Gráfico para escala likert

Ideias para Dissertação do Vitor do HVet - AMAN

# É necessário instalar os pacotes a seguir. 
# install.packages("devtools")
# install.packages("plyer")
# library (devtools)
# install_github('likert', 'jbryer')
library(likert)
library(plyr)
# dados do Programme of International Student Assessment PISA
# North American (i.e. Canada, Mexico, and United States) results from the 2009 Programme of International Student Assessment (PISA) as provided by the Organization for Economic Co-operation and Development (OECD). 
# a data frame 66,690 ovservations of 81 variables from North America.
# carrega os dados na memória
data(pisaitems)
# Preparando a base de dados
# o comando substr(names(pisaitems), 1, 5) == "ST25Q"  selecionar somente as colunas com os 5 primeiros caracteres igual a ST25Q
title <- "How often do you read these materials because you want to?"
items29 <- pisaitems[, substr(names(pisaitems), 1, 5) == "ST25Q"]
names(items29) <- c("Magazines", "Comic books", "Fiction", "Non-fiction books", "Newspapers")
likert29 <- likert(items29)
#summary(likert29)
plot(likert29) + ggtitle(title)

#print(items29)
plot(likert29,plot.percents=TRUE) + ggtitle(title)

plot(likert29,plot.percents=F,wrap=30,centered=FALSE) + ggtitle(title)

plot(likert29, centered=FALSE, wrap=30)

likert.bar.plot(likert29,
                wrap=50,
                wrap.grouping = 50,
                centered=T,
                include.center = T,
                plot.percents=T, 
                plot.percent.neutral=F,
                plot.percent.low=F, 
                plot.percent.high=F,
                ordered=T,
                legend = "Respostas") + ggtitle(title)

likert.density.plot(likert29)

likert.heat.plot(likert29)

