pg 363,
= 100
mean <- 0
variance <- 1/4
std_dev <- sqrt(variance)
n <- 364
x <- 0/sqrt(n)
pnorm(x, mean, std_dev, lower.tail = FALSE)
## [1] 0.5
= 110
x <- 10/sqrt(n)
pnorm(x, mean, std_dev, lower.tail = FALSE)
## [1] 0.1472537
= 120
x <- 20/sqrt(n)
pnorm(x, mean, std_dev, lower.tail = FALSE)
## [1] 0.01801584
Answer:
The moment generating function:
M(t) = [(1???p)+(pe)^t]^n.
M’(t) = n(pet)[(1???p)+pe^t](n???1)
Expected value: M’(0) = np
M’’(t) = n(n???p)(pet)2[(1???p)+pe^t](n???2)+n(pet)[(1???p)+pe^t]^(n???1)
Variance: M’’(0) = n(n???1)p^2+np
??^2 = M’’(0)???[M’(0)]^2 = np(1???p)
knitr::include_graphics("https://raw.githubusercontent.com/maharjansudhan/DATA605/master/Assign_9_2.JPG")
Answer:
M(t) = ??/(?????t)
M’(t) = ??/((?????t)^2)
Expected Value: M’(0) = 1/??
M’’(t) = 2??/((?????t)^3)
M’’(0) = 2/(??^2)
??^2 = 2/(??2)???(1/??)2 = (1/??)^2
knitr::include_graphics("https://raw.githubusercontent.com/maharjansudhan/DATA605/master/Assign_9_3.JPG")