | 32000 | 22900 | 40000 | 2089 | 3545 | 1231 |
| 153 | 1103 | ANIMAL SCIENCES | 21573 | 5347 | 16226 | Agriculture & Natural Resources | 0.7521439 | 255 | 17112 | 14479 | 5353 | 10824 | 917 | 0.0508625 | 30000 | 22000 | 40000 | 5443 | 9571 | 2125 |
| 162 | 1199 | MISCELLANEOUS AGRICULTURE | 1488 | 404 | 1084 | Agriculture & Natural Resources | 0.7284946 | 24 | 1290 | 1098 | 335 | 936 | 82 | 0.0597668 | 29000 | 23000 | 42100 | 483 | 626 | 31 |
Which college majors offer the best opportunities in terms of unemployment rate and salary?
All_ages - Each case represents majors offered by colleges and universities in the US. There are 173 majors represented. These data include both undergrads and grad students.
Grad Students - Each case represents majors offered by colleges and universities in the US. There are 173 majors represented. These data include only grad students aged 25+ years.
Recent Grads - Each case represents majors offered by colleges and universities in the US. There are 173 majors represented. These data include only undergraduate students aged < 28 years. These data also include gender statistics.
These Data were collated by the fivethirtyeight website and was posted to their github page college major.
This is an observational Study
The explanatory variables are the counts of employed and unemployed college degree holders and the statistics of their income. These data are numerical.
First we will look at overall unemployment rate for the 3 categories: all ages, recent grads, and grad students.
summary(all_ages$Unemployment_rate)## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 0.00000 0.04626 0.05472 0.05736 0.06904 0.15615
summary(rct_grad$Unemployment_rate)## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 0.00000 0.05031 0.06796 0.06819 0.08756 0.17723
summary(grad_stdnt$Grad_unemployment_rate)## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 0.00000 0.02607 0.03665 0.03934 0.04805 0.13851
DT::datatable(summary(all_ages), options = list(pageLength = 7)) DT::datatable(summary(all_ages_ag), list(pageLength = 7)) DT::datatable(summary(rct_grad), list(pageLength = 7)) unempl <- cbind(all_ages$Unemployment_rate, rct_grad$Unemployment_rate, grad_stdnt$Grad_unemployment_rate)
barplot(unempl/nrow(unempl), names.arg = c("All", "Recent Grad", "Grad Student"),
xlab = "Unemployment Rate", col = heat.colors(nrow(unempl)))It appears that people holding only a Bachelor’s degree have nearly twice as high median unemployment as those with higher degrees.
We will also look at median income for the three categories.
summary(all_ages$Median)## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 35000 46000 53000 56816 65000 125000
colors = c("red", "yellow", "green", "violet", "orange", "blue", "pink", "cyan")
hist(all_ages$Median, main = "Histogram for Median Income All Ages",
xlab = "Median Income by Major All Ages (USD)", col = colors)options(scipen = 999)
summary(rct_grad$Median)## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 22000 33000 36000 40151 45000 110000
hist(rct_grad$Median, main = "Histogram for Median Income Recent Grads",
xlab = "Median Income by Major Recent Grads (USD)", col = colors)summary(grad_stdnt$Grad_median)## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 47000 65000 75000 76756 90000 135000
hist(grad_stdnt$Grad_median, main = "Histogram for Median Income Grad Students",
xlab = "Median Income by Major Grad Student (USD)", col = colors)medsal <- cbind(all_ages$Median, rct_grad$Median, grad_stdnt$Grad_median)
barplot(medsal/nrow(medsal), names.arg = c("All", "Recent Grad", "Grad Student"),
xlab = "Median Salary", col = heat.colors(nrow(unempl)))Please email to: Kleber Perez for any suggestion.