DATA ANALYSIS
######################################
# CONDUCTING THE MEDIAN TEST
######################################
######################################
# TESTING FOR THE MEDIAN TEST ASSUMPTIONS
# ASSUMPTION 1 : INDEPENDENCE OF OBSERVATIONS
# ASSUMPTION 2 : AT LEAST ORDINAL MEASURES
######################################
######################################
# TRYING THE BASE MEDIAN TEST FUNCTION
######################################
likert.df.q1q4.mediantest<-with(
likert.df.q1q4,Median.test(S_45,Quartile,
console=FALSE,
correct=TRUE,
group=FALSE))
likert.df.q1q4.mediantest$comparison
## median chisq pvalue signif.
## Quartile1 and Quartile4 2 26.25 0 ***
likert.df.q1q4.mediantest$medians
## Median r Min Max Q25 Q75
## Quartile1 1 15 1 2 1 1.0
## Quartile4 4 15 2 5 3 4.5
######################################
# TRYING MANUAL MEDIAN TEST
######################################
likert.df.q1q4.s1 <- likert.df.q1q4[,c(5,50)]
likert.df.q1q4.s1$MedianGroup <- ifelse(likert.df.q1q4.s1$S_1>median(likert.df.q1q4.s1$S_1),"high","low")
likert.df.q1q4.s1$Quartile <- factor(likert.df.q1q4.s1$Quartile)
likert.df.q1q4.s1.table <- table(likert.df.q1q4.s1$Quartile,
likert.df.q1q4.s1$MedianGroup)
likert.df.q1q4.s1.table
##
## high low
## Quartile1 0 15
## Quartile4 15 0
chisq.test(likert.df.q1q4.s1.table)
##
## Pearson's Chi-squared test with Yates' continuity correction
##
## data: likert.df.q1q4.s1.table
## X-squared = 26.133, df = 1, p-value = 3.186e-07
likert.df.q1q4.s2 <- likert.df.q1q4[,c(6,50)]
likert.df.q1q4.s2$MedianGroup <- ifelse(likert.df.q1q4.s2$S_2>median(likert.df.q1q4.s2$S_2),"high","low")
likert.df.q1q4.s2$Quartile <- factor(likert.df.q1q4.s2$Quartile)
likert.df.q1q4.s2.table <- table(likert.df.q1q4.s2$Quartile,
likert.df.q1q4.s2$MedianGroup)
likert.df.q1q4.s2.table
##
## high low
## Quartile1 0 15
## Quartile4 15 0
chisq.test(likert.df.q1q4.s2.table)
##
## Pearson's Chi-squared test with Yates' continuity correction
##
## data: likert.df.q1q4.s2.table
## X-squared = 26.133, df = 1, p-value = 3.186e-07
likert.df.q1q4.s3 <- likert.df.q1q4[,c(7,50)]
likert.df.q1q4.s3$MedianGroup <- ifelse(likert.df.q1q4.s3$S_3>median(likert.df.q1q4.s3$S_3),"high","low")
likert.df.q1q4.s3$Quartile <- factor(likert.df.q1q4.s3$Quartile)
likert.df.q1q4.s3.table <- table(likert.df.q1q4.s3$Quartile,
likert.df.q1q4.s3$MedianGroup)
likert.df.q1q4.s3.table
##
## high low
## Quartile1 0 15
## Quartile4 14 1
chisq.test(likert.df.q1q4.s3.table)
##
## Pearson's Chi-squared test with Yates' continuity correction
##
## data: likert.df.q1q4.s3.table
## X-squared = 22.634, df = 1, p-value = 1.96e-06
likert.df.q1q4.s4 <- likert.df.q1q4[,c(8,50)]
likert.df.q1q4.s4$MedianGroup <- ifelse(likert.df.q1q4.s4$S_4>median(likert.df.q1q4.s4$S_4),"high","low")
likert.df.q1q4.s4$Quartile <- factor(likert.df.q1q4.s4$Quartile)
likert.df.q1q4.s4.table <- table(likert.df.q1q4.s4$Quartile,
likert.df.q1q4.s4$MedianGroup)
likert.df.q1q4.s4.table
##
## high low
## Quartile1 1 14
## Quartile4 14 1
chisq.test(likert.df.q1q4.s4.table)
##
## Pearson's Chi-squared test with Yates' continuity correction
##
## data: likert.df.q1q4.s4.table
## X-squared = 19.2, df = 1, p-value = 1.177e-05
likert.df.q1q4.s5 <- likert.df.q1q4[,c(9,50)]
likert.df.q1q4.s5$MedianGroup <- ifelse(likert.df.q1q4.s5$S_5>median(likert.df.q1q4.s5$S_5),"high","low")
likert.df.q1q4.s5$Quartile <- factor(likert.df.q1q4.s5$Quartile)
likert.df.q1q4.s5.table <- table(likert.df.q1q4.s5$Quartile,
likert.df.q1q4.s5$MedianGroup)
likert.df.q1q4.s5.table
##
## high low
## Quartile1 0 15
## Quartile4 15 0
chisq.test(likert.df.q1q4.s5.table)
##
## Pearson's Chi-squared test with Yates' continuity correction
##
## data: likert.df.q1q4.s5.table
## X-squared = 26.133, df = 1, p-value = 3.186e-07
likert.df.q1q4.s6 <- likert.df.q1q4[,c(10,50)]
likert.df.q1q4.s6$MedianGroup <- ifelse(likert.df.q1q4.s6$S_6>median(likert.df.q1q4.s6$S_6),"high","low")
likert.df.q1q4.s6$Quartile <- factor(likert.df.q1q4.s6$Quartile)
likert.df.q1q4.s6.table <- table(likert.df.q1q4.s6$Quartile,
likert.df.q1q4.s6$MedianGroup)
likert.df.q1q4.s6.table
##
## high low
## Quartile1 0 15
## Quartile4 15 0
chisq.test(likert.df.q1q4.s6.table)
##
## Pearson's Chi-squared test with Yates' continuity correction
##
## data: likert.df.q1q4.s6.table
## X-squared = 26.133, df = 1, p-value = 3.186e-07
likert.df.q1q4.s7 <- likert.df.q1q4[,c(11,50)]
likert.df.q1q4.s7$MedianGroup <- ifelse(likert.df.q1q4.s7$S_7>median(likert.df.q1q4.s7$S_7),"high","low")
likert.df.q1q4.s7$Quartile <- factor(likert.df.q1q4.s7$Quartile)
likert.df.q1q4.s7.table <- table(likert.df.q1q4.s7$Quartile,
likert.df.q1q4.s7$MedianGroup)
likert.df.q1q4.s7.table
##
## high low
## Quartile1 0 15
## Quartile4 15 0
chisq.test(likert.df.q1q4.s7.table)
##
## Pearson's Chi-squared test with Yates' continuity correction
##
## data: likert.df.q1q4.s7.table
## X-squared = 26.133, df = 1, p-value = 3.186e-07
likert.df.q1q4.s8 <- likert.df.q1q4[,c(12,50)]
likert.df.q1q4.s8$MedianGroup <- ifelse(likert.df.q1q4.s8$S_8>median(likert.df.q1q4.s8$S_8),"high","low")
likert.df.q1q4.s8$Quartile <- factor(likert.df.q1q4.s8$Quartile)
likert.df.q1q4.s8.table <- table(likert.df.q1q4.s8$Quartile,
likert.df.q1q4.s8$MedianGroup)
likert.df.q1q4.s8.table
##
## high low
## Quartile1 0 15
## Quartile4 15 0
chisq.test(likert.df.q1q4.s8.table)
##
## Pearson's Chi-squared test with Yates' continuity correction
##
## data: likert.df.q1q4.s8.table
## X-squared = 26.133, df = 1, p-value = 3.186e-07
likert.df.q1q4.s9 <- likert.df.q1q4[,c(13,50)]
likert.df.q1q4.s9$MedianGroup <- ifelse(likert.df.q1q4.s9$S_9>median(likert.df.q1q4.s9$S_9),"high","low")
likert.df.q1q4.s9$Quartile <- factor(likert.df.q1q4.s9$Quartile)
likert.df.q1q4.s9.table <- table(likert.df.q1q4.s9$Quartile,
likert.df.q1q4.s9$MedianGroup)
likert.df.q1q4.s9.table
##
## high low
## Quartile1 3 12
## Quartile4 10 5
chisq.test(likert.df.q1q4.s9.table)
##
## Pearson's Chi-squared test with Yates' continuity correction
##
## data: likert.df.q1q4.s9.table
## X-squared = 4.8869, df = 1, p-value = 0.02706
likert.df.q1q4.s10 <- likert.df.q1q4[,c(14,50)]
likert.df.q1q4.s10$MedianGroup <- ifelse(likert.df.q1q4.s10$S_10>median(likert.df.q1q4.s10$S_10),"high","low")
likert.df.q1q4.s10$Quartile <- factor(likert.df.q1q4.s10$Quartile)
likert.df.q1q4.s10.table <- table(likert.df.q1q4.s10$Quartile,
likert.df.q1q4.s10$MedianGroup)
likert.df.q1q4.s10.table
##
## high low
## Quartile1 0 15
## Quartile4 9 6
chisq.test(likert.df.q1q4.s10.table)
##
## Pearson's Chi-squared test with Yates' continuity correction
##
## data: likert.df.q1q4.s10.table
## X-squared = 10.159, df = 1, p-value = 0.001436
fisher.test(likert.df.q1q4.s10.table)
##
## Fisher's Exact Test for Count Data
##
## data: likert.df.q1q4.s10.table
## p-value = 0.0006997
## alternative hypothesis: true odds ratio is not equal to 1
## 95 percent confidence interval:
## 0.0000000 0.2994113
## sample estimates:
## odds ratio
## 0
likert.df.q1q4.s11 <- likert.df.q1q4[,c(15,50)]
likert.df.q1q4.s11$MedianGroup <- ifelse(likert.df.q1q4.s11$S_11>median(likert.df.q1q4.s11$S_11),"high","low")
likert.df.q1q4.s11$Quartile <- factor(likert.df.q1q4.s11$Quartile)
likert.df.q1q4.s11.table <- table(likert.df.q1q4.s11$Quartile,
likert.df.q1q4.s11$MedianGroup)
likert.df.q1q4.s11.table
##
## high low
## Quartile1 0 15
## Quartile4 15 0
chisq.test(likert.df.q1q4.s11.table)
##
## Pearson's Chi-squared test with Yates' continuity correction
##
## data: likert.df.q1q4.s11.table
## X-squared = 26.133, df = 1, p-value = 3.186e-07
likert.df.q1q4.s12 <- likert.df.q1q4[,c(16,50)]
likert.df.q1q4.s12$MedianGroup <- ifelse(likert.df.q1q4.s12$S_12>median(likert.df.q1q4.s12$S_12),"high","low")
likert.df.q1q4.s12$Quartile <- factor(likert.df.q1q4.s12$Quartile)
likert.df.q1q4.s12.table <- table(likert.df.q1q4.s12$Quartile,
likert.df.q1q4.s12$MedianGroup)
likert.df.q1q4.s12.table
##
## high low
## Quartile1 0 15
## Quartile4 15 0
chisq.test(likert.df.q1q4.s12.table)
##
## Pearson's Chi-squared test with Yates' continuity correction
##
## data: likert.df.q1q4.s12.table
## X-squared = 26.133, df = 1, p-value = 3.186e-07
likert.df.q1q4.s13 <- likert.df.q1q4[,c(17,50)]
likert.df.q1q4.s13$MedianGroup <- ifelse(likert.df.q1q4.s13$S_13>median(likert.df.q1q4.s13$S_13),"high","low")
likert.df.q1q4.s13$Quartile <- factor(likert.df.q1q4.s13$Quartile)
likert.df.q1q4.s13.table <- table(likert.df.q1q4.s13$Quartile,
likert.df.q1q4.s13$MedianGroup)
likert.df.q1q4.s13.table
