Analyzing Fatigue in Canadian Women’s Rugby

DataFest 2019

Patrick Oster

2019-04-01

Initial Analysis

Strategy

Summary of Game Outcomes for 2017-2018 Season (Game Level)

df <- df.games
# Maximum Number of Games in each tournament
df.game.sum <- df %>% 
  group_by(tour, game) %>% 
  summarise(Date = min(date), 
            points.scored = sum(pts.scored), 
            points.allowed = sum(pts.allowed), 
            total.points = sum(pts.tot), 
            differential = sum(pts.dif)) %>% 
  arrange(game) %>% mutate(game = as.character(game))
# game coded as character to make table more legible
kable(df.game.sum, caption = "Season Game Summary")

Season Game Summary

tour game Date points.scored points.allowed total.points differential
Dubai 1 2017-11-30 19 0 19 19
Dubai 2 2017-11-30 31 0 31 31
Dubai 3 2017-11-30 31 14 45 17
Dubai 4 2017-12-01 24 19 43 5
Dubai 5 2017-12-01 7 25 32 -18
Dubai 6 2017-12-01 5 10 15 -5
Sydney 7 2018-01-26 24 12 36 12
Sydney 8 2018-01-26 24 12 36 12
Sydney 9 2018-01-26 19 5 24 14
Sydney 10 2018-01-27 28 12 40 16
Sydney 11 2018-01-27 0 26 26 -26
Sydney 12 2018-01-28 40 12 52 28
Commonwealth 13 2018-04-13 29 0 29 29
Commonwealth 14 2018-04-13 24 12 36 12
Commonwealth 15 2018-04-14 7 24 31 -17
Commonwealth 16 2018-04-15 7 33 40 -26
Commonwealth 17 2018-04-15 19 24 43 -5
Kitakyushu 18 2018-04-21 38 14 52 24
Kitakyushu 19 2018-04-21 19 21 40 -2
Kitakyushu 20 2018-04-21 5 19 24 -14
Kitakyushu 21 2018-04-22 19 24 43 -5
Kitakyushu 22 2018-04-22 33 14 47 19
Langford 23 2018-05-12 7 22 29 -15
Langford 24 2018-05-12 24 10 34 14
Langford 25 2018-05-12 19 17 36 2
Langford 26 2018-05-13 26 28 54 -2
Langford 27 2018-05-13 35 12 47 23
Langford 28 2018-05-13 29 12 41 17
Paris 29 2018-06-08 31 5 36 26
Paris 30 2018-06-08 21 12 33 9
Paris 31 2018-06-08 14 31 45 -17
Paris 32 2018-06-09 26 24 50 2
Paris 33 2018-06-09 7 34 41 -27
Paris 34 2018-06-10 17 10 27 7
World Cup 35 2018-07-20 43 19 62 24
World Cup 36 2018-07-20 19 24 43 -5
World Cup 37 2018-07-21 14 26 40 -12
World Cup 38 2018-07-21 22 10 32 12
df.game.sum$game <- as.numeric(df.game.sum$game)

Summary of Game Outcomes for 2017-2018 Season (Tournament Level)

df <- df.games
# Maximum Number of Games in each tournament
df.tour.sum <- df %>% 
  group_by(tour) %>% 
  summarise(games = max(as.numeric(t.game)),  
            wins = sum(as.numeric(win)), 
            points.scored = sum(pts.scored), 
            points.allowed = sum(pts.allowed), 
            total.points = sum(pts.tot), 
            differential = sum(pts.dif))
kable(df.tour.sum, caption = "Summary of Games by Tournament")

Summary of Games by Tournament

tour games wins points.scored points.allowed total.points differential
Commonwealth 5 2 86 93 179 -7
Dubai 6 4 117 68 185 49
Kitakyushu 5 2 114 92 206 22
Langford 6 4 140 101 241 39
Paris 6 4 116 116 232 0
Sydney 6 5 135 79 214 56
World Cup 4 2 98 79 177 19

Paris Tournament Game Outcome Summary (Game Level)

Paris Tournament Games

V1 game date tour t.game team opp win pts.scored pts.allowed pts.tot pts.dif
29 29 2018-06-08 Paris 1 Canada Russia 1 31 5 36 26
30 30 2018-06-08 Paris 2 Canada Fiji 1 21 12 33 9
31 31 2018-06-08 Paris 3 Canada Australia 0 14 31 45 -17
32 32 2018-06-09 Paris 4 Canada USA 1 26 24 50 2
33 33 2018-06-09 Paris 5 Canada New Zealand 0 7 34 41 -27
34 34 2018-06-10 Paris 6 Canada France 1 17 10 27 7

Paris Tournament GPS Stats (Player/Tournament Level)

# Subsetting GPS data by Paris Tournament Games
df <- df.gps %>% filter(game %in% unique(df.paris$game))
out <- data.frame()

for(i in unique(df$player)){
  playerid <- df %>% 
  filter(player == i) %>% 
  arrange(game, half, time, frame) %>% 
  summarise(player = mean(player),
            avg.speed = mean(Speed),
            max.speed = max(Speed),
            avg.acc.imp = mean(AccelImpulse),
            max.imp = max(AccelImpulse),
            avg.acc.load = mean(AccelLoad),
            max.load = max(AccelLoad),
            avg.x = mean(AccelX),
            max.x = max(AccelX),
            avg.y = mean(AccelY),
            max.y = max(AccelY),
            avg.z = mean(AccelZ),
            max.z = max(AccelZ),
            avg.long = mean(Longitude),
            avg.lat = mean(Latitude))
  out <- rbind(out, playerid)
}
kable(out, caption = "Paris Tournament GPS Stats by Player")

Paris Tournament GPS Stats by Player

player avg.speed max.speed avg.acc.imp max.imp avg.acc.load max.load avg.x max.x avg.y max.y avg.z max.z avg.long avg.lat
1 1.5150527 8.594451 1.2444106 5.972227 0.0242791 1.063071 -0.0744742 4.04500 0.3823056 4.00375 0.6727919 4.52250 2.252900 48.84334
2 1.0218602 8.694451 0.9202541 5.972227 0.0200988 1.347796 -0.0602623 6.01000 0.5015556 5.78875 0.5394350 4.37625 2.252945 48.84302
3 1.4171195 8.425007 1.1013005 5.972227 0.0179635 1.221523 -0.0488538 5.22500 0.8428729 4.33875 0.5196867 5.33125 2.251107 48.80435
4 1.2824493 8.413896 1.2202659 5.972227 0.0202126 1.199386 -0.0124186 4.26125 0.7674203 5.11000 0.6257317 4.74625 2.252903 48.84341
5 1.0580784 9.016674 0.9633517 5.972227 0.0151998 1.483611 -0.0565854 5.36750 0.6090034 4.93125 0.4934500 5.68375 2.252971 48.84338
7 1.3008990 8.344451 1.1516587 5.972227 0.0219846 1.494362 0.1634941 4.65875 0.5290964 3.84750 0.5968538 4.00625 2.252937 48.84337
8 0.9602851 7.450006 0.8352754 5.972227 0.0154230 1.386170 -0.0430208 5.70375 0.6407763 5.93250 0.6941184 3.35125 2.252942 48.84343
11 1.1701649 8.013895 1.0005017 5.972227 0.0204329 2.072141 -0.0267823 4.90250 0.8887077 4.27250 0.5166237 5.34000 2.252949 48.84296
13 0.9643657 7.880562 0.8762931 5.972227 0.0178118 0.659939 0.0178971 4.74250 0.7782348 4.87750 0.5680227 3.86000 2.252927 48.84315
14 0.5183538 7.472228 0.5507675 5.972227 0.0097106 1.312646 0.0538304 2.73875 -0.3326955 3.22500 -0.6790397 1.13625 2.253003 48.84362
15 0.5352988 8.283340 0.5354630 5.972227 0.0093446 1.005873 -0.0925907 4.96125 0.2494101 3.44875 0.6552521 5.38875 2.252995 48.84326
16 0.7527134 7.400006 0.6828324 5.972227 0.0122758 1.881403 -0.1974931 4.70875 0.7496379 4.68500 0.6124183 3.97125 2.252977 48.84351

Paris Tournament GPS Stats (Player/Game Level)

# Subsetting GPS data by Paris Tournament Games
df <- df.gps %>% filter(game %in% unique(df.paris$game))
out <- data.frame()

for(i in unique(df$player)){
  for(k in unique(df$game)){
    playerid <- df %>% 
      filter(game == k, player == i) %>% 
      arrange(game, half, time, frame) %>% 
      summarise(player = mean(player), 
                game = mean(game),
                avg.speed = mean(Speed), 
                max.speed = max(Speed), 
                avg.acc.imp = mean(AccelImpulse), 
                max.imp = max(AccelImpulse), 
                avg.acc.load = mean(AccelLoad), 
                max.load = max(AccelLoad), 
                avg.x = mean(AccelX), 
                max.x = max(AccelX), 
                avg.y = mean(AccelY), 
                max.y = max(AccelY), 
                avg.z = mean(AccelZ), 
                max.z = max(AccelZ), 
                avg.long = mean(Longitude), 
                avg.lat = mean(Latitude)) 
    out <- rbind(out, playerid)
  }
}
kable(out, caption = "Paris Tournament GPS Stats by Player & Game")

