Answer:
\(g(t) = \sum_{j=0}^n e^{tj} {{n}\choose{j}}p^jq^{n-j}\)
\(g(t) = \sum_{j=0}^n {{n}\choose{j}}(pe^t)^jq^{n-j}\)
\(g(t) = (pe^t+q)^n\)
\(g'(t) = n(pe^t+q)^{n-1}pe^t\)
\(g''(t) = n(n-1)(pe^t+q)(pe^t)^2 + n(pe^t+q)^npe^t\)
\(g'(0) = n(p+q)^{n-1}p =np\)
\(g''(0) = n(n-1)p^2 + np\)
\(\boxed{\mu = \mu_1 = g'(0) = np}\)
\(\sigma^2 = \mu_2-\mu_1^2 = g''(0) - g'(0)^2\)
\(\sigma^2 = n(n-1)p^2 + np - (np)^2\)
\(\sigma^2 = np[(np-p) +1 -np]\)
\(\boxed{\sigma^2 = np[1-p]}\)
since p + q = 1.
Answer:
\(g(t) = \int_0^\infty e^{tx}\lambda e^{-\lambda x} dx\)
=>\(g(t) = \frac{\lambda e^{(t-\lambda )x}}{t -\lambda}|_0^{\infty}\)
=>\(g(t) = \frac{\lambda}{\lambda-t}\)
Taking first derivative and equating to 0 we find
\(g'(t) = \frac{\lambda}{(\lambda-t)^2}\)
\(g'(0) = \frac{\lambda}{\lambda^2} = \frac{1}{\lambda}\)
Taking second derivative and equating to 0 we find
\(g''(t) = \frac{2\lambda}{(\lambda-t)^3}\)
\(g''(0) = \frac{2\lambda}{\lambda^3} = \frac{2}{\lambda^2}\)
Hence mean
\(\mu = g'(0) = \lambda^{-1}\)
variance : \(\mu_{2} - \mu_{1}^2\) =
\(\sigma^2 = g''(0) - g'(0)^2 = \frac{2}{\lambda^2} - \frac{1}{\lambda^2} = \lambda^{-2}\)