##
## high low
## Quartile1 0 15
## Quartile4 14 1
chisq.test(likert.df.q1q4.s13.table)
##
## Pearson's Chi-squared test with Yates' continuity correction
##
## data: likert.df.q1q4.s13.table
## X-squared = 22.634, df = 1, p-value = 1.96e-06
likert.df.q1q4.s14 <- likert.df.q1q4[,c(18,50)]
likert.df.q1q4.s14$MedianGroup <- ifelse(likert.df.q1q4.s14$S_14>median(likert.df.q1q4.s14$S_14),"high","low")
likert.df.q1q4.s14$Quartile <- factor(likert.df.q1q4.s14$Quartile)
likert.df.q1q4.s14.table <- table(likert.df.q1q4.s14$Quartile,
likert.df.q1q4.s14$MedianGroup)
likert.df.q1q4.s14.table
##
## high low
## Quartile1 0 15
## Quartile4 14 1
chisq.test(likert.df.q1q4.s14.table)
##
## Pearson's Chi-squared test with Yates' continuity correction
##
## data: likert.df.q1q4.s14.table
## X-squared = 22.634, df = 1, p-value = 1.96e-06
likert.df.q1q4.s15 <- likert.df.q1q4[,c(19,50)]
likert.df.q1q4.s15$MedianGroup <- ifelse(likert.df.q1q4.s15$S_15>median(likert.df.q1q4.s15$S_15),"high","low")
likert.df.q1q4.s15$Quartile <- factor(likert.df.q1q4.s15$Quartile)
likert.df.q1q4.s15.table <- table(likert.df.q1q4.s15$Quartile,
likert.df.q1q4.s15$MedianGroup)
likert.df.q1q4.s15.table
##
## high low
## Quartile1 0 15
## Quartile4 7 8
chisq.test(likert.df.q1q4.s15.table)
##
## Pearson's Chi-squared test with Yates' continuity correction
##
## data: likert.df.q1q4.s15.table
## X-squared = 6.7081, df = 1, p-value = 0.009598
fisher.test(likert.df.q1q4.s15.table)
##
## Fisher's Exact Test for Count Data
##
## data: likert.df.q1q4.s15.table
## p-value = 0.006322
## alternative hypothesis: true odds ratio is not equal to 1
## 95 percent confidence interval:
## 0.0000000 0.5054614
## sample estimates:
## odds ratio
## 0
likert.df.q1q4.s16 <- likert.df.q1q4[,c(20,50)]
likert.df.q1q4.s16$MedianGroup <- ifelse(likert.df.q1q4.s16$S_16>median(likert.df.q1q4.s16$S_16),"high","low")
likert.df.q1q4.s16$Quartile <- factor(likert.df.q1q4.s16$Quartile)
likert.df.q1q4.s16.table <- table(likert.df.q1q4.s16$Quartile,
likert.df.q1q4.s16$MedianGroup)
likert.df.q1q4.s16.table
##
## high low
## Quartile1 0 15
## Quartile4 9 6
chisq.test(likert.df.q1q4.s16.table)
##
## Pearson's Chi-squared test with Yates' continuity correction
##
## data: likert.df.q1q4.s16.table
## X-squared = 10.159, df = 1, p-value = 0.001436
fisher.test(likert.df.q1q4.s16.table)
##
## Fisher's Exact Test for Count Data
##
## data: likert.df.q1q4.s16.table
## p-value = 0.0006997
## alternative hypothesis: true odds ratio is not equal to 1
## 95 percent confidence interval:
## 0.0000000 0.2994113
## sample estimates:
## odds ratio
## 0
likert.df.q1q4.s17 <- likert.df.q1q4[,c(21,50)]
likert.df.q1q4.s17$MedianGroup <- ifelse(likert.df.q1q4.s17$S_17>median(likert.df.q1q4.s17$S_17),"high","low")
likert.df.q1q4.s17$Quartile <- factor(likert.df.q1q4.s17$Quartile)
likert.df.q1q4.s17.table <- table(likert.df.q1q4.s17$Quartile,
likert.df.q1q4.s17$MedianGroup)
likert.df.q1q4.s17.table
##
## high low
## Quartile1 0 15
## Quartile4 13 2
chisq.test(likert.df.q1q4.s17.table)
##
## Pearson's Chi-squared test with Yates' continuity correction
##
## data: likert.df.q1q4.s17.table
## X-squared = 19.548, df = 1, p-value = 9.813e-06
likert.df.q1q4.s18 <- likert.df.q1q4[,c(22,50)]
likert.df.q1q4.s18$MedianGroup <- ifelse(likert.df.q1q4.s18$S_18>median(likert.df.q1q4.s18$S_18),"high","low")
likert.df.q1q4.s18$Quartile <- factor(likert.df.q1q4.s18$Quartile)
likert.df.q1q4.s18.table <- table(likert.df.q1q4.s18$Quartile,
likert.df.q1q4.s18$MedianGroup)
likert.df.q1q4.s18.table
##
## high low
## Quartile1 0 15
## Quartile4 10 5
chisq.test(likert.df.q1q4.s18.table)
##
## Pearson's Chi-squared test with Yates' continuity correction
##
## data: likert.df.q1q4.s18.table
## X-squared = 12.15, df = 1, p-value = 0.0004909
likert.df.q1q4.s19 <- likert.df.q1q4[,c(23,50)]
likert.df.q1q4.s19$MedianGroup <- ifelse(likert.df.q1q4.s19$S_19>median(likert.df.q1q4.s19$S_19),"high","low")
likert.df.q1q4.s19$Quartile <- factor(likert.df.q1q4.s19$Quartile)
likert.df.q1q4.s19.table <- table(likert.df.q1q4.s19$Quartile,
likert.df.q1q4.s19$MedianGroup)
likert.df.q1q4.s19.table
##
## high low
## Quartile1 0 15
## Quartile4 15 0
chisq.test(likert.df.q1q4.s19.table)
##
## Pearson's Chi-squared test with Yates' continuity correction
##
## data: likert.df.q1q4.s19.table
## X-squared = 26.133, df = 1, p-value = 3.186e-07
likert.df.q1q4.s20 <- likert.df.q1q4[,c(24,50)]
likert.df.q1q4.s20$MedianGroup <- ifelse(likert.df.q1q4.s20$S_20>median(likert.df.q1q4.s20$S_20),"high","low")
likert.df.q1q4.s20$Quartile <- factor(likert.df.q1q4.s20$Quartile)
likert.df.q1q4.s20.table <- table(likert.df.q1q4.s20$Quartile,
likert.df.q1q4.s20$MedianGroup)
likert.df.q1q4.s20.table
##
## high low
## Quartile1 0 15
## Quartile4 11 4
chisq.test(likert.df.q1q4.s20.table)
##
## Pearson's Chi-squared test with Yates' continuity correction
##
## data: likert.df.q1q4.s20.table
## X-squared = 14.354, df = 1, p-value = 0.0001515
likert.df.q1q4.s21 <- likert.df.q1q4[,c(25,50)]
likert.df.q1q4.s21$MedianGroup <- ifelse(likert.df.q1q4.s21$S_21>median(likert.df.q1q4.s21$S_21),"high","low")
likert.df.q1q4.s21$Quartile <- factor(likert.df.q1q4.s21$Quartile)
likert.df.q1q4.s21.table <- table(likert.df.q1q4.s21$Quartile,
likert.df.q1q4.s21$MedianGroup)
likert.df.q1q4.s21.table
##
## high low
## Quartile1 0 15
## Quartile4 15 0
chisq.test(likert.df.q1q4.s21.table)
##
## Pearson's Chi-squared test with Yates' continuity correction
##
## data: likert.df.q1q4.s21.table
## X-squared = 26.133, df = 1, p-value = 3.186e-07
likert.df.q1q4.s22 <- likert.df.q1q4[,c(26,50)]
likert.df.q1q4.s22$MedianGroup <- ifelse(likert.df.q1q4.s22$S_22>median(likert.df.q1q4.s22$S_22),"high","low")
likert.df.q1q4.s22$Quartile <- factor(likert.df.q1q4.s22$Quartile)
likert.df.q1q4.s22.table <- table(likert.df.q1q4.s22$Quartile,
likert.df.q1q4.s22$MedianGroup)
likert.df.q1q4.s22.table
##
## high low
## Quartile1 0 15
## Quartile4 10 5
chisq.test(likert.df.q1q4.s22.table)
##
## Pearson's Chi-squared test with Yates' continuity correction
##
## data: likert.df.q1q4.s22.table
## X-squared = 12.15, df = 1, p-value = 0.0004909
likert.df.q1q4.s23 <- likert.df.q1q4[,c(27,50)]
likert.df.q1q4.s23$MedianGroup <- ifelse(likert.df.q1q4.s23$S_23>median(likert.df.q1q4.s23$S_23),"high","low")
likert.df.q1q4.s23$Quartile <- factor(likert.df.q1q4.s23$Quartile)
likert.df.q1q4.s23.table <- table(likert.df.q1q4.s23$Quartile,
likert.df.q1q4.s23$MedianGroup)
likert.df.q1q4.s23.table
##
## high low
## Quartile1 0 15
## Quartile4 12 3
chisq.test(likert.df.q1q4.s23.table)
##
## Pearson's Chi-squared test with Yates' continuity correction
##
## data: likert.df.q1q4.s23.table
## X-squared = 16.806, df = 1, p-value = 4.141e-05
likert.df.q1q4.s24 <- likert.df.q1q4[,c(28,50)]
likert.df.q1q4.s24$MedianGroup <- ifelse(likert.df.q1q4.s24$S_24>median(likert.df.q1q4.s24$S_24),"high","low")
likert.df.q1q4.s24$Quartile <- factor(likert.df.q1q4.s24$Quartile)
likert.df.q1q4.s24.table <- table(likert.df.q1q4.s24$Quartile,
likert.df.q1q4.s24$MedianGroup)
likert.df.q1q4.s24.table
##
## high low
## Quartile1 0 15
## Quartile4 15 0
chisq.test(likert.df.q1q4.s24.table)
##
## Pearson's Chi-squared test with Yates' continuity correction
##
## data: likert.df.q1q4.s24.table
## X-squared = 26.133, df = 1, p-value = 3.186e-07
likert.df.q1q4.s25 <- likert.df.q1q4[,c(29,50)]
likert.df.q1q4.s25$MedianGroup <- ifelse(likert.df.q1q4.s25$S_25>median(likert.df.q1q4.s25$S_25),"high","low")
likert.df.q1q4.s25$Quartile <- factor(likert.df.q1q4.s25$Quartile)
likert.df.q1q4.s25.table <- table(likert.df.q1q4.s25$Quartile,
likert.df.q1q4.s25$MedianGroup)
likert.df.q1q4.s25.table
##
## high low
## Quartile1 0 15
## Quartile4 10 5
chisq.test(likert.df.q1q4.s25.table)
##
## Pearson's Chi-squared test with Yates' continuity correction
##
## data: likert.df.q1q4.s25.table
## X-squared = 12.15, df = 1, p-value = 0.0004909
likert.df.q1q4.s26 <- likert.df.q1q4[,c(30,50)]
likert.df.q1q4.s26$MedianGroup <- ifelse(likert.df.q1q4.s26$S_26>median(likert.df.q1q4.s26$S_26),"high","low")
likert.df.q1q4.s26$Quartile <- factor(likert.df.q1q4.s26$Quartile)
likert.df.q1q4.s26.table <- table(likert.df.q1q4.s26$Quartile,
likert.df.q1q4.s26$MedianGroup)
likert.df.q1q4.s26.table
##
## high low
## Quartile1 0 15
## Quartile4 13 2
chisq.test(likert.df.q1q4.s26.table)
##
## Pearson's Chi-squared test with Yates' continuity correction
##
## data: likert.df.q1q4.s26.table
## X-squared = 19.548, df = 1, p-value = 9.813e-06
likert.df.q1q4.s27 <- likert.df.q1q4[,c(31,50)]