Paris Tournament GPS Stats by Player & Game

player game avg.speed max.speed avg.acc.imp max.imp avg.acc.load max.load avg.x max.x avg.y max.y avg.z max.z avg.long avg.lat
1 29 1.6070291 8.086118 1.2886174 5.972227 0.0247073 1.0630710 -0.1355145 4.04500 0.6181246 2.85000 0.7475615 2.67500 2.252817 48.84330
1 30 1.2047238 8.286118 1.0317552 5.972227 0.0203078 0.8754429 0.0980932 3.89625 -0.9654521 2.83500 0.4424833 4.52250 2.253010 48.84342
1 31 1.4736929 8.594451 1.2543969 5.972227 0.0234152 1.0035074 -0.3107524 3.48625 0.6330762 4.00375 0.6686213 4.17750 2.252867 48.84336
1 32 1.4932471 8.211118 1.2535754 5.972227 0.0247517 0.7756912 -0.0168117 2.84250 0.7583901 2.95000 0.6485317 2.96125 2.252960 48.84326
1 33 1.7460156 7.858340 1.3624569 5.972227 0.0271840 0.5406787 -0.0674612 3.11625 0.5862372 2.93625 0.7798056 2.95250 2.252786 48.84335
1 34 1.5719202 8.400007 1.2735264 5.972227 0.0253380 0.9492651 0.0082315 3.99750 0.6239249 3.14250 0.7561140 4.02875 2.252960 48.84333
2 29 0.8540157 6.869450 0.8133520 5.972227 0.0175307 0.8858601 0.0328612 4.23875 0.7500638 5.78875 0.6129555 2.89125 2.253012 48.84350
2 30 1.8412498 8.419451 1.3894700 5.972227 0.0351599 1.1203924 -0.1037341 6.01000 0.8470150 4.69000 0.4564876 3.71000 2.252862 48.84159
2 31 1.1421318 8.694451 1.0065436 5.972227 0.0225908 1.0708590 -0.0337888 3.23250 0.7909429 4.23375 0.5330165 4.37625 2.252888 48.84346
2 32 0.7471486 7.475006 0.7316079 5.944449 0.0156318 1.3477959 -0.0101965 2.89375 -0.8806341 1.92500 0.5569186 2.39375 2.252915 48.84259
2 33 0.9556824 6.908339 0.8678109 5.972227 0.0176560 0.7150104 -0.1542729 3.05375 0.7743898 4.72500 0.5584621 3.15125 2.252902 48.84348
2 34 0.5710484 7.736117 0.7027301 5.972227 0.0116584 0.6604913 -0.0903514 1.92875 0.8092139 3.35750 0.5220392 2.49000 2.253115 48.84351
3 29 1.6085940 6.916672 1.2432864 5.972227 0.0202927 1.2215229 -0.0024479 4.34625 0.8319407 3.20750 0.5243203 3.46500 2.252847 48.84331
3 30 1.5058783 7.486117 1.0948179 5.972227 0.0176671 0.7740625 -0.0568911 5.02250 0.8755008 3.33000 0.5342178 3.92000 2.252971 48.84336
3 31 0.8997240 6.869450 0.7802366 5.972227 0.0124132 1.1591762 0.0930762 3.63125 0.8172994 4.33875 0.5336397 4.28125 2.252855 48.84340
3 32 1.5713704 8.425007 1.1696016 5.972227 0.0190350 0.9072789 -0.1671498 3.44750 0.8497449 4.03750 0.5100305 2.99500 2.252993 48.84328
3 33 1.6084177 6.733339 1.1884106 5.972227 0.0202837 0.8693453 -0.1247159 4.28125 0.8664601 3.61375 0.4900963 3.83375 2.242162 48.61321
3 34 1.3639073 7.391673 1.1741432 5.972227 0.0187810 1.0159462 -0.0371461 5.22500 0.8162995 3.65250 0.5264859 5.33125 2.252988 48.84325
4 29 0.9156581 6.563894 0.9733431 5.972227 0.0164502 0.8017863 -0.0029622 4.26125 0.7727359 4.07750 0.6228390 2.66250 2.252969 48.84347
4 30 1.7130977 7.597228 1.3840907 5.972227 0.0259460 0.9272655 -0.1246873 2.88625 0.7039919 3.89875 0.6533493 2.59750 2.252961 48.84331
4 31 0.9755699 7.752784 0.9433294 5.972227 0.0161050 0.4289907 0.0067041 3.07125 0.7846801 4.92125 0.6153673 2.60875 2.252878 48.84344
4 32 1.2440341 6.580561 1.2624164 5.972227 0.0185325 0.3777536 0.0525569 2.60250 0.8386494 4.53625 0.6037488 2.96500 2.252837 48.84348
4 33 1.5745395 8.413896 1.4472156 5.972227 0.0247010 1.1993858 -0.0407070 2.47750 0.7547522 5.11000 0.6141040 4.74625 2.252782 48.84336
4 34 1.2749374 7.855562 1.3194556 5.972227 0.0197091 0.6990966 0.0308980 3.27375 0.7425314 3.41125 0.6488333 2.85625 2.253014 48.84342
5 29 0.7248425 8.947229 0.7230194 5.972227 0.0106877 0.7940651 -0.0451318 5.17000 0.9230071 3.26125 0.4742045 2.85500 2.252953 48.84342
5 30 0.7873852 9.016674 0.6977381 5.972227 0.0116650 0.5649681 0.1185169 2.28375 -0.8740538 3.26000 0.5264497 5.68375 2.253041 48.84344
5 31 1.1847430 7.305561 1.0676259 5.972227 0.0158629 0.9374130 -0.1255563 2.84500 0.9016734 3.78750 0.4597461 2.44125 2.252889 48.84330
5 32 1.2466901 8.841674 1.1328006 5.972227 0.0177467 0.9278229 -0.0737997 5.36750 0.8957727 4.35000 0.4675443 4.06000 2.253004 48.84338
5 33 1.2994850 8.486118 1.1293428 5.972227 0.0183436 1.4668994 -0.1617879 2.85125 0.9341928 4.93125 0.4408779 3.48875 2.252874 48.84336
5 34 1.0444537 8.561118 0.9831098 5.972227 0.0162432 1.4836109 -0.0369235 5.13375 0.8357343 4.51500 0.6022138 5.26375 2.253082 48.84337
7 29 1.6354395 7.961118 1.4661677 5.972227 0.0285609 0.8019392 -0.2366253 4.24750 -0.6491583 3.45250 0.6717538 2.96875 2.252889 48.84330
7 30 1.2113271 6.188894 1.0080656 5.972227 0.0195020 0.3163671 0.2359167 2.36000 0.8102227 3.38125 0.5629668 3.50000 2.252992 48.84338
7 31 0.7247996 6.725005 0.6739473 5.944449 0.0133067 1.4943622 0.2954783 3.33625 0.5729909 2.48750 0.7102228 3.06000 2.252868 48.84352
7 32 1.5487378 8.344451 1.3457368 5.972227 0.0257969 0.7285045 0.2144470 4.65875 0.7692895 3.28750 0.5535523 2.67875 2.252990 48.84329
7 33 1.3164641 8.161118 1.1207881 5.972227 0.0211136 0.7724670 0.2708788 3.27375 0.8067024 3.17500 0.5100677 2.95875 2.252907 48.84339
7 34 1.4475729 8.066673 1.3690822 5.972227 0.0249860 0.8820326 0.1494281 4.22125 0.7589021 3.84750 0.5694721 4.00625 2.252980 48.84332
8 29 1.4062952 6.847228 1.1497703 5.944449 0.0226180 1.2768412 -0.1159691 5.70375 0.7016369 3.47875 0.6479778 3.27000 2.252856 48.84331
8 30 1.1248313 7.450006 0.9861356 5.972227 0.0167893 0.6028429 -0.0788222 2.03500 0.6428937 3.82500 0.6929484 2.45000 2.252980 48.84335
8 31 1.1008024 6.738894 0.9273895 5.972227 0.0168946 1.0623557 0.0707958 2.54250 0.5358517 4.44625 0.7574519 3.35125 2.252844 48.84348
8 32 0.8761488 6.808339 0.7163080 5.972227 0.0142625 1.3861704 -0.1568835 3.54500 0.5893586 5.93250 0.7142261 2.96625 2.252946 48.84344
8 33 0.5000994 6.155560 0.4681133 5.972227 0.0081688 0.6072773 -0.0335533 2.48500 0.6997796 3.94250 0.6866468 3.14375 2.253025 48.84356
8 34 0.7842015 6.719450 0.7951869 5.972227 0.0144399 0.8703253 0.0486583 5.10375 0.6952910 3.65250 0.6520617 2.85000 2.253002 48.84343
11 29 1.0847469 7.552784 0.9556312 5.972227 0.0197386 2.0721410 0.0570769 3.60625 0.8625542 4.10125 0.5711609 4.45125 2.252989 48.84343
11 30 0.6353776 6.622228 0.6294805 5.944449 0.0112747 0.7692007 0.0175404 2.10875 0.8917142 3.40875 0.5731946 3.50375 2.252950 48.84176
11 31 1.5835727 7.466673 1.2442327 5.972227 0.0271895 0.9142690 0.0117155 4.90250 0.8933662 4.27250 0.4838551 5.34000 2.252888 48.84335
11 32 1.3465706 8.013895 1.1147333 5.972227 0.0224778 0.4944777 -0.2654760 4.45125 0.8852853 3.35125 0.4803006 2.88125 2.252854 48.84238
11 33 1.0498704 7.213895 0.8759863 5.972227 0.0194105 1.3243243 0.0064421 2.94250 0.9243265 4.04625 0.4815573 5.00375 2.253009 48.84349
11 34 1.2605802 6.430561 1.1525315 5.972227 0.0215829 0.6901779 0.0309789 3.14750 0.8709407 3.62000 0.5214005 3.37750 2.253024 48.84338
13 29 0.9217842 6.463894 0.7830075 5.972227 0.0152935 0.4237865 0.0609207 1.96750 0.7712458 4.87750 0.6085980 2.47875 2.253004 48.84344
13 30 1.0943285 7.880562 0.9669524 5.972227 0.0171526 0.4861889 0.0905367 2.02500 0.8324852 4.02000 0.5366646 2.62250 2.253000 48.84342
13 31 0.8237267 7.386117 0.7664810 5.972227 0.0130955 0.5137256 -0.0031486 3.12000 0.7623328 4.06750 0.6036246 2.56125 2.252894 48.84343
13 32 1.0298464 6.813894 0.9300777 5.972227 0.0248156 0.5074810 -0.0662261 3.05250 0.7844801 4.14500 0.5519643 2.96500 2.252896 48.84188
13 33 1.0030908 6.141672 0.9405807 5.972227 0.0184188 0.6599390 0.0996191 4.74250 0.7177374 3.64125 0.5998427 2.99500 2.252819 48.84344
13 34 0.9170059 7.097228 0.8688187 5.972227 0.0176882 0.6459781 -0.0655496 3.63250 0.8050445 4.03250 0.5043159 3.86000 2.252965 48.84339
14 29 0.5353562 7.352784 0.5624323 5.972227 0.0100746 0.3378143 0.1838901 2.73875 -0.7830200 1.59875 -0.6649805 0.53000 2.253119 48.84354
14 30 0.6733223 7.472228 0.7358816 5.972227 0.0132944 1.3126463 0.0986007 2.36125 -0.8317486 2.63000 -0.6047626 1.13625 2.253060 48.84352
14 31 0.4330630 5.761116 0.4524920 5.944449 0.0072656 0.2499178 -0.0584165 0.96750 0.8379525 3.22500 -0.6460837 0.81125 2.252956 48.84371
14 32 0.4480549 7.119450 0.4705382 5.972227 0.0086043 0.4439378 0.0163073 1.42625 -0.6989945 1.57000 -0.7950503 0.61000 2.252898 48.84369
NaN NaN NaN -Inf NaN -Inf NaN -Inf NaN -Inf NaN -Inf NaN -Inf NaN NaN
NaN NaN NaN -Inf NaN -Inf NaN -Inf NaN -Inf NaN -Inf NaN -Inf NaN NaN
15 29 0.0701438 6.269450 0.1725099 5.861116 0.0031321 0.4866520 0.2434423 2.96000 0.8307119 2.89750 0.5550796 2.49625 2.253154 48.84357
15 30 0.7448162 8.283340 0.6270627 5.972227 0.0114504 0.3921290 -0.5363607 1.69500 -0.6843966 2.04875 0.6035908 2.48250 2.253020 48.84350
15 31 0.6012971 6.975006 0.5968628 5.972227 0.0116229 0.7316344 -0.0325727 4.96125 -0.6765442 3.44875 0.8080612 5.38875 2.252916 48.84360
15 32 0.1768045 4.941671 0.2723005 5.972227 0.0037208 0.1568199 0.0383727 0.97500 0.8365404 2.53375 0.5720354 2.42500 2.252817 48.84364
15 33 0.7629832 6.902783 0.6916858 5.972227 0.0120069 1.0058732 0.1208272 2.54000 0.6394220 2.71000 0.7635335 3.28625 2.252993 48.84181
15 34 0.8438236 7.391673 0.8438710 5.972227 0.0138968 0.7468799 -0.4014126 3.54000 0.6598724 3.34875 0.6041442 4.81000 2.253108 48.84345
16 29 1.0052458 6.769450 0.8354933 5.972227 0.0158993 0.5775253 -0.1872562 2.69125 0.8237296 4.60500 0.5160688 1.89375 2.252981 48.84342
16 30 0.4364110 7.369450 0.4873287 5.944449 0.0082633 0.9243608 -0.2282503 3.41500 0.6708100 3.85375 0.7039955 2.96500 2.253088 48.84357
16 31 0.8402851 7.400006 0.7190946 5.972227 0.0141978 1.8814027 -0.0988433 3.95875 0.6750068 4.68500 0.7176745 3.11125 2.252877 48.84353
16 32 1.0726992 6.186116 0.9132908 5.972227 0.0172027 0.6197147 -0.2491085 4.70875 0.8525535 3.97625 0.4514871 3.97125 2.252836 48.84346
16 33 0.4058759 4.783337 0.4570657 5.944449 0.0057264 0.1452445 -0.2302242 1.11250 0.7333974 2.51375 0.6632129 1.89125 2.253117 48.84359
NaN NaN NaN -Inf NaN -Inf NaN -Inf NaN -Inf NaN -Inf NaN -Inf NaN NaN

GPS Season Stats (Individual Level)

games <- seq(from = 1, to = 38, by = 1)
df <- df.gps %>% filter(player == 14, game %in% games)
attach(df)

out <- data.frame()
out
## data frame with 0 columns and 0 rows
for(i in games){
  p14 <- df %>% 
  filter(game == i) %>% 
  arrange(game, half, time, frame) %>% 
  summarise(player = 14,
            game = games[i],
            avg.speed = mean(Speed),
            max.speed = max(Speed),
            avg.acc.imp = mean(AccelImpulse),
            max.imp = max(AccelImpulse),
            avg.acc.load = mean(AccelLoad),
            max.load = max(AccelLoad),
            avg.x = mean(AccelX),
            max.x = max(AccelX),
            avg.y = mean(AccelY),
            max.y = max(AccelY),
            avg.z = mean(AccelZ),
            max.z = max(AccelZ),
            avg.long = mean(Longitude),
            avg.lat = mean(Latitude))
  out <- rbind(out, p14)
}
kable(out, caption = "Player 14 GPS Stats by Game")

