What we do today:
- Measure/quantitatively describe point patterns by the distance between points.
- Compute the Average distance to the Nearest Neighbor (ANN) from individual points.
- Plot Ripley’s K function and Besag’s L function.
- Plot the g function, or the pair correlation fuction.
library(tidyverse)
library(rgdal)
library(maptools)
library(raster)
library(spatstat)
# load the data
load(url("http://github.com/mgimond/Spatial/raw/master/Data/ppa.RData"))
# rescale from meter to kilometer
marks(starbucks) <- NULL
Window(starbucks) <- ma # redefine the window of starbuck ppp
starbucks.km <- rescale(starbucks, 1000, "km")
# nndist function: distance to the kth nearest neighbor from each point
nndist(starbucks.km, k=1)
nndist(starbucks.km, k=2)
nndist(starbucks.km, k=1:2)
mean(nndist(starbucks.km, k=1))
mean(nndist(starbucks.km, k=2))
# compute the average nndist for up to the 100th nearest neighbor from each point
# base R way
ANN <- apply(nndist(starbucks.km, k=1:100),2,FUN=mean) # MARGIN = 2 (over column)
# tidyverse way
ANN <-
map(1:100, ~nndist(starbucks.km, k=.)) %>% # returns a list of lists
map_dbl(~mean(.)) # returns a nemeric vector
# plot
# https://www.rdocumentation.org/packages/graphics/versions/3.5.3/topics/plot
plot(ANN ~ eval(1:100), type="b", main=NULL, las=1)
# Estimates Ripley's reduced second moment function K(r)
# ?spatstat::Kest
# create a K object
K <- Kest(starbucks.km)
plot(K, main=NULL, las=1, legendargs=list(cex=0.8, xpd=TRUE))
# three K(r) values under different edge-corrections
# Kpois(r) presents the K expected under the CSR process (Poisson process)
# Calculates an estimate of the L-function (Besag's transformation of Ripley's K-function)
# ?spatstat::Lest
# create an L object
L <- Lest(starbucks.km, main=NULL)
# plot diagonal/horizontal L
plot(L, main=NULL, las=1, legendargs=list(cex=0.8, xpd=TRUE))
plot(L, . -r ~ r, main=NULL, las=1, legendargs=list(cex=0.8, xpd=TRUE))
# Estimate the pair correlation function.
# ?spatstat::pcf
# create a pcf object
g <- pcf(starbucks.km)
plot(g, main=NULL, las=1, legendargs=list(cex=0.8, xpd=TRUE))