likert.df.q1q4.s27$MedianGroup <- ifelse(likert.df.q1q4.s27$S_27>median(likert.df.q1q4.s27$S_27),"high","low")
likert.df.q1q4.s27$Quartile <- factor(likert.df.q1q4.s27$Quartile)
likert.df.q1q4.s27.table <- table(likert.df.q1q4.s27$Quartile,
likert.df.q1q4.s27$MedianGroup)
likert.df.q1q4.s27.table
##
## high low
## Quartile1 0 15
## Quartile4 7 8
chisq.test(likert.df.q1q4.s27.table)
##
## Pearson's Chi-squared test with Yates' continuity correction
##
## data: likert.df.q1q4.s27.table
## X-squared = 6.7081, df = 1, p-value = 0.009598
fisher.test(likert.df.q1q4.s27.table)
##
## Fisher's Exact Test for Count Data
##
## data: likert.df.q1q4.s27.table
## p-value = 0.006322
## alternative hypothesis: true odds ratio is not equal to 1
## 95 percent confidence interval:
## 0.0000000 0.5054614
## sample estimates:
## odds ratio
## 0
likert.df.q1q4.s28 <- likert.df.q1q4[,c(32,50)]
likert.df.q1q4.s28$MedianGroup <- ifelse(likert.df.q1q4.s28$S_28>median(likert.df.q1q4.s28$S_28),"high","low")
likert.df.q1q4.s28$Quartile <- factor(likert.df.q1q4.s28$Quartile)
likert.df.q1q4.s28.table <- table(likert.df.q1q4.s28$Quartile,
likert.df.q1q4.s28$MedianGroup)
likert.df.q1q4.s28.table
##
## high low
## Quartile1 1 14
## Quartile4 14 1
chisq.test(likert.df.q1q4.s28.table)
##
## Pearson's Chi-squared test with Yates' continuity correction
##
## data: likert.df.q1q4.s28.table
## X-squared = 19.2, df = 1, p-value = 1.177e-05
likert.df.q1q4.s29 <- likert.df.q1q4[,c(33,50)]
likert.df.q1q4.s29$MedianGroup <- ifelse(likert.df.q1q4.s29$S_29>median(likert.df.q1q4.s29$S_29),"high","low")
likert.df.q1q4.s29$Quartile <- factor(likert.df.q1q4.s29$Quartile)
likert.df.q1q4.s29.table <- table(likert.df.q1q4.s29$Quartile,
likert.df.q1q4.s29$MedianGroup)
likert.df.q1q4.s29.table
##
## high low
## Quartile1 0 15
## Quartile4 14 1
chisq.test(likert.df.q1q4.s29.table)
##
## Pearson's Chi-squared test with Yates' continuity correction
##
## data: likert.df.q1q4.s29.table
## X-squared = 22.634, df = 1, p-value = 1.96e-06
likert.df.q1q4.s30 <- likert.df.q1q4[,c(34,50)]
likert.df.q1q4.s30$MedianGroup <- ifelse(likert.df.q1q4.s30$S_30>median(likert.df.q1q4.s30$S_30),"high","low")
likert.df.q1q4.s30$Quartile <- factor(likert.df.q1q4.s30$Quartile)
likert.df.q1q4.s30.table <- table(likert.df.q1q4.s30$Quartile,
likert.df.q1q4.s30$MedianGroup)
likert.df.q1q4.s30.table
##
## high low
## Quartile1 8 7
## Quartile4 5 10
chisq.test(likert.df.q1q4.s30.table)
##
## Pearson's Chi-squared test with Yates' continuity correction
##
## data: likert.df.q1q4.s30.table
## X-squared = 0.54299, df = 1, p-value = 0.4612
likert.df.q1q4.s31 <- likert.df.q1q4[,c(35,50)]
likert.df.q1q4.s31$MedianGroup <- ifelse(likert.df.q1q4.s31$S_31>median(likert.df.q1q4.s31$S_31),"high","low")
likert.df.q1q4.s31$Quartile <- factor(likert.df.q1q4.s31$Quartile)
likert.df.q1q4.s31.table <- table(likert.df.q1q4.s31$Quartile,
likert.df.q1q4.s31$MedianGroup)
likert.df.q1q4.s31.table
##
## high low
## Quartile1 1 14
## Quartile4 8 7
chisq.test(likert.df.q1q4.s31.table)
##
## Pearson's Chi-squared test with Yates' continuity correction
##
## data: likert.df.q1q4.s31.table
## X-squared = 5.7143, df = 1, p-value = 0.01683
fisher.test(likert.df.q1q4.s31.table)
##
## Fisher's Exact Test for Count Data
##
## data: likert.df.q1q4.s31.table
## p-value = 0.01419
## alternative hypothesis: true odds ratio is not equal to 1
## 95 percent confidence interval:
## 0.001323691 0.678290071
## sample estimates:
## odds ratio
## 0.06892393
likert.df.q1q4.s32 <- likert.df.q1q4[,c(36,50)]
likert.df.q1q4.s32$MedianGroup <- ifelse(likert.df.q1q4.s32$S_32>median(likert.df.q1q4.s32$S_32),"high","low")
likert.df.q1q4.s32$Quartile <- factor(likert.df.q1q4.s32$Quartile)
likert.df.q1q4.s32.table <- table(likert.df.q1q4.s32$Quartile,
likert.df.q1q4.s32$MedianGroup)
likert.df.q1q4.s32.table
##
## high low
## Quartile1 0 15
## Quartile4 11 4
chisq.test(likert.df.q1q4.s32.table)
##
## Pearson's Chi-squared test with Yates' continuity correction
##
## data: likert.df.q1q4.s32.table
## X-squared = 14.354, df = 1, p-value = 0.0001515
likert.df.q1q4.s33 <- likert.df.q1q4[,c(37,50)]
likert.df.q1q4.s33$MedianGroup <- ifelse(likert.df.q1q4.s33$S_33>median(likert.df.q1q4.s33$S_33),"high","low")
likert.df.q1q4.s33$Quartile <- factor(likert.df.q1q4.s33$Quartile)
likert.df.q1q4.s33.table <- table(likert.df.q1q4.s33$Quartile,
likert.df.q1q4.s33$MedianGroup)
likert.df.q1q4.s33.table
##
## high low
## Quartile1 8 7
## Quartile4 3 12
chisq.test(likert.df.q1q4.s33.table)
##
## Pearson's Chi-squared test with Yates' continuity correction
##
## data: likert.df.q1q4.s33.table
## X-squared = 2.2967, df = 1, p-value = 0.1297
likert.df.q1q4.s34 <- likert.df.q1q4[,c(38,50)]
likert.df.q1q4.s34$MedianGroup <- ifelse(likert.df.q1q4.s34$S_34>median(likert.df.q1q4.s34$S_34),"high","low")
likert.df.q1q4.s34$Quartile <- factor(likert.df.q1q4.s34$Quartile)
likert.df.q1q4.s34.table <- table(likert.df.q1q4.s34$Quartile,
likert.df.q1q4.s34$MedianGroup)
likert.df.q1q4.s34.table
##
## high low
## Quartile1 1 14
## Quartile4 5 10
chisq.test(likert.df.q1q4.s34.table)
##
## Pearson's Chi-squared test with Yates' continuity correction
##
## data: likert.df.q1q4.s34.table
## X-squared = 1.875, df = 1, p-value = 0.1709
fisher.test(likert.df.q1q4.s34.table)
##
## Fisher's Exact Test for Count Data
##
## data: likert.df.q1q4.s34.table
## p-value = 0.1686
## alternative hypothesis: true odds ratio is not equal to 1
## 95 percent confidence interval:
## 0.002829566 1.661668864
## sample estimates:
## odds ratio
## 0.1519383
likert.df.q1q4.s35 <- likert.df.q1q4[,c(39,50)]
likert.df.q1q4.s35$MedianGroup <- ifelse(likert.df.q1q4.s35$S_35>median(likert.df.q1q4.s35$S_35),"high","low")
likert.df.q1q4.s35$Quartile <- factor(likert.df.q1q4.s35$Quartile)
likert.df.q1q4.s35.table <- table(likert.df.q1q4.s35$Quartile,
likert.df.q1q4.s35$MedianGroup)
likert.df.q1q4.s35.table
##
## high low
## Quartile1 0 15
## Quartile4 13 2
chisq.test(likert.df.q1q4.s35.table)
##
## Pearson's Chi-squared test with Yates' continuity correction
##
## data: likert.df.q1q4.s35.table
## X-squared = 19.548, df = 1, p-value = 9.813e-06
likert.df.q1q4.s36 <- likert.df.q1q4[,c(40,50)]
likert.df.q1q4.s36$MedianGroup <- ifelse(likert.df.q1q4.s36$S_36>median(likert.df.q1q4.s36$S_36),"high","low")
likert.df.q1q4.s36$Quartile <- factor(likert.df.q1q4.s36$Quartile)
likert.df.q1q4.s36.table <- table(likert.df.q1q4.s36$Quartile,
likert.df.q1q4.s36$MedianGroup)
likert.df.q1q4.s36.table
##
## high low
## Quartile1 0 15
## Quartile4 15 0
chisq.test(likert.df.q1q4.s36.table)
##
## Pearson's Chi-squared test with Yates' continuity correction
##
## data: likert.df.q1q4.s36.table
## X-squared = 26.133, df = 1, p-value = 3.186e-07
likert.df.q1q4.s37 <- likert.df.q1q4[,c(41,50)]
likert.df.q1q4.s37$MedianGroup <- ifelse(likert.df.q1q4.s37$S_37>median(likert.df.q1q4.s37$S_37),"high","low")
likert.df.q1q4.s37$Quartile <- factor(likert.df.q1q4.s37$Quartile)
likert.df.q1q4.s37.table <- table(likert.df.q1q4.s37$Quartile,
likert.df.q1q4.s37$MedianGroup)
likert.df.q1q4.s37.table
##
## high low
## Quartile1 0 15
## Quartile4 9 6
chisq.test(likert.df.q1q4.s37.table)
##
## Pearson's Chi-squared test with Yates' continuity correction
##
## data: likert.df.q1q4.s37.table
## X-squared = 10.159, df = 1, p-value = 0.001436
fisher.test(likert.df.q1q4.s37.table)
##
## Fisher's Exact Test for Count Data
##
## data: likert.df.q1q4.s37.table
## p-value = 0.0006997
## alternative hypothesis: true odds ratio is not equal to 1
## 95 percent confidence interval:
## 0.0000000 0.2994113
## sample estimates:
## odds ratio
## 0
likert.df.q1q4.s38 <- likert.df.q1q4[,c(42,50)]
likert.df.q1q4.s38$MedianGroup <- ifelse(likert.df.q1q4.s38$S_38>median(likert.df.q1q4.s38$S_38),"high","low")
likert.df.q1q4.s38$Quartile <- factor(likert.df.q1q4.s38$Quartile)
likert.df.q1q4.s38.table <- table(likert.df.q1q4.s38$Quartile,
likert.df.q1q4.s38$MedianGroup)
likert.df.q1q4.s38.table
##
## high low
## Quartile1 0 15
## Quartile4 15 0
chisq.test(likert.df.q1q4.s38.table)
##
## Pearson's Chi-squared test with Yates' continuity correction
##
## data: likert.df.q1q4.s38.table
## X-squared = 26.133, df = 1, p-value = 3.186e-07
likert.df.q1q4.s39 <- likert.df.q1q4[,c(43,50)]
likert.df.q1q4.s39$MedianGroup <- ifelse(likert.df.q1q4.s39$S_39>median(likert.df.q1q4.s39$S_39),"high","low")
likert.df.q1q4.s39$Quartile <- factor(likert.df.q1q4.s39$Quartile)