Player 14 GPS Stats by Game

player game avg.speed max.speed avg.acc.imp max.imp avg.acc.load max.load avg.x max.x avg.y max.y avg.z max.z avg.long avg.lat
14 1 NaN -Inf NaN -Inf NaN -Inf NaN -Inf NaN -Inf NaN -Inf NaN NaN
14 2 NaN -Inf NaN -Inf NaN -Inf NaN -Inf NaN -Inf NaN -Inf NaN NaN
14 3 NaN -Inf NaN -Inf NaN -Inf NaN -Inf NaN -Inf NaN -Inf NaN NaN
14 4 0.6377253 7.705562 0.7464310 5.972227 0.0095990 0.4327672 0.2053272 2.72500 -0.9242350 1.90875 -0.4873860 0.63875 NA 48.44319
14 5 NaN -Inf NaN -Inf NaN -Inf NaN -Inf NaN -Inf NaN -Inf NaN NaN
14 6 0.0416681 1.705557 0.1329170 5.972227 0.0022288 0.0736065 -0.0419610 0.64875 -0.5264696 1.17125 -0.9192757 -0.14375 NA -33.88899
14 7 0.3230153 6.002783 0.3518655 5.972227 0.0056886 0.3324170 0.0255684 1.99000 0.6401134 3.28875 -0.8151680 0.24000 NA -33.88920
14 8 0.4819424 5.200004 0.4447155 5.916671 0.0078794 0.1868925 -0.1484562 1.38375 0.5442074 2.47625 0.8160232 2.07750 NA -33.88902
14 9 0.5513227 6.061116 0.5581690 5.972227 0.0096064 0.5020010 0.0404796 3.49375 0.5003206 2.31875 -0.9205619 1.54250 NA -33.91742
14 10 0.5134479 6.155560 0.5286291 5.944449 0.0093641 0.3643553 -0.0789089 2.20500 -0.6091450 1.95625 -0.8535101 0.51500 NA -33.88914
14 11 NaN -Inf NaN -Inf NaN -Inf NaN -Inf NaN -Inf NaN -Inf NaN NaN
14 12 NaN -Inf NaN -Inf NaN -Inf NaN -Inf NaN -Inf NaN -Inf NaN NaN
14 13 NaN -Inf NaN -Inf NaN -Inf NaN -Inf NaN -Inf NaN -Inf NaN NaN
14 14 NaN -Inf NaN -Inf NaN -Inf NaN -Inf NaN -Inf NaN -Inf NaN NaN
14 15 1.5295857 6.727783 1.1633056 5.972227 0.0276625 0.8877345 0.0337197 3.38125 -0.8229386 2.99625 -0.6103788 2.81500 NA 33.89115
14 16 1.1968628 7.694451 1.0263181 5.916671 0.0234457 0.9700126 -0.0181918 3.43000 0.7556461 3.34375 -0.6551101 2.44875 NA 33.89120
14 17 1.0090596 6.866672 0.8030407 5.944449 0.0176351 0.3879623 0.0196302 2.01375 -0.8473744 2.11500 -0.6416071 0.59125 NA 33.89131
14 18 1.1629186 8.050006 0.9432846 5.972227 0.0213152 1.1212616 -0.0434660 2.58375 -0.8488769 2.60125 -0.6467696 3.38125 NA 33.89121
14 19 NaN -Inf NaN -Inf NaN -Inf NaN -Inf NaN -Inf NaN -Inf NaN NaN
14 20 NaN -Inf NaN -Inf NaN -Inf NaN -Inf NaN -Inf NaN -Inf NaN NaN
14 21 NaN -Inf NaN -Inf NaN -Inf NaN -Inf NaN -Inf NaN -Inf NaN NaN
14 22 NaN -Inf NaN -Inf NaN -Inf NaN -Inf NaN -Inf NaN -Inf NaN NaN
14 23 NaN -Inf NaN -Inf NaN -Inf NaN -Inf NaN -Inf NaN -Inf NaN NaN
14 24 NaN -Inf NaN -Inf NaN -Inf NaN -Inf NaN -Inf NaN -Inf NaN NaN
14 25 NaN -Inf NaN -Inf NaN -Inf NaN -Inf NaN -Inf NaN -Inf NaN NaN
14 26 NaN -Inf NaN -Inf NaN -Inf NaN -Inf NaN -Inf NaN -Inf NaN NaN
14 27 NaN -Inf NaN -Inf NaN -Inf NaN -Inf NaN -Inf NaN -Inf NaN NaN
14 28 NaN -Inf NaN -Inf NaN -Inf NaN -Inf NaN -Inf NaN -Inf NaN NaN
14 29 0.5353562 7.352784 0.5624323 5.972227 0.0100746 0.3378143 0.1838901 2.73875 -0.7830200 1.59875 -0.6649805 0.53000 2.253119 48.84354
14 30 0.6733223 7.472228 0.7358816 5.972227 0.0132944 1.3126463 0.0986007 2.36125 -0.8317486 2.63000 -0.6047626 1.13625 2.253060 48.84352
14 31 0.4330630 5.761116 0.4524920 5.944449 0.0072656 0.2499178 -0.0584165 0.96750 0.8379525 3.22500 -0.6460837 0.81125 2.252956 48.84371
14 32 0.4480549 7.119450 0.4705382 5.972227 0.0086043 0.4439378 0.0163073 1.42625 -0.6989945 1.57000 -0.7950503 0.61000 2.252898 48.84369
14 33 NaN -Inf NaN -Inf NaN -Inf NaN -Inf NaN -Inf NaN -Inf NaN NaN
14 34 NaN -Inf NaN -Inf NaN -Inf NaN -Inf NaN -Inf NaN -Inf NaN NaN
14 35 0.5376443 5.644449 0.5394507 5.944449 0.0082885 0.4046542 0.0776518 2.22875 0.7339043 2.60250 -0.7935689 0.17750 NA 37.77832
14 36 0.2585033 5.241671 0.3739303 5.888894 0.0045323 0.1554146 0.1686718 1.28625 0.7450578 2.77375 -0.7610783 0.58375 NA 37.77829
14 37 0.1987647 4.263892 0.2895898 5.944449 0.0036334 0.1791414 0.0110991 1.09625 -0.7837030 1.36250 -0.7355293 0.22500 NA 37.77819
14 38 0.6960191 7.433339 0.6638147 5.972227 0.0116856 0.8760604 -0.1634317 2.26125 -0.6020071 2.83875 -0.8418335 1.46750 NA 37.77824

GPS Season Stats (Individual/Game Level)

games <- seq(from = 1, to = 38, by = 1)
players <- seq(from = 1, to = 16, by = 1)
out <- data.frame()
out
## data frame with 0 columns and 0 rows
for(i in players){
  for(j in games){
    p14 <- df.gps %>% 
      filter(player == i, game == j) %>% 
      arrange(game, half, time, frame) %>% 
      summarise(player = players[i], 
                game = games[j], 
                avg.speed = mean(Speed), 
                max.speed = max(Speed), 
                avg.acc.imp = mean(AccelImpulse), 
                max.imp = max(AccelImpulse), 
                avg.acc.load = mean(AccelLoad), 
                max.load = max(AccelLoad), 
                avg.x = mean(AccelX), 
                max.x = max(AccelX), 
                avg.y = mean(AccelY), 
                max.y = max(AccelY), 
                avg.z = mean(AccelZ), 
                max.z = max(AccelZ), 
                avg.long = mean(Longitude), 
                avg.lat = mean(Latitude))
    out <- rbind(out, p14)
  }
}
kable(out, caption = "Summarized GPS Data by Player and Game")