LS0tDQp0aXRsZTogIkdyw6FmaWNvcyBwYXJhIGRhZG9zIHRpcG8gTElLRVJUICINCmF1dGhvcjogIkxlb25pLCBSLiBDLiBQcm9mZXNzb3IgRHIuIg0Kb3V0cHV0OiBodG1sX25vdGVib29rDQotLS0NCg0KKioqDQoNCiMgR3LDoWZpY28gcGFyYSBlc2NhbGEgbGlrZXJ0DQoNCiMjIElkZWlhcyBwYXJhIERpc3NlcnRhw6fDo28gZG8gVml0b3IgZG8gSFZldCAtIEFNQU4NCg0KYGBge3J9DQojIMOJIG5lY2Vzc8OhcmlvIGluc3RhbGFyIG9zIHBhY290ZXMgYSBzZWd1aXIuIA0KIyBpbnN0YWxsLnBhY2thZ2VzKCJkZXZ0b29scyIpDQojIGluc3RhbGwucGFja2FnZXMoInBseWVyIikNCiMgbGlicmFyeSAoZGV2dG9vbHMpDQojIGluc3RhbGxfZ2l0aHViKCdsaWtlcnQnLCAnamJyeWVyJykNCg0KbGlicmFyeShsaWtlcnQpDQpsaWJyYXJ5KHBseXIpDQpgYGANCg0KDQpgYGB7ciwgZmlnLmhlaWdodD03LCBmaWcud2lkdGg9MTB9DQoNCiMgZGFkb3MgZG8gUHJvZ3JhbW1lIG9mIEludGVybmF0aW9uYWwgU3R1ZGVudCBBc3Nlc3NtZW50IFBJU0ENCiMgTm9ydGggQW1lcmljYW4gKGkuZS4gQ2FuYWRhLCBNZXhpY28sIGFuZCBVbml0ZWQgU3RhdGVzKSByZXN1bHRzIGZyb20gdGhlIDIwMDkgUHJvZ3JhbW1lIG9mIEludGVybmF0aW9uYWwgU3R1ZGVudCBBc3Nlc3NtZW50IChQSVNBKSBhcyBwcm92aWRlZCBieSB0aGUgT3JnYW5pemF0aW9uIGZvciBFY29ub21pYyBDby1vcGVyYXRpb24gYW5kIERldmVsb3BtZW50IChPRUNEKS4gDQoNCiMgYSBkYXRhIGZyYW1lIDY2LDY5MCBvdnNlcnZhdGlvbnMgb2YgODEgdmFyaWFibGVzIGZyb20gTm9ydGggQW1lcmljYS4NCg0KIyBjYXJyZWdhIG9zIGRhZG9zIG5hIG1lbcOzcmlhDQpkYXRhKHBpc2FpdGVtcykNCg0KIyBQcmVwYXJhbmRvIGEgYmFzZSBkZSBkYWRvcw0KIyBvIGNvbWFuZG8gc3Vic3RyKG5hbWVzKHBpc2FpdGVtcyksIDEsIDUpID09ICJTVDI1USIgIHNlbGVjaW9uYXIgc29tZW50ZSBhcyBjb2x1bmFzIGNvbSBvcyA1IHByaW1laXJvcyBjYXJhY3RlcmVzIGlndWFsIGEgU1QyNVENCg0KdGl0bGUgPC0gIkhvdyBvZnRlbiBkbyB5b3UgcmVhZCB0aGVzZSBtYXRlcmlhbHMgYmVjYXVzZSB5b3Ugd2FudCB0bz8iDQoNCml0ZW1zMjkgPC0gcGlzYWl0ZW1zWywgc3Vic3RyKG5hbWVzKHBpc2FpdGVtcyksIDEsIDUpID09ICJTVDI1USJdDQpuYW1lcyhpdGVtczI5KSA8LSBjKCJNYWdhemluZXMiLCAiQ29taWMgYm9va3MiLCAiRmljdGlvbiIsICJOb24tZmljdGlvbiBib29rcyIsICJOZXdzcGFwZXJzIikNCg0KbGlrZXJ0MjkgPC0gbGlrZXJ0KGl0ZW1zMjkpDQojc3VtbWFyeShsaWtlcnQyOSkNCg0KcGxvdChsaWtlcnQyOSkgKyBnZ3RpdGxlKHRpdGxlKQ0KI3ByaW50KGl0ZW1zMjkpDQoNCnBsb3QobGlrZXJ0MjkscGxvdC5wZXJjZW50cz1UUlVFKSArIGdndGl0bGUodGl0bGUpDQoNCg0KcGxvdChsaWtlcnQyOSxwbG90LnBlcmNlbnRzPUYsd3JhcD0zMCxjZW50ZXJlZD1GQUxTRSkgKyBnZ3RpdGxlKHRpdGxlKQ0KDQpwbG90KGxpa2VydDI5LCBjZW50ZXJlZD1GQUxTRSwgd3JhcD0zMCkNCg0KDQoNCmxpa2VydC5iYXIucGxvdChsaWtlcnQyOSwNCiAgICAgICAgICAgICAgICB3cmFwPTUwLA0KICAgICAgICAgICAgICAgIHdyYXAuZ3JvdXBpbmcgPSA1MCwNCiAgICAgICAgICAgICAgICBjZW50ZXJlZD1ULA0KICAgICAgICAgICAgICAgIGluY2x1ZGUuY2VudGVyID0gVCwNCiAgICAgICAgICAgICAgICBwbG90LnBlcmNlbnRzPVQsIA0KICAgICAgICAgICAgICAgIHBsb3QucGVyY2VudC5uZXV0cmFsPUYsDQogICAgICAgICAgICAgICAgcGxvdC5wZXJjZW50Lmxvdz1GLCANCiAgICAgICAgICAgICAgICBwbG90LnBlcmNlbnQuaGlnaD1GLA0KICAgICAgICAgICAgICAgIG9yZGVyZWQ9VCwNCiAgICAgICAgICAgICAgICBsZWdlbmQgPSAiUmVzcG9zdGFzIikgKyBnZ3RpdGxlKHRpdGxlKQ0KDQpsaWtlcnQuZGVuc2l0eS5wbG90KGxpa2VydDI5KQ0KbGlrZXJ0LmhlYXQucGxvdChsaWtlcnQyOSkNCg0KYGBgDQoNCg0KDQo=