likert.df.q1q4.s39.table <- table(likert.df.q1q4.s39$Quartile,
likert.df.q1q4.s39$MedianGroup)
likert.df.q1q4.s39.table
##
## high low
## Quartile1 0 15
## Quartile4 14 1
chisq.test(likert.df.q1q4.s39.table)
##
## Pearson's Chi-squared test with Yates' continuity correction
##
## data: likert.df.q1q4.s39.table
## X-squared = 22.634, df = 1, p-value = 1.96e-06
likert.df.q1q4.s40 <- likert.df.q1q4[,c(44,50)]
likert.df.q1q4.s40$MedianGroup <- ifelse(likert.df.q1q4.s40$S_40>median(likert.df.q1q4.s40$S_40),"high","low")
likert.df.q1q4.s40$Quartile <- factor(likert.df.q1q4.s40$Quartile)
likert.df.q1q4.s40.table <- table(likert.df.q1q4.s40$Quartile,
likert.df.q1q4.s40$MedianGroup)
likert.df.q1q4.s40.table
##
## high low
## Quartile1 1 14
## Quartile4 10 5
chisq.test(likert.df.q1q4.s40.table)
##
## Pearson's Chi-squared test with Yates' continuity correction
##
## data: likert.df.q1q4.s40.table
## X-squared = 9.1866, df = 1, p-value = 0.002438
likert.df.q1q4.s41 <- likert.df.q1q4[,c(45,50)]
likert.df.q1q4.s41$MedianGroup <- ifelse(likert.df.q1q4.s41$S_41>median(likert.df.q1q4.s41$S_41),"high","low")
likert.df.q1q4.s41$Quartile <- factor(likert.df.q1q4.s41$Quartile)
likert.df.q1q4.s41.table <- table(likert.df.q1q4.s41$Quartile,
likert.df.q1q4.s41$MedianGroup)
likert.df.q1q4.s41.table
##
## high low
## Quartile1 0 15
## Quartile4 13 2
chisq.test(likert.df.q1q4.s41.table)
##
## Pearson's Chi-squared test with Yates' continuity correction
##
## data: likert.df.q1q4.s41.table
## X-squared = 19.548, df = 1, p-value = 9.813e-06
likert.df.q1q4.s42 <- likert.df.q1q4[,c(46,50)]
likert.df.q1q4.s42$MedianGroup <- ifelse(likert.df.q1q4.s42$S_42>median(likert.df.q1q4.s42$S_42),"high","low")
likert.df.q1q4.s42$Quartile <- factor(likert.df.q1q4.s42$Quartile)
likert.df.q1q4.s42.table <- table(likert.df.q1q4.s42$Quartile,
likert.df.q1q4.s42$MedianGroup)
likert.df.q1q4.s42.table
##
## high low
## Quartile1 0 15
## Quartile4 15 0
chisq.test(likert.df.q1q4.s42.table)
##
## Pearson's Chi-squared test with Yates' continuity correction
##
## data: likert.df.q1q4.s42.table
## X-squared = 26.133, df = 1, p-value = 3.186e-07
likert.df.q1q4.s43 <- likert.df.q1q4[,c(47,50)]
likert.df.q1q4.s43$MedianGroup <- ifelse(likert.df.q1q4.s43$S_43>median(likert.df.q1q4.s43$S_43),"high","low")
likert.df.q1q4.s43$Quartile <- factor(likert.df.q1q4.s43$Quartile)
likert.df.q1q4.s43.table <- table(likert.df.q1q4.s43$Quartile,
likert.df.q1q4.s43$MedianGroup)
likert.df.q1q4.s43.table
##
## high low
## Quartile1 1 14
## Quartile4 13 2
chisq.test(likert.df.q1q4.s43.table)
##
## Pearson's Chi-squared test with Yates' continuity correction
##
## data: likert.df.q1q4.s43.table
## X-squared = 16.205, df = 1, p-value = 5.683e-05
likert.df.q1q4.s44 <- likert.df.q1q4[,c(48,50)]
likert.df.q1q4.s44$MedianGroup <- ifelse(likert.df.q1q4.s44$S_44>median(likert.df.q1q4.s44$S_44),"high","low")
likert.df.q1q4.s44$Quartile <- factor(likert.df.q1q4.s44$Quartile)
likert.df.q1q4.s44.table <- table(likert.df.q1q4.s44$Quartile,
likert.df.q1q4.s44$MedianGroup)
likert.df.q1q4.s44.table
##
## high low
## Quartile1 2 13
## Quartile4 10 5
chisq.test(likert.df.q1q4.s44.table)
##
## Pearson's Chi-squared test with Yates' continuity correction
##
## data: likert.df.q1q4.s44.table
## X-squared = 6.8056, df = 1, p-value = 0.009087
likert.df.q1q4.s45 <- likert.df.q1q4[,c(49,50)]
likert.df.q1q4.s45$MedianGroup <- ifelse(likert.df.q1q4.s45$S_45>median(likert.df.q1q4.s45$S_45),"high","low")
likert.df.q1q4.s45$Quartile <- factor(likert.df.q1q4.s45$Quartile)
likert.df.q1q4.s45.table <- table(likert.df.q1q4.s45$Quartile,
likert.df.q1q4.s45$MedianGroup)
likert.df.q1q4.s45.table
##
## high low
## Quartile1 0 15
## Quartile4 14 1
chisq.test(likert.df.q1q4.s45.table)
##
## Pearson's Chi-squared test with Yates' continuity correction
##
## data: likert.df.q1q4.s45.table
## X-squared = 22.634, df = 1, p-value = 1.96e-06
likert.df.q1q4.s27 <- likert.df.q1q4[,c(31,50)]
likert.df.q1q4.s27$MedianGroup <- ifelse(likert.df.q1q4.s27$S_27>median(likert.df.q1q4.s27$S_27),"high","low")
likert.df.q1q4.s27$Quartile <- factor(likert.df.q1q4.s27$Quartile)
likert.df.q1q4.s27.table <- table(likert.df.q1q4.s27$Quartile,
likert.df.q1q4.s27$MedianGroup)
likert.df.q1q4.s27.table
##
## high low
## Quartile1 0 15
## Quartile4 7 8
chisq.test(likert.df.q1q4.s27.table)
##
## Pearson's Chi-squared test with Yates' continuity correction
##
## data: likert.df.q1q4.s27.table
## X-squared = 6.7081, df = 1, p-value = 0.009598
fisher.test(likert.df.q1q4.s27.table)
##
## Fisher's Exact Test for Count Data
##
## data: likert.df.q1q4.s27.table
## p-value = 0.006322
## alternative hypothesis: true odds ratio is not equal to 1
## 95 percent confidence interval:
## 0.0000000 0.5054614
## sample estimates:
## odds ratio
## 0
######################################
# LOOPING THE MEDIAN TEST FOR ALL VARIABLES
######################################
for(column_no in c(1:45)){
likert.df.q1q4.mediantest<-with(likert.df.q1q4,
Median.test(as.numeric(unlist(likert.df.q1q4[column_no+4])),
Quartile,
correct=TRUE,
console=FALSE,
group=FALSE))
median_name <- (paste0("likert.df.q1q4.mediantest.median_S", column_no))
comparison_name <- (paste0("likert.df.q1q4.mediantest.comparison_S", column_no))
likert.df.q1q4.mediantest.median <- likert.df.q1q4.mediantest$medians
likert.df.q1q4.mediantest.comparison <- likert.df.q1q4.mediantest$comparison
assign(median_name,likert.df.q1q4.mediantest.median)
assign(comparison_name,likert.df.q1q4.mediantest.comparison)
}
######################################
# CONSOLIDATING THE RESULTS
######################################
######################################
# CONSOLIDATING THE VARIABLE NAMES
######################################
column_name <- c()
for(column_no in c(1:45)){
column_name[column_no] <- (paste0("S_", column_no))
}
column_name
## [1] "S_1" "S_2" "S_3" "S_4" "S_5" "S_6" "S_7" "S_8" "S_9" "S_10"
## [11] "S_11" "S_12" "S_13" "S_14" "S_15" "S_16" "S_17" "S_18" "S_19" "S_20"
## [21] "S_21" "S_22" "S_23" "S_24" "S_25" "S_26" "S_27" "S_28" "S_29" "S_30"
## [31] "S_31" "S_32" "S_33" "S_34" "S_35" "S_36" "S_37" "S_38" "S_39" "S_40"
## [41] "S_41" "S_42" "S_43" "S_44" "S_45"
######################################
# CONSOLIDATING THE Q1 MEDIAN PER VARIABLE
######################################
q1median_percolumn <- c()
for(column_no in c(1:45)){
q1median_column_name <- (paste0("likert.df.q1q4.mediantest.median_S", column_no))
q1median_column_name <- eval(as.name(paste(q1median_column_name)))
q1median_percolumn[column_no] <- q1median_column_name[[1]][1]
}
q1median_percolumn
## [1] 1 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 5 1 1 5 2 1
## [36] 1 1 1 1 1 1 1 1 1 1
######################################
# CONSOLIDATING THE Q4 MEDIAN PER VARIABLE
######################################
q4median_percolumn <- c()
for(column_no in c(1:45)){
q4median_column_name <- (paste0("likert.df.q1q4.mediantest.median_S", column_no))
q4median_column_name <- eval(as.name(paste(q4median_column_name)))
q4median_percolumn[column_no] <- q4median_column_name[[1]][2]
}
q4median_percolumn
## [1] 4 4 4 4 4 4 4 4 4 3 4 4 4 4 3 4 3 4 3 4 4 4 4 4 4 4 3 3 4 4 4 3 4 4 4
## [36] 4 4 4 4 4 4 4 3 4 4
######################################
# CONSOLIDATING THE Q1+Q4 MEDIAN PER VARIABLE
######################################
allmedian_percolumn <- c()
for(column_no in c(1:45)){
allmedian_column_name <- (paste0("likert.df.q1q4.mediantest.comparison_S", column_no))
allmedian_column_name <- eval(as.name(paste(allmedian_column_name)))
allmedian_percolumn[column_no] <- allmedian_column_name[[1]]
}
allmedian_percolumn
## [1] 2.5 2.5 2.0 2.5 2.5 2.5 2.5 2.5 3.0 2.0 2.5 2.5 2.0 2.0 3.0 3.0 2.0
## [18] 3.0 2.5 3.0 2.5 3.0 3.0 2.5 3.0 3.0 3.0 1.5 2.0 4.0 3.0 2.0 4.0 4.0
## [35] 3.0 2.5 3.0 2.5 3.0 3.0 3.0 2.5 2.0 3.0 2.0
######################################
# CONSOLIDATING THE CHI-SQUARE TEST STATISTIC PER VARIABLE
######################################
chisquare_percolumn <- c()
for(column_no in c(1:45)){
chisquare_column_name <- (paste0("likert.df.q1q4.mediantest.comparison_S", column_no))
chisquare_column_name <- eval(as.name(paste(chisquare_column_name)))
chisquare_percolumn[column_no] <- chisquare_column_name[[2]]
}
chisquare_percolumn