Summarized GPS Data by Player and Game

player game avg.speed max.speed avg.acc.imp max.imp avg.acc.load max.load avg.x max.x avg.y max.y avg.z max.z avg.long avg.lat
1 1 NaN -Inf NaN -Inf NaN -Inf NaN -Inf NaN -Inf NaN -Inf NaN NaN
1 2 NaN -Inf NaN -Inf NaN -Inf NaN -Inf NaN -Inf NaN -Inf NaN NaN
1 3 NaN -Inf NaN -Inf NaN -Inf NaN -Inf NaN -Inf NaN -Inf NaN NaN
1 4 NaN -Inf NaN -Inf NaN -Inf NaN -Inf NaN -Inf NaN -Inf NaN NaN
1 5 NaN -Inf NaN -Inf NaN -Inf NaN -Inf NaN -Inf NaN -Inf NaN NaN
1 6 NaN -Inf NaN -Inf NaN -Inf NaN -Inf NaN -Inf NaN -Inf NaN NaN
1 7 NaN -Inf NaN -Inf NaN -Inf NaN -Inf NaN -Inf NaN -Inf NaN NaN
1 8 NaN -Inf NaN -Inf NaN -Inf NaN -Inf NaN -Inf NaN -Inf NaN NaN
1 9 NaN -Inf NaN -Inf NaN -Inf NaN -Inf NaN -Inf NaN -Inf NaN NaN
1 10 NaN -Inf NaN -Inf NaN -Inf NaN -Inf NaN -Inf NaN -Inf NaN NaN
1 11 1.8265433 8.3638956 1.4669706 5.972227 0.0295228 0.7414546 -0.2695601 3.18000 0.8570585 3.00375 0.5428993 4.07250 NA -28.06679
1 12 1.3347551 7.8305618 1.1142615 5.972227 0.0213689 0.8260149 -0.1357718 3.09875 0.6015104 2.78750 0.7434551 2.72000 NA -28.06670
1 13 0.8711279 6.9138944 0.9327134 5.972227 0.0158867 1.2178320 -0.2742812 2.56500 0.4756056 3.62500 0.7760643 2.82625 NA -28.06690
1 14 0.8943279 7.9000063 0.7841742 5.944449 0.0148014 1.2530581 -0.0157001 3.30125 0.5750624 4.51125 0.7823037 3.11000 NA -28.06678
1 15 0.8597015 7.4388948 0.7534867 5.972227 0.0134709 0.4896607 -0.1387312 2.93125 0.5198581 2.69125 0.8324897 2.85625 NA 33.89132
1 16 0.8153078 7.6111172 0.8570446 5.916671 0.0129080 1.3115497 -0.2194320 4.86250 0.4956454 2.53375 0.8359873 2.73500 NA 33.89127
1 17 1.7012835 7.6555617 1.3240251 5.972227 0.0283526 0.6149143 -0.1659640 3.50875 0.6991638 3.44000 0.6912307 2.93125 NA 33.89107
1 18 1.2281493 8.2027843 1.0699035 5.972227 0.0193087 0.7621077 -0.1743215 4.76250 0.9094222 3.12250 0.4929829 3.07125 NA 33.89121
1 19 1.6241669 7.8527841 1.3453566 5.972227 0.0276535 1.2303913 -0.3703133 6.94375 0.6800181 7.30250 0.4811312 2.63750 NA 48.44321
1 20 1.3536627 7.6750061 1.1763067 5.972227 0.0216680 0.6218341 0.1993939 3.05000 0.9180733 3.22750 0.4015541 2.55750 NA 48.44316
1 21 1.8693500 8.4111178 1.3495908 5.972227 0.0297218 0.7940897 -0.1500045 4.54625 0.5741392 2.94875 0.8016701 2.84750 NA 48.44300
1 22 1.6720190 8.6500069 1.2641572 5.972227 0.0260916 1.5672574 -0.1994576 4.77250 0.5787321 3.36375 0.8091953 2.69500 NA 48.44305
1 23 1.4441355 8.4888957 1.2528547 5.972227 0.0252141 0.9043815 0.1112733 5.37875 -0.6322384 2.56375 0.7773905 3.62125 NA 48.44320
1 24 1.6241669 7.8527841 1.3453566 5.972227 0.0276535 1.2303913 -0.3703133 6.94375 0.6800181 7.30250 0.4811312 2.63750 NA 48.44321
1 25 1.3536627 7.6750061 1.1763067 5.972227 0.0216680 0.6218341 0.1993939 3.05000 0.9180733 3.22750 0.4015541 2.55750 NA 48.44316
1 26 1.8693500 8.4111178 1.3495908 5.972227 0.0297218 0.7940897 -0.1500045 4.54625 0.5741392 2.94875 0.8016701 2.84750 NA 48.44300
1 27 1.6720190 8.6500069 1.2641572 5.972227 0.0260916 1.5672574 -0.1994576 4.77250 0.5787321 3.36375 0.8091953 2.69500 NA 48.44305
1 28 1.4441355 8.4888957 1.2528547 5.972227 0.0252141 0.9043815 0.1112733 5.37875 -0.6322384 2.56375 0.7773905 3.62125 NA 48.44320
1 29 1.6070291 8.0861176 1.2886174 5.972227 0.0247073 1.0630710 -0.1355145 4.04500 0.6181246 2.85000 0.7475615 2.67500 2.252817 48.84330
1 30 1.2047238 8.2861177 1.0317552 5.972227 0.0203078 0.8754429 0.0980932 3.89625 -0.9654521 2.83500 0.4424833 4.52250 2.253010 48.84342
1 31 1.4736929 8.5944513 1.2543969 5.972227 0.0234152 1.0035074 -0.3107524 3.48625 0.6330762 4.00375 0.6686213 4.17750 2.252867 48.84336
1 32 1.4932471 8.2111177 1.2535754 5.972227 0.0247517 0.7756912 -0.0168117 2.84250 0.7583901 2.95000 0.6485317 2.96125 2.252960 48.84326
1 33 1.7460156 7.8583396 1.3624569 5.972227 0.0271840 0.5406787 -0.0674612 3.11625 0.5862372 2.93625 0.7798056 2.95250 2.252786 48.84335
1 34 1.5719202 8.4000067 1.2735264 5.972227 0.0253380 0.9492651 0.0082315 3.99750 0.6239249 3.14250 0.7561140 4.02875 2.252960 48.84333
1 35 1.6982989 8.4166734 1.2341983 5.972227 0.0229164 0.3696036 -0.1559760 3.26250 0.7113279 4.45625 0.7247371 2.99750 NA 37.77841
1 36 1.7523750 7.9111174 1.4491416 5.972227 0.0275292 0.9365388 -0.2122577 3.90500 0.6442915 3.25875 0.6789862 6.01750 NA 37.77852
1 37 1.7076158 8.0250064 1.3135623 5.972227 0.0242315 1.3850008 -0.2707098 2.26250 0.6847390 5.01625 0.7120885 3.27000 NA 37.77839
1 38 1.5148712 8.2194510 1.3132654 5.972227 0.0229095 1.2826305 -0.2351747 4.56750 0.6600594 3.08250 0.6904530 2.79250 NA 37.77849
2 1 0.7901562 7.6083394 0.6996278 5.972227 0.0166684 0.6688389 0.0223291 3.03375 0.6061697 3.72875 0.7846174 3.72750 55.466532 24.99492
2 2 1.7442157 7.1888946 1.3131686 5.972227 0.0329186 0.9477680 0.0982092 3.56000 0.8504355 3.89500 0.4962526 4.86500 55.466262 24.99507
2 3 1.0778775 7.1805613 0.8951276 5.972227 0.0204096 0.6005551 0.1093573 3.48875 0.5764408 3.64875 0.7993386 2.76000 55.466302 24.99488
2 4 1.2110794 7.6138950 0.9271277 5.972227 0.0240664 0.7008680 -0.0159438 3.05625 0.8778098 5.42250 0.5083153 2.75125 55.467333 24.99361
2 5 0.0137764 1.6888902 0.0562485 5.527782 0.0012458 0.0268080 0.1790299 0.51375 0.8785213 1.40375 0.5506461 1.21375 55.466674 24.99490
2 6 1.9412056 7.4388948 1.3009886 5.972227 0.0366229 0.8931232 0.1583917 2.40000 0.6957060 4.06625 0.6648067 3.23250 NA -33.88917
2 7 1.2202074 6.8777833 0.9087490 5.972227 0.0233116 0.4243336 0.0300567 3.54875 0.8906626 3.84750 0.4820857 2.58125 NA -33.88319
2 8 1.3439488 6.7666721 0.9618183 5.972227 0.0274755 0.6015958 0.0365311 3.33125 0.8563216 5.10375 0.5284916 2.52625 NA -33.88909
2 9 1.1623484 7.1861169 0.8505312 5.972227 0.0243110 1.1656330 -0.2377266 4.51875 0.6332011 4.69000 0.7149198 3.60625 NA -33.88907
2 10 1.0378951 7.5638949 0.8705196 5.972227 0.0201009 0.8648567 0.1661727 3.69625 0.8760769 4.77500 0.4844285 2.98250 NA -33.88906
2 11 1.9524981 7.7777840 1.4488831 5.972227 0.0359720 0.8277719 0.1002637 3.20500 0.8767140 3.93000 0.4376815 3.82000 NA -28.06683
2 12 0.2236566 6.2027827 0.3564597 5.972227 0.0054219 0.3640340 0.0582733 0.95250 0.8119112 5.94000 0.5715550 2.06250 NA -28.06689
2 13 0.8292836 7.0222278 0.6987756 5.972227 0.0160764 0.9517732 0.2669959 2.85000 0.8266134 5.97375 0.4667565 3.15125 NA -28.06693
2 14 0.1585284 4.8444483 0.4164765 5.972227 0.0054185 0.2536706 -0.0566761 0.66875 0.8353124 5.22125 0.5287285 2.26625 NA -28.06673
2 15 1.1207460 7.8944508 0.8908254 5.972227 0.0213291 0.7548485 0.3772930 3.95625 0.8497168 4.10375 0.3910329 2.60875 NA 33.89116
2 16 0.9710546 7.2694503 0.8496365 5.972227 0.0186803 0.3898248 0.1739484 3.31375 0.8198861 4.08875 0.5295179 2.37000 NA 33.89123
2 17 0.8692614 7.6194505 0.7670305 5.972227 0.0176934 0.8790179 0.3112954 3.14750 0.7113151 5.48750 0.5893817 3.21500 NA 33.89130
2 18 1.2515686 7.4277837 1.0030595 5.972227 0.0257119 0.8048720 0.1810050 2.53500 0.8495431 4.37500 0.4312179 3.37000 NA 33.89119
2 19 1.9223394 7.7638951 1.6097994 5.972227 0.0388598 0.9193675 0.0532048 4.14125 0.8531390 3.94875 0.4718294 4.12125 NA 48.44315
2 20 0.6490620 6.6083386 0.7007766 5.972227 0.0130532 0.2909190 -0.0730526 1.36625 0.7976273 3.99125 0.5614936 2.20250 NA 48.44338
2 21 0.6708864 7.4861171 0.6608732 5.972227 0.0133850 0.2800579 0.0326821 1.53125 0.8210689 5.60500 0.5497109 1.85500 NA 48.44337
2 22 1.0704109 6.6583387 0.8577896 5.972227 0.0218950 0.7958386 0.0147312 3.10125 0.8600342 6.44500 0.4138335 2.88500 NA 48.43308
2 23 1.3473371 6.4527829 1.0255424 5.972227 0.0265837 0.9058878 0.0831680 6.10000 0.8918336 3.99875 0.4321295 3.19375 NA 48.44326
2 24 1.9223394 7.7638951 1.6097994 5.972227 0.0388598 0.9193675 0.0532048 4.14125 0.8531390 3.94875 0.4718294 4.12125 NA 48.44315
2 25 0.6490620 6.6083386 0.7007766 5.972227 0.0130532 0.2909190 -0.0730526 1.36625 0.7976273 3.99125 0.5614936 2.20250 NA 48.44338
2 26 0.6708864 7.4861171 0.6608732 5.972227 0.0133850 0.2800579 0.0326821 1.53125 0.8210689 5.60500 0.5497109 1.85500 NA 48.44337
2 27 1.0704109 6.6583387 0.8577896 5.972227 0.0218950 0.7958386 0.0147312 3.10125 0.8600342 6.44500 0.4138335 2.88500 NA 48.43308
2 28 1.3473371 6.4527829 1.0255424 5.972227 0.0265837 0.9058878 0.0831680 6.10000 0.8918336 3.99875 0.4321295 3.19375 NA 48.44326
2 29 0.8540157 6.8694499 0.8133520 5.972227 0.0175307 0.8858601 0.0328612 4.23875 0.7500638 5.78875 0.6129555 2.89125 2.253012 48.84350
2 30 1.8412498 8.4194512 1.3894700 5.972227 0.0351599 1.1203924 -0.1037341 6.01000 0.8470150 4.69000 0.4564876 3.71000 2.252862 48.84159