## [1] 30.000000 30.000000 26.250000 22.533333 30.000000 30.000000 30.000000
## [8] 30.000000 6.651584 12.857143 30.000000 30.000000 26.250000 26.250000
## [15] 9.130435 12.857143 22.941176 15.000000 30.000000 17.368421 30.000000
## [22] 15.000000 20.000000 30.000000 15.000000 22.941176 9.130435 22.533333
## [29] 26.250000 1.221719 7.777778 17.368421 3.588517 3.333333 22.941176
## [36] 30.000000 12.857143 30.000000 26.250000 11.626794 22.941176 30.000000
## [43] 19.285714 8.888889 26.250000
######################################
# CONSOLIDATING THE P-VALUE PER VARIABLE
######################################
pvalue_percolumn <- c()
for(column_no in c(1:45)){
pvalue_column_name <- (paste0("likert.df.q1q4.mediantest.comparison_S", column_no))
pvalue_column_name <- eval(as.name(paste(pvalue_column_name)))
pvalue_percolumn[column_no] <- pvalue_column_name[[3]]
}
pvalue_percolumn
## [1] 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0099 0.0003
## [11] 0.0000 0.0000 0.0000 0.0000 0.0025 0.0003 0.0000 0.0001 0.0000 0.0000
## [21] 0.0000 0.0001 0.0000 0.0000 0.0001 0.0000 0.0025 0.0000 0.0000 0.2690
## [31] 0.0053 0.0000 0.0582 0.0679 0.0000 0.0000 0.0003 0.0000 0.0000 0.0007
## [41] 0.0000 0.0000 0.0000 0.0029 0.0000
######################################
# COLLATING ALL DATA
######################################
likert.df.results <- cbind(column_name,
q1median_percolumn,
q4median_percolumn,
allmedian_percolumn,
chisquare_percolumn,
pvalue_percolumn)
######################################
# TRANSFORMING DATA TYPES AND FORMATS
######################################
likert.df.results <- as.data.frame(likert.df.results)
likert.df.results$q1median_percolumn <- as.numeric(as.character(q1median_percolumn))
likert.df.results$q4median_percolumn <- as.numeric(as.character(q4median_percolumn))
likert.df.results$allmedian_percolumn <- as.numeric(as.character(allmedian_percolumn))
likert.df.results$chisquare_percolumn <- as.numeric(as.character(chisquare_percolumn))
likert.df.results$pvalue_percolumn <- as.numeric(as.character(pvalue_percolumn))
summary(likert.df.results)
## column_name q1median_percolumn q4median_percolumn allmedian_percolumn
## S_1 : 1 Min. :1.000 Min. :3.000 Min. :1.500
## S_10 : 1 1st Qu.:1.000 1st Qu.:4.000 1st Qu.:2.500
## S_11 : 1 Median :1.000 Median :4.000 Median :2.500
## S_12 : 1 Mean :1.222 Mean :3.822 Mean :2.667
## S_13 : 1 3rd Qu.:1.000 3rd Qu.:4.000 3rd Qu.:3.000
## S_14 : 1 Max. :5.000 Max. :4.000 Max. :4.000
## (Other):39
## chisquare_percolumn pvalue_percolumn
## Min. : 1.222 Min. :0.000000
## 1st Qu.:12.857 1st Qu.:0.000000
## Median :22.941 Median :0.000000
## Mean :20.739 Mean :0.009336
## 3rd Qu.:30.000 3rd Qu.:0.000300
## Max. :30.000 Max. :0.269000
##
colnames(likert.df.results) <- c("Statements",
"Q1_Median",
"Q4_Median",
"Q1Q4_Median",
"ChiSquare_TestStat",
"P_Value")
summary(likert.df.results)
## Statements Q1_Median Q4_Median Q1Q4_Median
## S_1 : 1 Min. :1.000 Min. :3.000 Min. :1.500
## S_10 : 1 1st Qu.:1.000 1st Qu.:4.000 1st Qu.:2.500
## S_11 : 1 Median :1.000 Median :4.000 Median :2.500
## S_12 : 1 Mean :1.222 Mean :3.822 Mean :2.667
## S_13 : 1 3rd Qu.:1.000 3rd Qu.:4.000 3rd Qu.:3.000
## S_14 : 1 Max. :5.000 Max. :4.000 Max. :4.000
## (Other):39
## ChiSquare_TestStat P_Value
## Min. : 1.222 Min. :0.000000
## 1st Qu.:12.857 1st Qu.:0.000000
## Median :22.941 Median :0.000000
## Mean :20.739 Mean :0.009336
## 3rd Qu.:30.000 3rd Qu.:0.000300
## Max. :30.000 Max. :0.269000
##
######################################
# EVALUATING THE P-VALUES
######################################
likert.df.results$Classification <- ifelse(likert.df.results$P_Value<0.05,
"Include",
"Exclude")
likert.df.results.table <- table(likert.df.results$Classification)
likert.df.results.table
##
## Exclude Include
## 3 42
prop.table(likert.df.results.table)
##
## Exclude Include
## 0.06666667 0.93333333
######################################
# FORMATTING THE FINAL OUTPUT
######################################
gc()
## used (Mb) gc trigger (Mb) max used (Mb)
## Ncells 2055109 109.8 4167531 222.6 4167531 222.6
## Vcells 3559393 27.2 8388608 64.0 6402443 48.9
likert.df.results$Q1_Median <- format(likert.df.results$Q1_Median,nsmall=2)
likert.df.results$Q4_Median <- format(likert.df.results$Q4_Median,nsmall=2)
likert.df.results$Q1Q4_Median <- format(likert.df.results$Q1Q4_Median,nsmall=2)
likert.df.results$ChiSquare_TestStat <- format(round(likert.df.results$ChiSquare_TestStat,digits=2),nsmall=2)
likert.df.results$P_Value <- format(likert.df.results$P_Value,nsmall=5)
######################################
# VIEWING THE FINAL OUTPUT
######################################
(likert.df.results)
## Statements Q1_Median Q4_Median Q1Q4_Median ChiSquare_TestStat P_Value
## 1 S_1 1.00 4.00 2.50 30.00 0.00000
## 2 S_2 1.00 4.00 2.50 30.00 0.00000
## 3 S_3 1.00 4.00 2.00 26.25 0.00000
## 4 S_4 1.00 4.00 2.50 22.53 0.00000
## 5 S_5 1.00 4.00 2.50 30.00 0.00000
## 6 S_6 1.00 4.00 2.50 30.00 0.00000
## 7 S_7 1.00 4.00 2.50 30.00 0.00000
## 8 S_8 1.00 4.00 2.50 30.00 0.00000
## 9 S_9 2.00 4.00 3.00 6.65 0.00990
## 10 S_10 1.00 3.00 2.00 12.86 0.00030
## 11 S_11 1.00 4.00 2.50 30.00 0.00000
## 12 S_12 1.00 4.00 2.50 30.00 0.00000
## 13 S_13 1.00 4.00 2.00 26.25 0.00000
## 14 S_14 1.00 4.00 2.00 26.25 0.00000
## 15 S_15 1.00 3.00 3.00 9.13 0.00250
## 16 S_16 1.00 4.00 3.00 12.86 0.00030
## 17 S_17 1.00 3.00 2.00 22.94 0.00000
## 18 S_18 1.00 4.00 3.00 15.00 0.00010
## 19 S_19 1.00 3.00 2.50 30.00 0.00000
## 20 S_20 1.00 4.00 3.00 17.37 0.00000
## 21 S_21 1.00 4.00 2.50 30.00 0.00000
## 22 S_22 1.00 4.00 3.00 15.00 0.00010
## 23 S_23 1.00 4.00 3.00 20.00 0.00000
## 24 S_24 1.00 4.00 2.50 30.00 0.00000
## 25 S_25 1.00 4.00 3.00 15.00 0.00010
## 26 S_26 1.00 4.00 3.00 22.94 0.00000
## 27 S_27 1.00 3.00 3.00 9.13 0.00250
## 28 S_28 1.00 3.00 1.50 22.53 0.00000
## 29 S_29 1.00 4.00 2.00 26.25 0.00000
## 30 S_30 5.00 4.00 4.00 1.22 0.26900
## 31 S_31 1.00 4.00 3.00 7.78 0.00530
## 32 S_32 1.00 3.00 2.00 17.37 0.00000
## 33 S_33 5.00 4.00 4.00 3.59 0.05820
## 34 S_34 2.00 4.00 4.00 3.33 0.06790
## 35 S_35 1.00 4.00 3.00 22.94 0.00000
## 36 S_36 1.00 4.00 2.50 30.00 0.00000
## 37 S_37 1.00 4.00 3.00 12.86 0.00030
## 38 S_38 1.00 4.00 2.50 30.00 0.00000
## 39 S_39 1.00 4.00 3.00 26.25 0.00000
## 40 S_40 1.00 4.00 3.00 11.63 0.00070
## 41 S_41 1.00 4.00 3.00 22.94 0.00000
## 42 S_42 1.00 4.00 2.50 30.00 0.00000
## 43 S_43 1.00 3.00 2.00 19.29 0.00000
## 44 S_44 1.00 4.00 3.00 8.89 0.00290
## 45 S_45 1.00 4.00 2.00 26.25 0.00000
## Classification
## 1 Include
## 2 Include
## 3 Include
## 4 Include
## 5 Include
## 6 Include
## 7 Include
## 8 Include
## 9 Include
## 10 Include
## 11 Include
## 12 Include
## 13 Include
## 14 Include
## 15 Include
## 16 Include
## 17 Include
## 18 Include
## 19 Include
## 20 Include
## 21 Include
## 22 Include
## 23 Include
## 24 Include
## 25 Include
## 26 Include
## 27 Include
## 28 Include
## 29 Include
## 30 Exclude
## 31 Include
## 32 Include
## 33 Exclude
## 34 Exclude
## 35 Include
## 36 Include
## 37 Include
## 38 Include
## 39 Include
## 40 Include
## 41 Include
## 42 Include
## 43 Include
## 44 Include
## 45 Include
######################################
# MEDIAN TEST SUMMARY
######################################
cat("Number of statements to be excluded is equal to",
nrow(likert.df.results[likert.df.results$Classification=="Exclude",]))
## Number of statements to be excluded is equal to 3
cat("Statements ",
rownames(likert.df.results[likert.df.results$Classification=="Exclude",]),
" should be excluded\n")
## Statements 30 33 34 should be excluded
######################################
# CONDUCTING STATEMENT PAIRWISE CORRELATIONS
# ASSUMPTION 1 : AT LEAST ORDINAL MEASURES
# ASSUMPTION 2 : MONOTONIC RELATIONSHIP BETWEEN VARIABLES
######################################
likert.df.results.include <- likert.df.results[likert.df.results$Classification=="Include",]
dim(likert.df.results.include)
## [1] 42 7
likert.df.results.include$Statements
## [1] S_1 S_2 S_3 S_4 S_5 S_6 S_7 S_8 S_9 S_10 S_11 S_12 S_13 S_14
## [15] S_15 S_16 S_17 S_18 S_19 S_20 S_21 S_22 S_23 S_24 S_25 S_26 S_27 S_28
## [29] S_29 S_31 S_32 S_35 S_36 S_37 S_38 S_39 S_40 S_41 S_42 S_43 S_44 S_45
## 45 Levels: S_1 S_10 S_11 S_12 S_13 S_14 S_15 S_16 S_17 S_18 S_19 ... S_9
likert.df.s1s45 <- likert.df[,5:49]
likert.df.s1s45.include <- likert.df.s1s45[,names(likert.df.s1s45) %in% likert.df.results.include$Statements]
names(likert.df.s1s45.include)
## [1] "S_1" "S_2" "S_3" "S_4" "S_5" "S_6" "S_7" "S_8" "S_9" "S_10"
## [11] "S_11" "S_12" "S_13" "S_14" "S_15" "S_16" "S_17" "S_18" "S_19" "S_20"
## [21] "S_21" "S_22" "S_23" "S_24" "S_25" "S_26" "S_27" "S_28" "S_29" "S_31"
## [31] "S_32" "S_35" "S_36" "S_37" "S_38" "S_39" "S_40" "S_41" "S_42" "S_43"
## [41] "S_44" "S_45"
(spearmanrankcorr_values <- rcorr(as.matrix(likert.df.s1s45.include,type="spearman")))
## S_1 S_2 S_3 S_4 S_5 S_6 S_7 S_8 S_9 S_10 S_11 S_12 S_13 S_14
## S_1 1.00 0.85 0.76 0.65 0.78 0.80 0.74 0.78 0.51 0.61 0.79 0.78 0.56 0.67
## S_2 0.85 1.00 0.82 0.68 0.88 0.85 0.81 0.83 0.54 0.66 0.80 0.82 0.65 0.72
## S_3 0.76 0.82 1.00 0.67 0.82 0.80 0.74 0.75 0.47 0.57 0.70 0.78 0.65 0.73
## S_4 0.65 0.68 0.67 1.00 0.73 0.71 0.65 0.71 0.39 0.62 0.72 0.69 0.46 0.68
## S_5 0.78 0.88 0.82 0.73 1.00 0.84 0.79 0.79 0.55 0.64 0.83 0.84 0.68 0.79
## S_6 0.80 0.85 0.80 0.71 0.84 1.00 0.81 0.84 0.46 0.63 0.81 0.87 0.61 0.80
## S_7 0.74 0.81 0.74 0.65 0.79 0.81 1.00 0.86 0.48 0.70 0.82 0.83 0.76 0.80
## S_8 0.78 0.83 0.75 0.71 0.79 0.84 0.86 1.00 0.51 0.72 0.83 0.82 0.74 0.75
## S_9 0.51 0.54 0.47 0.39 0.55 0.46 0.48 0.51 1.00 0.49 0.55 0.57 0.38 0.39
## S_10 0.61 0.66 0.57 0.62 0.64 0.63 0.70 0.72 0.49 1.00 0.78 0.59 0.45 0.62
## S_11 0.79 0.80 0.70 0.72 0.83 0.81 0.82 0.83 0.55 0.78 1.00 0.81 0.62 0.81
## S_12 0.78 0.82 0.78 0.69 0.84 0.87 0.83 0.82 0.57 0.59 0.81 1.00 0.74 0.81
## S_13 0.56 0.65 0.65 0.46 0.68 0.61 0.76 0.74 0.38 0.45 0.62 0.74 1.00 0.73
## S_14 0.67 0.72 0.73 0.68 0.79 0.80 0.80 0.75 0.39 0.62 0.81 0.81 0.73 1.00
## S_15 0.74 0.69 0.68 0.68 0.74 0.75 0.70 0.76 0.44 0.58 0.74 0.77 0.63 0.75
## S_16 0.70 0.75 0.67 0.66 0.72 0.76 0.64 0.69 0.45 0.56 0.74 0.73 0.48 0.63
## S_17 0.68 0.70 0.72 0.75 0.72 0.67 0.72 0.72 0.52 0.66 0.70 0.70 0.55 0.68
## S_18 0.70 0.75 0.74 0.72 0.76 0.74 0.74 0.80 0.45 0.67 0.77 0.72 0.63 0.72
## S_19 0.72 0.80 0.72 0.60 0.74 0.70 0.74 0.74 0.52 0.59 0.72 0.73 0.63 0.63
## S_20 0.62 0.78 0.75 0.67 0.73 0.66 0.72 0.77 0.46 0.56 0.73 0.76 0.76 0.73
## S_21 0.72 0.78 0.72 0.70 0.82 0.82 0.83 0.84 0.49 0.64 0.80 0.84 0.76 0.81
## S_22 0.65 0.79 0.72 0.64 0.76 0.78 0.70 0.79 0.43 0.56 0.72 0.78 0.71 0.65
## S_23 0.80 0.84 0.71 0.66 0.82 0.84 0.78 0.82 0.54 0.68 0.84 0.82 0.60 0.72
## S_24 0.75 0.75 0.64 0.65 0.74 0.83 0.79 0.84 0.40 0.62 0.84 0.79 0.67 0.78
## S_25 0.64 0.75 0.65 0.61 0.81 0.73 0.73 0.75 0.50 0.55 0.69 0.80 0.68 0.65
## S_26 0.71 0.78 0.68 0.69 0.79 0.81 0.74 0.78 0.38 0.56 0.71 0.80 0.68 0.74
## S_27 0.64 0.72 0.68 0.59 0.77 0.70 0.69 0.70 0.45 0.54 0.62 0.75 0.64 0.64
## S_28 0.59 0.68 0.70 0.70 0.63 0.60 0.63 0.71 0.42 0.63 0.65 0.61 0.53 0.66
## S_29 0.65 0.78 0.67 0.65 0.82 0.78 0.73 0.75 0.42 0.57 0.72 0.78 0.67 0.78
## S_31 0.46 0.52 0.43 0.44 0.53 0.54 0.49 0.51 0.28 0.35 0.46 0.55 0.45 0.49
## S_32 0.64 0.71 0.65 0.67 0.65 0.66 0.69 0.77 0.43 0.63 0.70 0.63 0.51 0.54
## S_35 0.61 0.76 0.64 0.54 0.76 0.75 0.65 0.65 0.49 0.49 0.65 0.72 0.63 0.69
## S_36 0.69 0.81 0.75 0.72 0.81 0.77 0.80 0.77 0.47 0.69 0.81 0.82 0.65 0.82
## S_37 0.71 0.78 0.75 0.54 0.74 0.77 0.73 0.73 0.52 0.53 0.68 0.74 0.67 0.66
## S_38 0.72 0.74 0.72 0.71 0.75 0.81 0.85 0.84 0.39 0.62 0.81 0.80 0.73 0.82
## S_39 0.76 0.83 0.71 0.68 0.80 0.81 0.76 0.76 0.51 0.56 0.77 0.78 0.62 0.74
## S_40 0.56 0.55 0.45 0.51 0.60 0.53 0.55 0.52 0.52 0.43 0.56 0.57 0.43 0.55
## S_41 0.71 0.81 0.72 0.72 0.84 0.81 0.79 0.82 0.51 0.64 0.82 0.87 0.67 0.80
## S_42 0.71 0.79 0.77 0.66 0.84 0.82 0.83 0.83 0.51 0.65 0.81 0.89 0.75 0.87
## S_43 0.70 0.71 0.67 0.65 0.73 0.69 0.73 0.70 0.49 0.58 0.73 0.76 0.53 0.69
## S_44 0.53 0.55 0.57 0.45 0.63 0.69 0.70 0.58 0.34 0.42 0.54 0.71 0.62 0.68
## S_45 0.77 0.74 0.66 0.71 0.72 0.70 0.79 0.83 0.45 0.67 0.84 0.73 0.66 0.75
## S_15 S_16 S_17 S_18 S_19 S_20 S_21 S_22 S_23 S_24 S_25 S_26 S_27 S_28
## S_1 0.74 0.70 0.68 0.70 0.72 0.62 0.72 0.65 0.80 0.75 0.64 0.71 0.64 0.59
## S_2 0.69 0.75 0.70 0.75 0.80 0.78 0.78 0.79 0.84 0.75 0.75 0.78 0.72 0.68
## S_3 0.68 0.67 0.72 0.74 0.72 0.75 0.72 0.72 0.71 0.64 0.65 0.68 0.68 0.70
## S_4 0.68 0.66 0.75 0.72 0.60 0.67 0.70 0.64 0.66 0.65 0.61 0.69 0.59 0.70
## S_5 0.74 0.72 0.72 0.76 0.74 0.73 0.82 0.76 0.82 0.74 0.81 0.79 0.77 0.63
## S_6 0.75 0.76 0.67 0.74 0.70 0.66 0.82 0.78 0.84 0.83 0.73 0.81 0.70 0.60
## S_7 0.70 0.64 0.72 0.74 0.74 0.72 0.83 0.70 0.78 0.79 0.73 0.74 0.69 0.63
## S_8 0.76 0.69 0.72 0.80 0.74 0.77 0.84 0.79 0.82 0.84 0.75 0.78 0.70 0.71
## S_9 0.44 0.45 0.52 0.45 0.52 0.46 0.49 0.43 0.54 0.40 0.50 0.38 0.45 0.42
## S_10 0.58 0.56 0.66 0.67 0.59 0.56 0.64 0.56 0.68 0.62 0.55 0.56 0.54 0.63
## S_11 0.74 0.74 0.70 0.77 0.72 0.73 0.80 0.72 0.84 0.84 0.69 0.71 0.62 0.65
## S_12 0.77 0.73 0.70 0.72 0.73 0.76 0.84 0.78 0.82 0.79 0.80 0.80 0.75 0.61
## S_13 0.63 0.48 0.55 0.63 0.63 0.76 0.76 0.71 0.60 0.67 0.68 0.68 0.64 0.53
## S_14 0.75 0.63 0.68 0.72 0.63 0.73 0.81 0.65 0.72 0.78 0.65 0.74 0.64 0.66
## S_15 1.00 0.68 0.67 0.70 0.68 0.63 0.74 0.64 0.64 0.74 0.75 0.88 0.73 0.69
## S_16 0.68 1.00 0.60 0.65 0.77 0.63 0.67 0.67 0.72 0.69 0.59 0.75 0.71 0.61
## S_17 0.67 0.60 1.00 0.86 0.72 0.71 0.65 0.57 0.68 0.57 0.60 0.65 0.56 0.75
## S_18 0.70 0.65 0.86 1.00 0.76 0.77 0.71 0.65 0.71 0.67 0.66 0.70 0.59 0.73
## S_19 0.68 0.77 0.72 0.76 1.00 0.75 0.72 0.67 0.79 0.65 0.68 0.69 0.70 0.72
## S_20 0.63 0.63 0.71 0.77 0.75 1.00 0.78 0.77 0.70 0.66 0.59 0.65 0.56 0.72
## S_21 0.74 0.67 0.65 0.71 0.72 0.78 1.00 0.77 0.73 0.82 0.69 0.74 0.69 0.60
## S_22 0.64 0.67 0.57 0.65 0.67 0.77 0.77 1.00 0.76 0.74 0.69 0.77 0.66 0.54
## S_23 0.64 0.72 0.68 0.71 0.79 0.70 0.73 0.76 1.00 0.78 0.70 0.71 0.70 0.65
## S_24 0.74 0.69 0.57 0.67 0.65 0.66 0.82 0.74 0.78 1.00 0.71 0.74 0.59 0.57
## S_25 0.75 0.59 0.60 0.66 0.68 0.59 0.69 0.69 0.70 0.71 1.00 0.82 0.79 0.59
## S_26 0.88 0.75 0.65 0.70 0.69 0.65 0.74 0.77 0.71 0.74 0.82 1.00 0.82 0.61
## S_27 0.73 0.71 0.56 0.59 0.70 0.56 0.69 0.66 0.70 0.59 0.79 0.82 1.00 0.52
## S_28 0.69 0.61 0.75 0.73 0.72 0.72 0.60 0.54 0.65 0.57 0.59 0.61 0.52 1.00
## S_29 0.78 0.74 0.67 0.69 0.75 0.71 0.78 0.70 0.74 0.75 0.76 0.84 0.75 0.71
## S_31 0.58 0.55 0.36 0.42 0.56 0.39 0.49 0.46 0.47 0.46 0.65 0.63 0.65 0.42
## S_32 0.51 0.54 0.74 0.73 0.64 0.71 0.66 0.67 0.71 0.62 0.51 0.55 0.47 0.71
## S_35 0.71 0.72 0.48 0.54 0.65 0.60 0.71 0.65 0.65 0.68 0.76 0.79 0.75 0.54
## S_36 0.79 0.72 0.72 0.74 0.75 0.76 0.81 0.72 0.71 0.77 0.81 0.80 0.71 0.74
## S_37 0.79 0.71 0.59 0.61 0.80 0.64 0.71 0.59 0.71 0.70 0.73 0.72 0.74 0.63
## S_38 0.73 0.65 0.73 0.78 0.69 0.72 0.82 0.73 0.70 0.83 0.72 0.76 0.64 0.58
## S_39 0.77 0.78 0.61 0.66 0.74 0.67 0.82 0.70 0.71 0.75 0.70 0.81 0.78 0.58
## S_40 0.62 0.49 0.50 0.48 0.53 0.40 0.52 0.48 0.51 0.47 0.61 0.63 0.56 0.48
## S_41 0.78 0.72 0.71 0.75 0.72 0.75 0.82 0.79 0.76 0.74 0.79 0.84 0.78 0.62
## S_42 0.80 0.72 0.75 0.79 0.79 0.75 0.82 0.72 0.80 0.76 0.83 0.81 0.79 0.72
## S_43 0.60 0.61 0.68 0.61 0.67 0.62 0.72 0.67 0.74 0.64 0.59 0.64 0.63 0.55
## S_44 0.59 0.54 0.48 0.43 0.47 0.40 0.66 0.58 0.60 0.67 0.66 0.68 0.64 0.38
## S_45 0.69 0.68 0.74 0.77 0.67 0.75 0.81 0.70 0.72 0.75 0.57 0.70 0.53 0.66
## S_29 S_31 S_32 S_35 S_36 S_37 S_38 S_39 S_40 S_41 S_42 S_43 S_44 S_45
## S_1 0.65 0.46 0.64 0.61 0.69 0.71 0.72 0.76 0.56 0.71 0.71 0.70 0.53 0.77
## S_2 0.78 0.52 0.71 0.76 0.81 0.78 0.74 0.83 0.55 0.81 0.79 0.71 0.55 0.74
## S_3 0.67 0.43 0.65 0.64 0.75 0.75 0.72 0.71 0.45 0.72 0.77 0.67 0.57 0.66
## S_4 0.65 0.44 0.67 0.54 0.72 0.54 0.71 0.68 0.51 0.72 0.66 0.65 0.45 0.71
## S_5 0.82 0.53 0.65 0.76 0.81 0.74 0.75 0.80 0.60 0.84 0.84 0.73 0.63 0.72
## S_6 0.78 0.54 0.66 0.75 0.77 0.77 0.81 0.81 0.53 0.81 0.82 0.69 0.69 0.70
## S_7 0.73 0.49 0.69 0.65 0.80 0.73 0.85 0.76 0.55 0.79 0.83 0.73 0.70 0.79
## S_8 0.75 0.51 0.77 0.65 0.77 0.73 0.84 0.76 0.52 0.82 0.83 0.70 0.58 0.83
## S_9 0.42 0.28 0.43 0.49 0.47 0.52 0.39 0.51 0.52 0.51 0.51 0.49 0.34 0.45
## S_10 0.57 0.35 0.63 0.49 0.69 0.53 0.62 0.56 0.43 0.64 0.65 0.58 0.42 0.67
## S_11 0.72 0.46 0.70 0.65 0.81 0.68 0.81 0.77 0.56 0.82 0.81 0.73 0.54 0.84
## S_12 0.78 0.55 0.63 0.72 0.82 0.74 0.80 0.78 0.57 0.87 0.89 0.76 0.71 0.73
## S_13 0.67 0.45 0.51 0.63 0.65 0.67 0.73 0.62 0.43 0.67 0.75 0.53 0.62 0.66
## S_14 0.78 0.49 0.54 0.69 0.82 0.66 0.82 0.74 0.55 0.80 0.87 0.69 0.68 0.75
## S_15 0.78 0.58 0.51 0.71 0.79 0.79 0.73 0.77 0.62 0.78 0.80 0.60 0.59 0.69
## S_16 0.74 0.55 0.54 0.72 0.72 0.71 0.65 0.78 0.49 0.72 0.72 0.61 0.54 0.68
## S_17 0.67 0.36 0.74 0.48 0.72 0.59 0.73 0.61 0.50 0.71 0.75 0.68 0.48 0.74
## S_18 0.69 0.42 0.73 0.54 0.74 0.61 0.78 0.66 0.48 0.75 0.79 0.61 0.43 0.77
## S_19 0.75 0.56 0.64 0.65 0.75 0.80 0.69 0.74 0.53 0.72 0.79 0.67 0.47 0.67
## S_20 0.71 0.39 0.71 0.60 0.76 0.64 0.72 