2 31 1.1421318 8.6944514 1.0065436 5.972227 0.0225908 1.0708590 -0.0337888 3.23250 0.7909429 4.23375 0.5330165 4.37625 2.252888 48.84346
2 32 0.7471486 7.4750060 0.7316079 5.944449 0.0156318 1.3477959 -0.0101965 2.89375 -0.8806341 1.92500 0.5569186 2.39375 2.252915 48.84259
2 33 0.9556824 6.9083389 0.8678109 5.972227 0.0176560 0.7150104 -0.1542729 3.05375 0.7743898 4.72500 0.5584621 3.15125 2.252902 48.84348
2 34 0.5710484 7.7361173 0.7027301 5.972227 0.0116584 0.6604913 -0.0903514 1.92875 0.8092139 3.35750 0.5220392 2.49000 2.253115 48.84351
2 35 0.6697259 7.1222279 0.6740223 5.972227 0.0129238 0.6033259 0.0257551 5.09750 0.8432455 6.13125 0.5000132 3.28375 NA 37.77834
2 36 0.7381019 6.2055605 0.7553059 5.972227 0.0136676 1.1423375 0.1001909 2.22875 0.7691098 4.48375 0.5732236 2.49875 NA 37.77832
2 37 0.3392063 4.5527814 0.4480622 5.861116 0.0060815 0.1762782 -0.0610389 0.87500 0.8692417 3.64000 0.4396467 1.83250 NA 37.77820
2 38 1.8060626 7.3277836 1.4190244 5.972227 0.0320691 1.1636193 0.0800776 3.93250 0.8409373 4.00000 0.4750393 4.14250 NA 37.77844
3 1 1.2858993 7.2777836 1.0229583 5.972227 0.0170733 1.0729722 0.0956720 3.76250 0.9341478 3.49875 0.4098576 3.84375 55.466345 24.99509
3 2 1.1191928 7.7083395 0.7893813 5.944449 0.0151792 1.0873940 0.0081859 3.03875 0.9691165 3.37375 0.3490984 2.65500 55.466282 24.99492
3 3 1.2652664 8.0027842 0.8918748 5.972227 0.0168012 0.9619610 0.1209303 2.71875 0.9527532 3.75000 0.3902891 3.55500 55.466258 24.99494
3 4 1.4184311 7.7694507 1.0851790 5.972227 0.0192150 0.8677160 0.2846147 3.58500 0.8665184 4.16625 0.4234015 3.52500 55.467441 24.99347
3 5 1.3952623 7.8055618 1.1114179 5.972227 0.0181466 0.5767736 0.1400696 5.39250 0.9355104 3.10875 0.4151439 4.54500 55.466281 24.99508
3 6 0.0211562 1.1027787 0.0889720 5.666671 0.0017053 0.0311469 0.0395971 0.41875 0.7484971 1.35000 0.5978110 1.37875 NA -33.88899
3 7 1.4026960 8.2888955 1.0570417 5.972227 0.0185931 0.9488955 0.0650640 3.59250 0.9318364 3.75750 0.4084870 3.86875 NA -33.88904
3 8 1.5721456 7.5083393 1.1867527 5.972227 0.0207829 0.8086826 -0.0419370 2.81125 0.9891209 4.32125 0.3301438 2.74250 NA -33.88909
3 9 1.3703300 6.2611161 1.0702073 5.972227 0.0175917 0.6283378 -0.0694334 3.36875 0.9507335 4.37250 0.4257300 5.53125 NA -33.88912
3 10 1.3581104 8.5750069 1.1031928 5.972227 0.0186822 1.0791373 -0.1491705 3.41125 0.9013139 5.06000 -0.5191275 2.16250 NA -33.88901
3 11 0.0406069 3.3694471 0.0913454 5.944449 0.0014986 0.0844905 -0.0430617 0.53875 0.6336442 2.50000 0.7976840 1.53500 NA -28.06672
3 12 1.4088717 8.7055625 1.0744356 5.972227 0.0173176 1.0803217 0.1613189 5.92750 0.8699889 3.52250 0.5247548 4.21000 NA -28.06669
3 13 1.5338376 8.8888960 1.0950636 5.972227 0.0177915 0.8837847 0.0128850 6.06125 0.8857485 3.41750 0.5352216 4.10125 NA -28.06688
3 14 1.4622870 7.9000063 1.1465046 5.972227 0.0180202 0.8105651 0.0720832 3.00875 0.8926889 4.00500 0.5227325 3.33500 NA -28.06688
3 15 1.0295903 7.3527837 0.8432509 5.972227 0.0138239 0.9464220 -0.0629379 3.08250 -0.8040844 3.75625 0.6315855 3.58625 NA 33.89125
3 16 1.4514802 7.8916730 1.1003064 5.972227 0.0176301 0.6262495 0.0623695 2.15625 0.8997390 4.80250 0.4978799 3.55125 NA 33.89110
3 17 NaN -Inf NaN -Inf NaN -Inf NaN -Inf NaN -Inf NaN -Inf NaN NaN
3 18 NaN -Inf NaN -Inf NaN -Inf NaN -Inf NaN -Inf NaN -Inf NaN NaN
3 19 NaN -Inf NaN -Inf NaN -Inf NaN -Inf NaN -Inf NaN -Inf NaN NaN
3 20 NaN -Inf NaN -Inf NaN -Inf NaN -Inf NaN -Inf NaN -Inf NaN NaN
3 21 NaN -Inf NaN -Inf NaN -Inf NaN -Inf NaN -Inf NaN -Inf NaN NaN
3 22 NaN -Inf NaN -Inf NaN -Inf NaN -Inf NaN -Inf NaN -Inf NaN NaN
3 23 NaN -Inf NaN -Inf NaN -Inf NaN -Inf NaN -Inf NaN -Inf NaN NaN
3 24 NaN -Inf NaN -Inf NaN -Inf NaN -Inf NaN -Inf NaN -Inf NaN NaN
3 25 NaN -Inf NaN -Inf NaN -Inf NaN -Inf NaN -Inf NaN -Inf NaN NaN
3 26 NaN -Inf NaN -Inf NaN -Inf NaN -Inf NaN -Inf NaN -Inf NaN NaN
3 27 NaN -Inf NaN -Inf NaN -Inf NaN -Inf NaN -Inf NaN -Inf NaN NaN
3 28 NaN -Inf NaN -Inf NaN -Inf NaN -Inf NaN -Inf NaN -Inf NaN NaN
3 29 1.6085940 6.9166722 1.2432864 5.972227 0.0202927 1.2215229 -0.0024479 4.34625 0.8319407 3.20750 0.5243203 3.46500 2.252847 48.84331
3 30 1.5058783 7.4861171 1.0948179 5.972227 0.0176671 0.7740625 -0.0568911 5.02250 0.8755008 3.33000 0.5342178 3.92000 2.252971 48.84336
3 31 0.8997240 6.8694499 0.7802366 5.972227 0.0124132 1.1591762 0.0930762 3.63125 0.8172994 4.33875 0.5336397 4.28125 2.252855 48.84340
3 32 1.5713704 8.4250067 1.1696016 5.972227 0.0190350 0.9072789 -0.1671498 3.44750 0.8497449 4.03750 0.5100305 2.99500 2.252993 48.84328
3 33 1.6084177 6.7333387 1.1884106 5.972227 0.0202837 0.8693453 -0.1247159 4.28125 0.8664601 3.61375 0.4900963 3.83375 2.242162 48.61321
3 34 1.3639073 7.3916726 1.1741432 5.972227 0.0187810 1.0159462 -0.0371461 5.22500 0.8162995 3.65250 0.5264859 5.33125 2.252988 48.84325
3 35 0.9781743 8.2694511 0.7746832 5.972227 0.0135204 0.7063693 -0.0475734 3.36500 0.8253930 3.38625 0.5988748 3.48750 NA 37.77838
3 36 1.5975531 6.3972273 1.2874591 5.972227 0.0212056 1.2495235 0.0934035 3.58000 0.8145233 4.12625 0.5854085 7.13500 NA 37.77856
3 37 1.5188695 8.2277844 1.1248521 5.972227 0.0198512 0.8436343 0.0217958 8.58875 0.8027906 5.26625 0.6412398 4.35000 NA 37.77844
3 38 1.2933249 6.6861165 1.1145272 5.972227 0.0178877 0.9288546 0.0015844 2.73125 0.8525815 3.31750 0.5722394 3.48250 NA 37.77836
4 1 0.7521661 7.6388950 0.8405127 5.944449 0.0133888 0.4885343 -0.0179949 2.24250 0.8607478 3.82250 0.4816503 2.52375 55.466537 24.99499
4 2 1.5798490 7.8583396 1.4163822 5.972227 0.0241592 0.7146872 0.0743667 4.50375 0.8343580 4.91500 0.4930196 3.44250 55.466257 24.99510
4 3 1.0848484 6.6305609 0.8691976 5.972227 0.0162006 0.7168734 0.1960383 3.19750 0.8972353 3.25375 0.5027302 3.92625 55.466299 24.99495
4 4 0.2564184 4.6555593 0.2806861 5.805560 0.0047618 0.1330585 -0.1308120 0.56750 0.7885912 3.87125 0.6461435 1.93375 55.467136 24.99371
4 5 0.7065001 5.9694492 0.6441146 5.972227 0.0121930 0.3972316 0.0028364 1.96750 0.7532450 2.95500 0.6935229 2.25750 55.466422 24.99494
4 6 1.6213682 8.1111176 1.3986260 5.972227 0.0239858 0.6449632 0.0024809 2.91375 0.9163806 3.34625 0.4614581 2.77500 NA -33.88922
4 7 0.8889456 7.0916723 0.8265008 5.972227 0.0138751 0.6170740 -0.0544176 3.28250 0.8934046 4.04500 0.4668453 3.01500 NA -33.88916
4 8 0.8932759 6.2305605 0.7872389 5.972227 0.0136500 1.0083956 -0.0474181 3.97750 0.8814380 3.53625 0.5467657 3.36750 NA -33.88549
4 9 1.5478317 8.6750069 1.3242567 5.972227 0.0234680 0.5828906 -0.1261781 2.76375 0.9228951 4.87750 0.4149155 2.52250 NA -33.88914
4 10 1.4413511 7.6361172 1.2858806 5.972227 0.0209295 0.8573163 -0.0186225 3.92250 0.9175107 4.58625 0.4518728 3.07500 NA -33.88904
4 11 0.0485222 3.1527803 0.1443210 5.916671 0.0024117 0.1178270 -0.0531199 0.86250 0.8724903 3.60625 0.5952069 2.27750 NA -28.06673
4 12 1.4247379 7.3138947 1.2835380 5.972227 0.0212464 0.6187472 -0.0368598 2.58125 0.6875569 4.12750 0.6370639 3.09500 NA -28.06672
4 13 1.5590534 7.8027840 1.3518240 5.972227 0.0232645 0.5472624 0.1529835 3.29250 0.8103460 4.81375 0.5040557 3.89125 NA -28.06688
4 14 1.3888670 7.3138947 1.2892412 5.972227 0.0198292 0.5459705 -0.2395481 3.78875 0.9358992 5.79125 0.3758120 4.16750 NA -28.06686
4 15 1.4175908 7.2277836 1.2295704 5.972227 0.0214837 0.5749114 0.1078111 3.40000 0.8059097 3.91750 0.5789647 3.29125 NA 33.89111
4 16 1.3494674 8.1333398 1.1301732 5.972227 0.0193714 0.5798736 0.0533117 4.85750 0.8701448 3.99500 0.5276501 4.89000 NA 33.89121
4 17 1.2113532 7.1722280 1.2687401 5.972227 0.0199803 1.1685780 0.0143997 2.54000 0.7818050 3.54125 0.5980644 2.90625 NA 33.89127
4 18 NaN -Inf NaN -Inf NaN -Inf NaN -Inf NaN -Inf NaN -Inf NaN NaN
4 19 1.3487788 6.7194498 1.2440283 5.972227 0.0203795 1.0269765 0.0239263 5.96375 0.8422503 3.50875 0.5797942 3.29625 NA 48.44310
4 20 1.5711716 7.1194501 1.4075605 5.972227 0.0219455 0.5675279 0.1275959 3.92000 0.8502577 3.54500 0.5547474 2.85875 NA 48.44316
4 21 0.8141237 7.4722282 0.9244250 5.972227 0.0131294 0.8940984 -0.1384049 2.91125 0.9306192 4.13625 0.4955193 2.47375 NA 48.43815
4 22 1.2306550 5.9777826 1.0858354 5.972227 0.0179181 0.7571522 0.1157182 3.20875 0.8576799 5.86375 0.5815762 2.92875 NA 48.44319
4 23 1.3009100 7.1027835 1.2403861 5.972227 0.0186120 0.4466115 -0.0191642 2.31500 0.8146713 3.93750 0.6025138 3.61750 NA 48.44331
4 24 1.3487788 6.7194498 1.2440283 5.972227 0.0203795 1.0269765 0.0239263 5.96375 0.8422503 3.50875 0.5797942 3.29625 NA 48.44310