0.67 0.40 0.75 0.75 0.62 0.40 0.75
## S_21 0.78 0.49 0.66 0.71 0.81 0.71 0.82 0.82 0.52 0.82 0.82 0.72 0.66 0.81
## S_22 0.70 0.46 0.67 0.65 0.72 0.59 0.73 0.70 0.48 0.79 0.72 0.67 0.58 0.70
## S_23 0.74 0.47 0.71 0.65 0.71 0.71 0.70 0.71 0.51 0.76 0.80 0.74 0.60 0.72
## S_24 0.75 0.46 0.62 0.68 0.77 0.70 0.83 0.75 0.47 0.74 0.76 0.64 0.67 0.75
## S_25 0.76 0.65 0.51 0.76 0.81 0.73 0.72 0.70 0.61 0.79 0.83 0.59 0.66 0.57
## S_26 0.84 0.63 0.55 0.79 0.80 0.72 0.76 0.81 0.63 0.84 0.81 0.64 0.68 0.70
## S_27 0.75 0.65 0.47 0.75 0.71 0.74 0.64 0.78 0.56 0.78 0.79 0.63 0.64 0.53
## S_28 0.71 0.42 0.71 0.54 0.74 0.63 0.58 0.58 0.48 0.62 0.72 0.55 0.38 0.66
## S_29 1.00 0.60 0.60 0.78 0.85 0.77 0.76 0.84 0.64 0.84 0.86 0.64 0.63 0.63
## S_31 0.60 1.00 0.22 0.65 0.57 0.58 0.55 0.60 0.49 0.57 0.63 0.42 0.42 0.38
## S_32 0.60 0.22 1.00 0.43 0.60 0.50 0.64 0.57 0.32 0.63 0.62 0.65 0.37 0.72
## S_35 0.78 0.65 0.43 1.00 0.73 0.79 0.65 0.83 0.59 0.72 0.76 0.53 0.62 0.54
## S_36 0.85 0.57 0.60 0.73 1.00 0.72 0.82 0.80 0.64 0.88 0.87 0.67 0.63 0.72
## S_37 0.77 0.58 0.50 0.79 0.72 1.00 0.67 0.81 0.48 0.69 0.78 0.56 0.60 0.55
## S_38 0.76 0.55 0.64 0.65 0.82 0.67 1.00 0.78 0.57 0.80 0.81 0.70 0.65 0.80
## S_39 0.84 0.60 0.57 0.83 0.80 0.81 0.78 1.00 0.63 0.83 0.78 0.69 0.59 0.72
## S_40 0.64 0.49 0.32 0.59 0.64 0.48 0.57 0.63 1.00 0.67 0.59 0.52 0.40 0.50
## S_41 0.84 0.57 0.63 0.72 0.88 0.69 0.80 0.83 0.67 1.00 0.89 0.78 0.62 0.73
## S_42 0.86 0.63 0.62 0.76 0.87 0.78 0.81 0.78 0.59 0.89 1.00 0.76 0.70 0.74
## S_43 0.64 0.42 0.65 0.53 0.67 0.56 0.70 0.69 0.52 0.78 0.76 1.00 0.59 0.74
## S_44 0.63 0.42 0.37 0.62 0.63 0.60 0.65 0.59 0.40 0.62 0.70 0.59 1.00 0.53
## S_45 0.63 0.38 0.72 0.54 0.72 0.55 0.80 0.72 0.50 0.73 0.74 0.74 0.53 1.00
##
## n= 60
##
##
## P
## S_1 S_2 S_3 S_4 S_5 S_6 S_7 S_8 S_9 S_10
## S_1 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
## S_2 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
## S_3 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0001 0.0000
## S_4 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0019 0.0000
## S_5 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
## S_6 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0002 0.0000
## S_7 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
## S_8 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
## S_9 0.0000 0.0000 0.0001 0.0019 0.0000 0.0002 0.0000 0.0000 0.0000
## S_10 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
## S_11 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
## S_12 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
## S_13 0.0000 0.0000 0.0000 0.0002 0.0000 0.0000 0.0000 0.0000 0.0028 0.0003
## S_14 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0023 0.0000
## S_15 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0004 0.0000
## S_16 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0003 0.0000
## S_17 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
## S_18 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0003 0.0000
## S_19 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
## S_20 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0002 0.0000
## S_21 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
## S_22 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0006 0.0000
## S_23 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
## S_24 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0016 0.0000
## S_25 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
## S_26 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0027 0.0000
## S_27 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0003 0.0000
## S_28 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0010 0.0000
## S_29 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0010 0.0000
## S_31 0.0002 0.0000 0.0005 0.0004 0.0000 0.0000 0.0000 0.0000 0.0329 0.0055
## S_32 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0006 0.0000
## S_35 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
## S_36 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0002 0.0000
## S_37 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
## S_38 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0021 0.0000
## S_39 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
## S_40 0.0000 0.0000 0.0004 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0005
## S_41 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
## S_42 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
## S_43 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
## S_44 0.0000 0.0000 0.0000 0.0003 0.0000 0.0000 0.0000 0.0000 0.0087 0.0009
## S_45 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0003 0.0000
## S_11 S_12 S_13 S_14 S_15 S_16 S_17 S_18 S_19 S_20
## S_1 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
## S_2 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
## S_3 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
## S_4 0.0000 0.0000 0.0002 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
## S_5 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
## S_6 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
## S_7 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
## S_8 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
## S_9 0.0000 0.0000 0.0028 0.0023 0.0004 0.0003 0.0000 0.0003 0.0000 0.0002
## S_10 0.0000 0.0000 0.0003 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
## S_11 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
## S_12 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
## S_13 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
## S_14 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
## S_15 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
## S_16 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
## S_17 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
## S_18 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
## S_19 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
## S_20 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
## S_21 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
## S_22 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
## S_23 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
## S_24 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
## S_25 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
## S_26 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
## S_27 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
## S_28 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
## S_29 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
## S_31 0.0002 0.0000 0.0003 0.0000 0.0000 0.0000 0.0047 0.0008 0.0000 0.0021
## S_32 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
## S_35 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0001 0.0000 0.0000 0.0000
## S_36 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
## S_37 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
## S_38 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
## S_39 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
## S_40 0.0000 0.0000 0.0006 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0014
## S_41 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
## S_42 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
## S_43 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
## S_44 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0001 0.0006 0.0001 0.0013
## S_45 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
## S_21 S_22 S_23 S_24 S_25 S_26 S_27 S_28 S_29 S_31
## S_1 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0002
## S_2 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
## S_3 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0005
## S_4 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0004
## S_5 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
## S_6 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
## S_7 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
## S_8 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
## S_9 0.0000 0.0006 0.0000 0.0016 0.0000 0.0027 0.0003 0.0010 0.0010 0.0329
## S_10 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0055
## S_11 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0002
## S_12 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
## S_13 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0003
## S_14 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
## S_15 