4 25 1.5711716 7.1194501 1.4075605 5.972227 0.0219455 0.5675279 0.1275959 3.92000 0.8502577 3.54500 0.5547474 2.85875 NA 48.44316
4 26 0.8141237 7.4722282 0.9244250 5.972227 0.0131294 0.8940984 -0.1384049 2.91125 0.9306192 4.13625 0.4955193 2.47375 NA 48.43815
4 27 1.2306550 5.9777826 1.0858354 5.972227 0.0179181 0.7571522 0.1157182 3.20875 0.8576799 5.86375 0.5815762 2.92875 NA 48.44319
4 28 1.3009100 7.1027835 1.2403861 5.972227 0.0186120 0.4466115 -0.0191642 2.31500 0.8146713 3.93750 0.6025138 3.61750 NA 48.44331
4 29 0.9156581 6.5638941 0.9733431 5.972227 0.0164502 0.8017863 -0.0029622 4.26125 0.7727359 4.07750 0.6228390 2.66250 2.252969 48.84347
4 30 1.7130977 7.5972283 1.3840907 5.972227 0.0259460 0.9272655 -0.1246873 2.88625 0.7039919 3.89875 0.6533493 2.59750 2.252961 48.84331
4 31 0.9755699 7.7527840 0.9433294 5.972227 0.0161050 0.4289907 0.0067041 3.07125 0.7846801 4.92125 0.6153673 2.60875 2.252878 48.84344
4 32 1.2440341 6.5805608 1.2624164 5.972227 0.0185325 0.3777536 0.0525569 2.60250 0.8386494 4.53625 0.6037488 2.96500 2.252837 48.84348
4 33 1.5745395 8.4138956 1.4472156 5.972227 0.0247010 1.1993858 -0.0407070 2.47750 0.7547522 5.11000 0.6141040 4.74625 2.252782 48.84336
4 34 1.2749374 7.8555618 1.3194556 5.972227 0.0197091 0.6990966 0.0308980 3.27375 0.7425314 3.41125 0.6488333 2.85625 2.253014 48.84342
4 35 1.0401955 6.8638944 1.0600564 5.972227 0.0165614 0.6320229 0.0179850 8.37375 0.9808769 3.92375 0.3757996 2.25500 NA 37.77842
4 36 1.4306482 6.9083389 1.3791294 5.972227 0.0236434 0.9456838 -0.0659986 2.56750 0.8742435 5.21625 0.5023788 4.02125 NA 37.77846
4 37 1.1152308 6.9361167 1.0227989 5.972227 0.0185051 0.9005145 -0.1867198 2.94875 0.8319420 5.04625 0.4941751 2.85625 NA 37.77836
4 38 0.9514251 7.5083393 1.0553170 5.972227 0.0164866 0.7348246 -0.1837237 5.46500 0.8758895 3.83125 0.4685875 3.18250 NA 37.77658
5 1 NaN -Inf NaN -Inf NaN -Inf NaN -Inf NaN -Inf NaN -Inf NaN NaN
5 2 NaN -Inf NaN -Inf NaN -Inf NaN -Inf NaN -Inf NaN -Inf NaN NaN
5 3 NaN -Inf NaN -Inf NaN -Inf NaN -Inf NaN -Inf NaN -Inf NaN NaN
5 4 NaN -Inf NaN -Inf NaN -Inf NaN -Inf NaN -Inf NaN -Inf NaN NaN
5 5 NaN -Inf NaN -Inf NaN -Inf NaN -Inf NaN -Inf NaN -Inf NaN NaN
5 6 NaN -Inf NaN -Inf NaN -Inf NaN -Inf NaN -Inf NaN -Inf NaN NaN
5 7 NaN -Inf NaN -Inf NaN -Inf NaN -Inf NaN -Inf NaN -Inf NaN NaN
5 8 NaN -Inf NaN -Inf NaN -Inf NaN -Inf NaN -Inf NaN -Inf NaN NaN
5 9 NaN -Inf NaN -Inf NaN -Inf NaN -Inf NaN -Inf NaN -Inf NaN NaN
5 10 NaN -Inf NaN -Inf NaN -Inf NaN -Inf NaN -Inf NaN -Inf NaN NaN
5 11 0.7317980 7.7555618 0.7361179 5.972227 0.0133934 1.0515934 0.0989351 2.83500 0.6730042 3.90250 -0.7899310 5.23125 NA -28.06671
5 12 0.5251606 8.4222290 0.4300340 5.972227 0.0078431 0.7713482 0.1401874 2.87875 0.8782607 3.85750 0.5378720 3.57375 NA -28.06678
5 13 0.8188331 8.4388956 0.7558335 5.972227 0.0109356 0.8935489 -0.2641277 2.94125 0.9550743 3.34125 0.3701225 2.70625 NA -28.06695
5 14 0.6465682 8.1250065 0.5791809 5.972227 0.0098095 0.7817373 0.1563777 2.66375 0.7196877 2.89250 0.7113930 3.98000 NA -28.06678
5 15 0.8169349 7.9138952 0.6431810 5.972227 0.0115733 1.1423355 -0.0596689 2.63750 0.8066587 3.56875 0.6349033 3.96250 NA 33.89131
5 16 0.3145416 5.8777825 0.2536733 5.972227 0.0053349 0.8957168 -0.0790886 1.31750 0.8718923 2.91625 -0.6191655 4.62500 NA 33.89126
5 17 0.9338460 8.6555625 0.7375998 5.972227 0.0134278 0.9303085 -0.0701521 3.34375 0.8572800 3.85375 0.5974888 2.30000 NA 33.89120
5 18 1.1718319 8.3555622 0.9210075 5.972227 0.0157179 0.8324084 0.1334968 6.00250 0.9517574 4.21125 0.4306994 3.44250 NA 33.89111
5 19 1.5897994 8.6527847 1.3259390 5.972227 0.0228815 0.8729527 -0.3355639 2.68625 0.9395034 4.62625 0.3273462 2.58750 NA 48.44303
5 20 0.7861144 8.0861176 0.6464219 5.972227 0.0122151 0.5122453 -0.1405073 1.83125 0.9573051 3.34125 0.4067243 2.63625 NA 48.44330
5 21 1.5013878 8.0638953 1.1949779 5.972227 0.0229475 1.1341806 0.0013192 3.96250 0.9152150 3.56250 0.4335365 4.65875 NA 48.43242
5 22 0.6364736 7.5166727 0.6857958 5.944449 0.0095816 0.4357902 -0.1012383 2.46000 0.9889526 3.55500 0.4041902 2.73875 NA 48.44337
5 23 1.1537712 8.5694513 1.0400239 5.972227 0.0170677 1.3441852 -0.2473525 2.90750 0.9658130 3.26875 0.3430397 2.82375 NA 48.44312
5 24 1.5897994 8.6527847 1.3259390 5.972227 0.0228815 0.8729527 -0.3355639 2.68625 0.9395034 4.62625 0.3273462 2.58750 NA 48.44303
5 25 0.7861144 8.0861176 0.6464219 5.972227 0.0122151 0.5122453 -0.1405073 1.83125 0.9573051 3.34125 0.4067243 2.63625 NA 48.44330
5 26 1.5013878 8.0638953 1.1949779 5.972227 0.0229475 1.1341806 0.0013192 3.96250 0.9152150 3.56250 0.4335365 4.65875 NA 48.43242
5 27 0.6364736 7.5166727 0.6857958 5.944449 0.0095816 0.4357902 -0.1012383 2.46000 0.9889526 3.55500 0.4041902 2.73875 NA 48.44337
5 28 1.1537712 8.5694513 1.0400239 5.972227 0.0170677 1.3441852 -0.2473525 2.90750 0.9658130 3.26875 0.3430397 2.82375 NA 48.44312
5 29 0.7248425 8.9472294 0.7230194 5.972227 0.0106877 0.7940651 -0.0451318 5.17000 0.9230071 3.26125 0.4742045 2.85500 2.252953 48.84342
5 30 0.7873852 9.0166739 0.6977381 5.972227 0.0116650 0.5649681 0.1185169 2.28375 -0.8740538 3.26000 0.5264497 5.68375 2.253041 48.84344
5 31 1.1847430 7.3055614 1.0676259 5.972227 0.0158629 0.9374130 -0.1255563 2.84500 0.9016734 3.78750 0.4597461 2.44125 2.252889 48.84330
5 32 1.2466901 8.8416737 1.1328006 5.972227 0.0177467 0.9278229 -0.0737997 5.36750 0.8957727 4.35000 0.4675443 4.06000 2.253004 48.84338
5 33 1.2994850 8.4861179 1.1293428 5.972227 0.0183436 1.4668994 -0.1617879 2.85125 0.9341928 4.93125 0.4408779 3.48875 2.252874 48.84336
5 34 1.0444537 8.5611180 0.9831098 5.972227 0.0162432 1.4836109 -0.0369235 5.13375 0.8357343 4.51500 0.6022138 5.26375 2.253082 48.84337
5 35 0.6806325 6.0861160 0.6258265 5.972227 0.0084862 0.7621158 -0.0183309 1.42875 0.9468593 3.28000 0.4638934 2.31375 NA 37.77839
5 36 1.1668156 8.5194513 0.9296201 5.972227 0.0167299 1.0906322 -0.0835817 3.68125 0.7407747 3.22375 0.7160371 2.83250 NA 37.77839
5 37 0.5556114 7.8472285 0.4562070 5.972227 0.0092389 1.1238344 -0.0349462 4.24375 0.7885400 2.68750 0.6524913 3.11500 NA 37.77824
5 38 0.6347739 7.3138947 0.5610711 5.972227 0.0090651 0.7664156 -0.1658342 2.68625 0.7254039 3.43875 0.6894982 3.63875 NA 37.77826
6 1 0.6449793 6.9388944 0.5511188 5.972227 0.0111523 0.4263423 -0.0300204 3.23750 0.7288965 2.66625 0.7321917 2.62250 55.466604 24.99486
6 2 0.9683994 7.5944505 0.8308952 5.972227 0.0149127 0.8276041 -0.0249856 2.03875 0.7056622 2.70750 0.7604681 2.87000 55.466424 24.99488
6 3 0.7370371 8.3750067 0.6601615 5.944449 0.0116925 0.4635333 -0.2189378 1.76125 0.6924353 3.33000 0.7364727 2.50625 55.466378 24.99478
6 4 0.4017416 5.3638932 0.3461020 5.833338 0.0062176 0.1727263 -0.1684182 1.02125 0.6257088 2.38875 0.8066527 1.76625 55.467164 24.99371
6 5 0.9542473 6.0333382 0.8826286 5.944449 0.0176050 0.7737543 0.1424367 3.61125 0.6323900 3.18375 0.7492057 3.77500 55.466424 24.99493
6 6 NaN -Inf NaN -Inf NaN -Inf NaN -Inf NaN -Inf NaN -Inf NaN NaN
6 7 NaN -Inf NaN -Inf NaN -Inf NaN -Inf NaN -Inf NaN -Inf NaN NaN
6 8 NaN -Inf NaN -Inf NaN -Inf NaN -Inf NaN -Inf NaN -Inf NaN NaN
6 9 NaN -Inf NaN -Inf NaN -Inf NaN -Inf NaN -Inf NaN -Inf NaN NaN
6 10 NaN -Inf NaN -Inf NaN -Inf NaN -Inf NaN -Inf NaN -Inf NaN NaN
6 11 NaN -Inf NaN -Inf NaN -Inf NaN -Inf NaN -Inf NaN -Inf NaN NaN
6 12 NaN -Inf NaN -Inf NaN -Inf NaN -Inf NaN -Inf NaN -Inf NaN NaN
6 13 NaN -Inf NaN -Inf NaN -Inf NaN -Inf NaN -Inf NaN -Inf NaN NaN
6 14 NaN -Inf NaN -Inf NaN -Inf NaN -Inf NaN -Inf NaN -Inf NaN NaN
6 15 NaN -Inf NaN -Inf NaN -Inf NaN -Inf NaN -Inf NaN -Inf NaN NaN
6 16 NaN -Inf NaN -Inf NaN -Inf NaN -Inf NaN -Inf NaN -Inf NaN NaN
6 17 NaN -Inf NaN -Inf NaN -Inf NaN -Inf NaN -Inf NaN -Inf NaN NaN
6 18 NaN -Inf NaN -Inf NaN -Inf NaN -Inf NaN -Inf NaN -Inf NaN NaN
6 19 NaN -Inf NaN -Inf NaN -Inf NaN -Inf NaN -Inf NaN -Inf NaN NaN
6 20 NaN -Inf NaN -Inf NaN -Inf NaN -Inf NaN -Inf NaN -Inf NaN NaN
6 21 NaN -Inf NaN -Inf NaN -Inf NaN -Inf NaN -Inf NaN -Inf NaN NaN
6 22 NaN -Inf NaN -Inf NaN -Inf NaN -Inf NaN -Inf NaN -Inf NaN NaN
6 23 NaN -Inf NaN -Inf NaN -Inf NaN -Inf NaN -Inf NaN -Inf NaN NaN
6 24 NaN -Inf NaN -Inf NaN -Inf NaN -Inf NaN -Inf NaN -Inf NaN NaN
6 25 NaN -Inf NaN -Inf NaN -Inf NaN -Inf NaN -Inf NaN -Inf NaN NaN
6 26 NaN -Inf NaN -Inf NaN -Inf NaN -Inf NaN -Inf NaN -Inf NaN NaN
6 27 NaN -Inf NaN -Inf NaN -Inf NaN -Inf NaN -Inf NaN -Inf NaN NaN
6 28 NaN -Inf NaN -Inf NaN -Inf NaN -Inf NaN -Inf NaN -Inf NaN NaN
6 29 NaN -Inf NaN -Inf NaN -Inf NaN -Inf NaN -Inf NaN -Inf NaN NaN
6 30 NaN -Inf NaN -Inf NaN -Inf NaN -Inf NaN -Inf NaN -Inf NaN NaN
6 31 NaN -Inf NaN -Inf NaN -Inf NaN -Inf NaN -Inf NaN -Inf NaN NaN
6 32 NaN -Inf NaN -Inf NaN -Inf NaN -Inf NaN -Inf NaN -Inf NaN NaN
6 33 NaN -Inf NaN -Inf NaN -Inf NaN -Inf NaN -Inf NaN -Inf NaN NaN
6 34 NaN -Inf NaN -Inf NaN -Inf NaN -Inf NaN -Inf NaN -Inf NaN NaN
6 35 NaN -Inf NaN -Inf NaN -Inf NaN -Inf NaN -Inf NaN -Inf NaN NaN
6 36 NaN -Inf NaN -Inf NaN -Inf NaN -Inf NaN -Inf NaN -Inf NaN NaN
6 37 NaN -Inf NaN -Inf NaN -Inf NaN -Inf NaN -Inf NaN -Inf NaN NaN
6 38 NaN -Inf NaN -Inf NaN -Inf NaN -Inf NaN -Inf NaN -Inf NaN NaN
7 1 1.3787313 7.4750060 1.1770564 5.972227 0.0224479 0.7071699 0.1580425 3.58375 0.7976608 3.36625 0.5330570 2.61875 55.466320 24.99504
7 2 0.8986879 7.3444503 0.7389839 5.972227 0.0154157 0.3865652 0.1780370 2.82375 0.7787056 3.05000 0.5744546 2.44250 55.466328 24.99487
7 3 1.0695974 8.7666737 0.8727232 5.972227 0.0171576 0.5368878 0.1321207 2.09375 0.8123939 2.94875 0.5443585 2.94375 55.466290 24.99488
7 4 1.5208179 7.3250059 1.1768209 5.944449 0.0257969 0.6826034 0.1694506 4.25000 0.8850451 4.40875 0.4330480 2.76250 55.467462 24.99343
7 5 1.6350225 7.8361174 1.3064997 5.972227 0.0279808 0.7941352 0.0633198 7.55375 0.9019167 3.48500 0.4193540 2.99750 55.466244 24.99507
7 6 0.6650483 5.3416709 0.5138928 5.972227 0.0099509 0.1616896 0.0135523 0.74125 0.7747596 2.55000 0.5973979 1.93750 NA -33.88903
7 7 1.2900155 7.8472285 1.0925542 5.972227 0.0207892 0.7820078 0.1048611 5.30875 0.8081257 4.13625 0.5366821 3.51750 NA -33.88903
7 8 1.5652436 7.9111174 1.2900690 5.972227 0.0265034 1.6283996 -0.0848728 4.79125 0.7610525 3.19500 0.5513533 3.48250 NA -33.88910
7 9 1.1902860 8.5444513 1.0046669 5.972227 0.0196238 0.5561174 0.0029588 2.93750 0.8473480 3.52000 0.4978482 2.48375 NA -33.88572
7 10 1.6027895 7.0333390 1.3101100 5.972227 0.0261235 0.8109112 0.2409819 2.35125 0.7215312 5.75125 0.6012075 3.24625 NA -33.88901
7 11 0.5399318 4.3416701 0.5346871 5.972227 0.0068938 0.1697482 -0.1183774 1.03625 0.8642465 2.67625 0.4728874 1.61125 NA -28.06011
7 12 1.3715702 8.5000068 1.2152367 5.972227 0.0219775 0.9480398 -0.0453828 3.47625 0.8312586 2.90375 0.5533197 2.40375 NA -28.06667
7 13 1.0950722 8.5833402 0.9586355 5.972227 0.0173913 0.3711006 0.0758692 3.66000 0.8143628 2.93000 0.5385510 2.91875 NA -28.06687
7 14 0.6425143 7.6666728 0.6232810 5.972227 0.0112485 0.3633873 0.0573303 3.08875 0.8637048 3.08750 0.5104882 3.09000 NA -28.06681
7 15 NaN -Inf NaN -Inf NaN -Inf NaN -Inf NaN -Inf NaN -Inf NaN NaN
7 16 NaN -Inf NaN -Inf NaN -Inf NaN -Inf NaN -Inf NaN -Inf NaN NaN
7 17 NaN -Inf NaN -Inf NaN -Inf NaN -Inf NaN -Inf NaN -Inf NaN NaN
7 18 NaN -Inf NaN -Inf NaN -Inf NaN -Inf NaN -Inf NaN -Inf NaN NaN
7 19 0.9766046 7.1805613 0.8645546 5.972227 0.0172103 0.8314530 0.0923237 2.64375 0.8241957 2.86250 0.4766650 3.30375 NA 48.44325
7 20 1.7030441 7.7305617 1.3608259 5.972227 0.0281628 0.7354419 -0.0232873 5.11125 0.8303745 3.32750 0.5163232 2.94375 NA 48.44303
7 21 1.6484289 8.2916733 1.2782387 5.972227 0.0266289 1.2006629 0.0100062 3.82000 0.7629742 3.49875 0.5718554 3.07625 NA 48.44307
7 22 1.4427485 7.6833395 1.1443614 5.972227 0.0248502 1.1743568 0.0750758 2.60750 0.8521852 3.92000 0.4692389 3.19875 NA 48.42826
7 23 1.0784537 7.0888946 0.9727118 5.972227 0.0190498 0.5046384 0.0398883 2.54750 0.9036862 3.18750 0.4469571 2.79625 NA 48.44329
7 24 0.9766046 7.1805613 0.8645546 5.972227 0.0172103 0.8314530 0.0923237 2.64375 0.8241957 2.86250 0.4766650 3.30375 NA 48.44325
7 25 1.7030441 7.7305617 1.3608259 5.972227 0.0281628 0.7354419 -0.0232873 5.11125 0.8303745 3.32750 0.5163232 2.94375 NA 48.44303
7 26 1.6484289 8.2916733 1.2782387 5.972227 0.0266289 1.2006629 0.0100062 3.82000 0.7629742 3.49875 0.5718554 3.07625 NA 48.44307
7 27 1.4427485 7.6833395 1.1443614 5.972227 0.0248502 1.1743568 0.0750758 2.60750 0.8521852 3.92000 0.4692389 3.19875 NA 48.42826
7 28 1.0784537 7.0888946 0.9727118 5.972227 0.0190498 0.5046384 0.0398883 2.54750 0.9036862 3.18750 0.4469571 2.79625 NA 48.44329
7 29 1.6354395 7.9611175 1.4661677 5.972227 0.0285609 0.8019392 -0.2366253 4.24750 -0.6491583 3.45250 0.6717538 2.96875 2.252889 48.84330
7 30 1.2113271 6.1888938 1.0080656 5.972227 0.0195020 0.3163671 0.2359167 2.36000 0.8102227 3.38125 0.5629668 3.50000 2.252992 48.84338
7 31 0.7247996 6.7250054 0.6739473 5.944449 0.0133067 1.4943622 0.2954783 3.33625 0.5729909 2.48750 0.7102228 3.06000 2.252868 48.84352
7 32 1.5487378 8.3444511 1.3457368 5.972227 0.0257969 0.7285045 0.2144470 4.65875 0.7692895 3.28750 0.5535523 2.67875 2.252990 48.84329
7 33 1.3164641 8.1611176 1.1207881 5.972227 0.0211136 0.7724670 0.2708788 3.27375 0.8067024 3.17500 0.5100677 2.95875 2.252907 48.84339
7 34 1.4475729 8.0666731 1.3690822 5.972227 0.0249860 0.8820326 0.1494281 4.22125 0.7589021 3.84750 0.5694721 4.00625 2.252980 48.84332
7 35 1.4068051 8.3111178 1.2196875 5.972227 0.0222580 1.0548237 -0.1919620 2.71250 0.8894182 3.60125 0.4198615 3.82250 NA 37.77842
7 36 1.5291257 8.4277845 1.3877546 5.972227 0.0269593 0.7646596 -0.1128096 4.17125 0.8410852 3.95000 0.4613141 3.46750 NA 37.77853
7 37 1.6036347 8.1194509 1.2164588 5.972227 0.0237601 0.7525042 0.0627366 2.97000 0.9182137 3.48500 0.4299687 2.88000 NA 37.77837
7 38 1.4595873 8.2194510 1.2301639 5.972227 0.0234627 0.7926576 -0.2029491 2.29875 0.8951481 3.69375 0.4414963 3.00875 NA 37.77839
8 1 1.0308787 7.7611173 0.9777811 5.972227 0.0180514 0.6505980 -0.0736634 3.20250 0.7944890 5.80875 0.5307574 2.95750 55.466509 24.99496
8 2 0.8671169 8.0444509 0.7362595 5.944449 0.0138991 0.8096609 0.0412170 3.87500 0.8226832 4.59750 0.4842919 7.25625 55.466280 24.99491
8 3 1.4312564 8.1277843 1.1332385 5.972227 0.0232867 1.1407973 0.0196688 7.41250 0.9658863 5.65250 0.3374221 4.38375 55.466252 24.99498
8 4 1.4040091 7.7555618 1.1608570 5.972227 0.0235180 1.1987100 -0.0284594 2.94125 0.8729154 5.46125 0.4452399 2.51500 55.467456 24.99346
8 5 1.4440067 8.9611183 1.2070510 5.972227 0.0248290 1.3363349 0.0636939 4.50125 0.8360367 3.76625 0.4817111 4.93875 55.466352 24.99504
8 6 0.0068512 0.6416672 0.0435034 5.194449 0.0014743 0.1202672 -0.0015101 0.34375 0.3395893 2.31625 0.9135738 2.14125 NA -33.88898
8 7 1.3475161 8.1833399 1.1004467 5.972227 0.0214327 1.2876255 0.0328820 3.28000 0.7752791 4.98250 0.6197045 3.15750 NA -33.88022
8 8 1.4986102 8.0111175 1.1585433 5.972227 0.0238559 1.0084427 -0.0861598 4.09000 0.7404284 4.12000 0.6235019 3.41625 NA -33.88909
8 9 0.8579491 7.0666723 0.7517455 5.972227 0.0145961 0.9295164 -0.0028779 2.92750 0.5119644 3.22750 0.7742533 3.77250 NA -33.88918
8 10 1.0133566 7.8722285 0.8430168 5.972227 0.0167395 0.6690024 0.1057354 3.46500 0.7963776 3.43000 0.5840775 3.42500 NA -33.88913
8 11 0.9205371 7.4027837 0.7187127 5.972227 0.0154746 0.3198380 -0.0474098 2.39375 0.8097093 4.71875 0.5422348 2.26500 NA -28.06679
8 12 0.9343250 7.5972283 0.8250643 5.972227 0.0155891 1.3212967 -0.1021055 5.95000 0.6279837 5.00125 0.6853123 3.33000 NA -28.06680
8 13 0.8271146 8.0527842 0.7434034 5.972227 0.0136694 0.6830570 -0.2338333 3.83500 0.7456058 3.81500 0.5357402 3.06250 NA -28.06686
8 14 1.0410922 7.0444501 0.9306183 5.972227 0.0167733 1.0058201 0.0384019 3.48625 0.9254562 3.61125 0.3949331 3.15875 NA -28.06688
8 15 1.2255688 7.2833392 0.9479445 5.972227 0.0202568 0.8858600 0.0570293 3.04125 0.7975915 3.92750 0.5998717 4.55625 NA 33.89113
8 16 1.1824673 7.6722284 0.9973425 5.972227 0.0199144 1.0054916 0.0092534 4.14000 0.6363419 3.93125 0.6712751 4.52125 NA 33.89126
8 17 1.2450895 8.1861177 0.9072885 5.972227 0.0202410 0.8046769 0.0250815 4.20375 0.7689496 4.66500 0.6312545 5.91500 NA 33.89117
8 18 1.2495859 8.5000068 0.9393826 5.972227 0.0194237 0.5281883 -0.0882987 3.67125 0.7909703 3.95625 0.5805343 3.21125 NA 33.89122
8 19 0.7109363 7.3555614 0.6544010 5.972227 0.0107902 0.6029179 -0.0988669 2.41250 0.8743162 4.72125 0.5407206 5.75875 NA 48.44337
8 20 1.6342249 7.5638949 1.3659829 5.972227 0.0260392 1.0114052 0.0302907 3.93125 0.7879161 4.26875 0.5843319 3.04875 NA 48.44304
8 21 1.6086302 7.8388952 1.1812478 5.944449 0.0248876 0.8963142 -0.1160217 2.52750 0.7840464 3.40750 0.5904198 2.16875 NA 48.44306
8 22 1.5089049 8.0444509 1.1950782 5.972227 0.0259975 1.0975093 0.0039907 5.75000 0.7952661 3.54625 0.5930635 4.47875 NA 48.43843
8 23 1.5734596 7.5555616 1.2030013 5.916671 0.0262409 0.9596793 0.0131341 4.91125 0.7984052 3.63375 0.5607611 3.48625 NA 48.44312