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
## S_16 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
## S_17 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0047
## S_18 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0008
## S_19 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
## S_20 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0021
## S_21 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
## S_22 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0002
## S_23 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0001
## S_24 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0002
## S_25 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
## S_26 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
## S_27 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
## S_28 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0010
## S_29 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
## S_31 0.0000 0.0002 0.0001 0.0002 0.0000 0.0000 0.0000 0.0010 0.0000
## S_32 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0001 0.0000 0.0000 0.0929
## S_35 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
## S_36 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
## S_37 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
## S_38 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
## S_39 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
## S_40 0.0000 0.0001 0.0000 0.0002 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
## S_41 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
## S_42 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
## S_43 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0009
## S_44 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0024 0.0000 0.0008
## S_45 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0031
## S_32 S_35 S_36 S_37 S_38 S_39 S_40 S_41 S_42 S_43
## S_1 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
## S_2 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
## S_3 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0004 0.0000 0.0000 0.0000
## S_4 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
## S_5 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
## S_6 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
## S_7 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
## S_8 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
## S_9 0.0006 0.0000 0.0002 0.0000 0.0021 0.0000 0.0000 0.0000 0.0000 0.0000
## S_10 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0005 0.0000 0.0000 0.0000
## S_11 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
## S_12 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
## S_13 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0006 0.0000 0.0000 0.0000
## S_14 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
## S_15 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
## S_16 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
## S_17 0.0000 0.0001 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
## S_18 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
## S_19 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
## S_20 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0014 0.0000 0.0000 0.0000
## S_21 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
## S_22 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0001 0.0000 0.0000 0.0000
## S_23 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
## S_24 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0002 0.0000 0.0000 0.0000
## S_25 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
## S_26 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
## S_27 0.0001 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
## S_28 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
## S_29 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
## S_31 0.0929 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0009
## S_32 0.0005 0.0000 0.0000 0.0000 0.0000 0.0119 0.0000 0.0000 0.0000
## S_35 0.0005 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
## S_36 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
## S_37 0.0000 0.0000 0.0000 0.0000 0.0000 0.0001 0.0000 0.0000 0.0000
## S_38 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
## S_39 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
## S_40 0.0119 0.0000 0.0000 0.0001 0.0000 0.0000 0.0000 0.0000 0.0000
## S_41 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
## S_42 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
## S_43 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
## S_44 0.0036 0.0000 0.0000 0.0000 0.0000 0.0000 0.0018 0.0000 0.0000 0.0000
## S_45 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
## S_44 S_45
## S_1 0.0000 0.0000
## S_2 0.0000 0.0000
## S_3 0.0000 0.0000
## S_4 0.0003 0.0000
## S_5 0.0000 0.0000
## S_6 0.0000 0.0000
## S_7 0.0000 0.0000
## S_8 0.0000 0.0000
## S_9 0.0087 0.0003
## S_10 0.0009 0.0000
## S_11 0.0000 0.0000
## S_12 0.0000 0.0000
## S_13 0.0000 0.0000
## S_14 0.0000 0.0000
## S_15 0.0000 0.0000
## S_16 0.0000 0.0000
## S_17 0.0001 0.0000
## S_18 0.0006 0.0000
## S_19 0.0001 0.0000
## S_20 0.0013 0.0000
## S_21 0.0000 0.0000
## S_22 0.0000 0.0000
## S_23 0.0000 0.0000
## S_24 0.0000 0.0000
## S_25 0.0000 0.0000
## S_26 0.0000 0.0000
## S_27 0.0000 0.0000
## S_28 0.0024 0.0000
## S_29 0.0000 0.0000
## S_31 0.0008 0.0031
## S_32 0.0036 0.0000
## S_35 0.0000 0.0000
## S_36 0.0000 0.0000
## S_37 0.0000 0.0000
## S_38 0.0000 0.0000
## S_39 0.0000 0.0000
## S_40 0.0018 0.0000
## S_41 0.0000 0.0000
## S_42 0.0000 0.0000
## S_43 0.0000 0.0000
## S_44 0.0000
## S_45 0.0000
######################################
# USING SPEARMAN'S RHO
######################################
cor.spearman <- cor.mtest(likert.df.s1s45.include,
method = "spearman",
conf.level = .95)
corrplot(cor(likert.df.s1s45.include,method = "spearman"),
method = "circle",
type = "upper",
order = "original",
tl.col = "black",
tl.cex = 0.75,
tl.srt = 90,
sig.level = 0.05,
p.mat = cor.spearman$p,
insig = "blank")

######################################
# SPEARMAN CORRELATION TEST SUMMARY
######################################
cat("Number of statements which failed the Spearman test is equal to",
nrow(which(cor.spearman$p >= 0.05, arr.ind=TRUE)))
## Number of statements which failed the Spearman test is equal to 2
cat("Statements ",
ifelse(which(cor.spearman$p >= 0.05, arr.ind=TRUE)>29 &
which(cor.spearman$p >= 0.05, arr.ind=TRUE)<33,
which(cor.spearman$p >= 0.05, arr.ind=TRUE)+1,
which(cor.spearman$p >= 0.05, arr.ind=TRUE)+3),
" failed the Spearman correlation significance test \n")
## Statements 32 31 31 32 failed the Spearman correlation significance test
######################################
# TRYING THE BASE KENDALL'S TAU FUNCTION
######################################
cor.kendall <- cor.mtest(likert.df.s1s45.include,
method = "kendall",
conf.level = .95)
corrplot(cor(likert.df.s1s45.include,method = "kendall"),
method = "circle",
type = "upper",
order = "original",
tl.col = "black",
tl.cex = 0.75,
tl.srt = 90,
sig.level = 0.05,
p.mat = cor.kendall$p,
insig = "blank")

######################################
# TRYING THE BASE PEARSON'S R FUNCTION
######################################
cor.pearson <- cor.mtest(likert.df.s1s45.include,
method = "pearson",
conf.level = .95)
corrplot(cor(likert.df.s1s45.include,method = "pearson"),
method = "circle",
type = "upper",
order = "original",
tl.col = "black",
tl.cex = 0.75,
tl.srt = 90,
sig.level = 0.05,
p.mat = cor.pearson$p,
insig = "blank")

######################################
# TRYING THE BASE CRONBACH'S ALPHA FUNCTION
######################################
######################################
# CRONBACH'S ALPHA FOR ALL 45 STATEMENTS
######################################
cronbach(likert.df.s1s45)
## $sample.size
## [1] 60
##
## $number.of.items
## [1] 45
##
## $alpha
## [1] 0.9858165
######################################
# CRONBACH'S ALPHA WITHOUT STATEMENTS 30,33,34
######################################
cronbach(likert.df.s1s45.include)
## $sample.size
## [1] 60
##
## $number.of.items
## [1] 42
##
## $alpha
## [1] 0.9885144
######################################
# CRONBACH'S ALPHA WITHOUT STATEMENTS 30,31,32,33,34
######################################
cronbach(likert.df.s1s45.include[,-(which(colnames(likert.df.s1s45.include) %in% c("S_31","S_32")))])
## $sample.size
## [1] 60
##
## $number.of.items
## [1] 40
##
## $alpha
## [1] 0.9886114