8 24 0.7109363 7.3555614 0.6544010 5.972227 0.0107902 0.6029179 -0.0988669 2.41250 0.8743162 4.72125 0.5407206 5.75875 NA 48.44337
8 25 1.6342249 7.5638949 1.3659829 5.972227 0.0260392 1.0114052 0.0302907 3.93125 0.7879161 4.26875 0.5843319 3.04875 NA 48.44304
8 26 1.6086302 7.8388952 1.1812478 5.944449 0.0248876 0.8963142 -0.1160217 2.52750 0.7840464 3.40750 0.5904198 2.16875 NA 48.44306
8 27 1.5089049 8.0444509 1.1950782 5.972227 0.0259975 1.0975093 0.0039907 5.75000 0.7952661 3.54625 0.5930635 4.47875 NA 48.43843
8 28 1.5734596 7.5555616 1.2030013 5.916671 0.0262409 0.9596793 0.0131341 4.91125 0.7984052 3.63375 0.5607611 3.48625 NA 48.44312
8 29 1.4062952 6.8472277 1.1497703 5.944449 0.0226180 1.2768412 -0.1159691 5.70375 0.7016369 3.47875 0.6479778 3.27000 2.252856 48.84331
8 30 1.1248313 7.4500060 0.9861356 5.972227 0.0167893 0.6028429 -0.0788222 2.03500 0.6428937 3.82500 0.6929484 2.45000 2.252980 48.84335
8 31 1.1008024 6.7388943 0.9273895 5.972227 0.0168946 1.0623557 0.0707958 2.54250 0.5358517 4.44625 0.7574519 3.35125 2.252844 48.84348
8 32 0.8761488 6.8083388 0.7163080 5.972227 0.0142625 1.3861704 -0.1568835 3.54500 0.5893586 5.93250 0.7142261 2.96625 2.252946 48.84344
8 33 0.5000994 6.1555605 0.4681133 5.972227 0.0081688 0.6072773 -0.0335533 2.48500 0.6997796 3.94250 0.6866468 3.14375 2.253025 48.84356
8 34 0.7842015 6.7194498 0.7951869 5.972227 0.0144399 0.8703253 0.0486583 5.10375 0.6952910 3.65250 0.6520617 2.85000 2.253002 48.84343
8 35 NaN -Inf NaN -Inf NaN -Inf NaN -Inf NaN -Inf NaN -Inf NaN NaN
8 36 NaN -Inf NaN -Inf NaN -Inf NaN -Inf NaN -Inf NaN -Inf NaN NaN
8 37 NaN -Inf NaN -Inf NaN -Inf NaN -Inf NaN -Inf NaN -Inf NaN NaN
8 38 NaN -Inf NaN -Inf NaN -Inf NaN -Inf NaN -Inf NaN -Inf NaN NaN
9 1 0.8654069 7.0944501 0.6706410 5.972227 0.0131785 0.6378797 -0.0141052 3.31875 0.7082184 3.99000 0.6789679 3.18500 55.466445 24.99500
9 2 0.7164100 7.7666729 0.5923513 5.972227 0.0117283 0.6488837 0.0564551 2.71875 0.6171185 3.86375 0.6962263 3.42750 55.466295 24.99490
9 3 1.0152302 7.9083397 0.7371153 5.972227 0.0167047 0.8063894 -0.0977795 2.59125 0.6823464 3.49375 0.6707538 4.66125 55.466296 24.99489
9 4 1.1237489 6.9666722 0.9479589 5.944449 0.0179425 0.6654158 -0.0054026 2.75250 -0.7506019 4.30750 0.6624778 3.04625 55.467351 24.99352
9 5 1.1698172 7.4666726 0.9024281 5.972227 0.0188792 0.5562711 0.0212986 3.19500 0.6009119 3.50750 0.7388145 3.09750 55.466457 24.99505
9 6 1.6587227 7.2222280 1.2732623 5.916671 0.0258092 0.6768297 0.0711697 3.13625 0.8357476 4.26625 0.5174932 3.02375 NA -33.88910
9 7 0.6384370 7.7138951 0.5461665 5.888894 0.0099224 0.4238746 -0.0210403 3.72500 0.7615277 3.60250 0.6023735 2.59875 NA -33.88910
9 8 0.8378978 7.5916727 0.6253174 5.944449 0.0181816 1.7705945 0.0081906 3.02000 0.6013650 3.78625 0.7587943 2.82000 NA -33.88575
9 9 0.8266268 6.5444497 0.6158359 5.972227 0.0136501 0.6830358 0.0418297 2.35000 0.6862847 3.16750 0.7119273 2.90125 NA -33.88909
9 10 1.0975521 7.0527834 0.8995679 5.972227 0.0172222 1.0837676 -0.1393993 3.73875 0.7430361 4.49500 0.5894805 3.23125 NA -33.88901
9 11 NaN -Inf NaN -Inf NaN -Inf NaN -Inf NaN -Inf NaN -Inf NaN NaN
9 12 NaN -Inf NaN -Inf NaN -Inf NaN -Inf NaN -Inf NaN -Inf NaN NaN
9 13 NaN -Inf NaN -Inf NaN -Inf NaN -Inf NaN -Inf NaN -Inf NaN NaN
9 14 NaN -Inf NaN -Inf NaN -Inf NaN -Inf NaN -Inf NaN -Inf NaN NaN
9 15 NaN -Inf NaN -Inf NaN -Inf NaN -Inf NaN -Inf NaN -Inf NaN NaN
9 16 NaN -Inf NaN -Inf NaN -Inf NaN -Inf NaN -Inf NaN -Inf NaN NaN
9 17 NaN -Inf NaN -Inf NaN -Inf NaN -Inf NaN -Inf NaN -Inf NaN NaN
9 18 NaN -Inf NaN -Inf NaN -Inf NaN -Inf NaN -Inf NaN -Inf NaN NaN
9 19 NaN -Inf NaN -Inf NaN -Inf NaN -Inf NaN -Inf NaN -Inf NaN NaN
9 20 NaN -Inf NaN -Inf NaN -Inf NaN -Inf NaN -Inf NaN -Inf NaN NaN
9 21 NaN -Inf NaN -Inf NaN -Inf NaN -Inf NaN -Inf NaN -Inf NaN NaN
9 22 NaN -Inf NaN -Inf NaN -Inf NaN -Inf NaN -Inf NaN -Inf NaN NaN
9 23 NaN -Inf NaN -Inf NaN -Inf NaN -Inf NaN -Inf NaN -Inf NaN NaN
9 24 NaN -Inf NaN -Inf NaN -Inf NaN -Inf NaN -Inf NaN -Inf NaN NaN
9 25 NaN -Inf NaN -Inf NaN -Inf NaN -Inf NaN -Inf NaN -Inf NaN NaN
9 26 NaN -Inf NaN -Inf NaN -Inf NaN -Inf NaN -Inf NaN -Inf NaN NaN
9 27 NaN -Inf NaN -Inf NaN -Inf NaN -Inf NaN -Inf NaN -Inf NaN NaN
9 28 NaN -Inf NaN -Inf NaN -Inf NaN -Inf NaN -Inf NaN -Inf NaN NaN
9 29 NaN -Inf NaN -Inf NaN -Inf NaN -Inf NaN -Inf NaN -Inf NaN NaN
9 30 NaN -Inf NaN -Inf NaN -Inf NaN -Inf NaN -Inf NaN -Inf NaN NaN
9 31 NaN -Inf NaN -Inf NaN -Inf NaN -Inf NaN -Inf NaN -Inf NaN NaN
9 32 NaN -Inf NaN -Inf NaN -Inf NaN -Inf NaN -Inf NaN -Inf NaN NaN
9 33 NaN -Inf NaN -Inf NaN -Inf NaN -Inf NaN -Inf NaN -Inf NaN NaN
9 34 NaN -Inf NaN -Inf NaN -Inf NaN -Inf NaN -Inf NaN -Inf NaN NaN
9 35 NaN -Inf NaN -Inf NaN -Inf NaN -Inf NaN -Inf NaN -Inf NaN NaN
9 36 NaN -Inf NaN -Inf NaN -Inf NaN -Inf NaN -Inf NaN -Inf NaN NaN
9 37 NaN -Inf NaN -Inf NaN -Inf NaN -Inf NaN -Inf NaN -Inf NaN NaN
9 38 NaN -Inf NaN -Inf NaN -Inf NaN -Inf NaN -Inf NaN -Inf NaN NaN
10 1 1.5119687 8.8416737 1.1217934 5.972227 0.0235383 1.2140523 0.0579638 2.70125 0.8124956 3.63500 0.6356682 3.84000 55.465536 24.99478
10 2 0.5435749 7.7472284 0.4532115 5.972227 0.0085134 0.7786644 -0.1244456 3.99750 0.5302512 3.49500 0.8421655 2.15500 55.466414 24.99478
10 3 1.8725542 8.0833398 1.3704075 5.972227 0.0275521 0.9373437 0.2650860 2.97875 0.7628407 3.57500 0.6536882 3.26375 55.466299 24.99494
10 4 1.6692457 8.9083405 1.1809682 5.972227 0.0237293 0.6102712 -0.4175213 1.97250 0.8961792 3.62500 0.4063290 5.11000 55.467410 24.99351
10 5 1.7623746 8.5222290 0.0000000 0.000000 0.0307268 1.6813633 0.1086121 5.35250 0.7261533 5.84375 0.6869579 3.90875 55.466274 24.99505
10 6 1.8373039 8.2472288 1.2928117 5.972227 0.0268510 0.7508195 0.0280061 4.36500 0.8321426 3.49875 0.6557532 3.35125 NA -33.88917
10 7 1.4949327 8.1805621 1.1501412 5.972227 0.0223832 1.4759034 0.2481048 5.38250 0.7530752 3.97250 0.6523549 3.09000 NA -33.88905
10 8 1.4281775 8.6000069 1.1026504 5.972227 0.0229923 0.9563812 0.0841359 3.23500 0.7501902 4.56125 0.6793913 3.31625 NA -33.88906
10 9 1.4043209 6.7666721 1.1718431 5.972227 0.0221323 0.8896040 0.2327127 2.92750 0.7941702 3.27500 0.6248487 3.11375 NA -33.88912
10 10 1.5869458 7.9944508 1.3211770 5.972227 0.0240465 1.3494811 0.0566580 4.85750 -0.8619090 2.99875 -0.5858898 1.73250 NA -33.88902
10 11 0.8077376 7.7000062 0.7853949 5.972227 0.0146396 0.5012345 0.1991696 3.30125 0.8365812 4.08500 0.5170114 3.04125 NA -28.06679
10 12 1.4261703 8.3361178 1.1511518 5.972227 0.0213872 1.1147772 -0.0647070 4.79625 0.8242884 4.79750 0.6007063 4.89375 NA -28.06669
10 13 1.2540170 8.1055620 0.9389885 5.972227 0.0194957 1.0391695 0.0174910 5.72250 0.7387871 3.54125 0.6665819 2.82375 NA -28.06686
10 14 1.5146328 8.3611178 1.2045326 5.972227 0.0234002 0.8690608 -0.1063237 5.18000 0.8731825 4.35125 0.5051682 5.91000 NA -28.06690
10 15 1.4694248 7.9083397 1.1184037 5.972227 0.0225891 0.8363428 -0.2073724 3.40125 0.8296817 4.09250 0.5036388 3.58125 NA 33.88439
10 16 1.4183019 7.7805618 1.0878548 5.972227 0.0222538 1.1783066 -0.1364714 4.71875 0.9238029 4.50875 0.4124241 2.64250 NA 33.89112
10 17 1.6910548 8.5194513 1.3027812 5.972227 0.0269323 1.1980412 -0.0931740 5.06250 0.8521737 5.54750 0.5084570 4.84875 NA 33.89113
10 18 1.3202073 7.6972284 0.9987370 5.972227 0.0223147 0.8798242 0.2652816 6.43000 0.8608176 4.05875 0.4565956 3.60000 NA 33.89119
10 19 NaN -Inf NaN -Inf NaN -Inf NaN -Inf NaN -Inf NaN -Inf NaN NaN
10 20 0.8572746 7.9055619 0.7611298 5.972227 0.0133194 0.6869166 -0.2612045 3.36000 0.8684902 3.53125 0.4286761 3.18250 NA 48.44328
10 21 1.1318160 8.1361176 0.9998768 5.972227 0.0182925 0.5612448 0.1917697 3.44000 0.8772580 4.00875 0.4332887 4.15750 NA 48.44324
10 22 NaN -Inf NaN -Inf NaN -Inf NaN -Inf NaN -Inf NaN -Inf NaN NaN
10 23 NaN -Inf NaN -Inf NaN -Inf NaN -Inf NaN -Inf NaN -Inf NaN NaN
10 24 NaN -Inf NaN -Inf NaN -Inf NaN -Inf NaN -Inf NaN -Inf NaN NaN
10 25 0.8572746 7.9055619 0.7611298 5.972227 0.0133194 0.6869166 -0.2612045 3.36000 0.8684902 3.53125 0.4286761 3.18250 NA 48.44328
10 26 1.1318160 8.1361176 0.9998768 5.972227 0.0182925 0.5612448 0.1917697 3.44000 0.8772580 4.00875 0.4332887 4.15750 NA 48.44324
10 27 NaN -Inf NaN -Inf NaN -Inf NaN -Inf NaN -Inf NaN -Inf NaN NaN
10 28 NaN -Inf NaN -Inf NaN -Inf NaN -Inf NaN -Inf NaN -Inf NaN NaN
10 29 NaN -Inf NaN -Inf NaN -Inf NaN -Inf NaN -Inf NaN -Inf NaN NaN
10 30 NaN -Inf NaN -Inf NaN -Inf NaN -Inf NaN -Inf NaN -Inf NaN NaN
10 31 NaN -Inf NaN -Inf NaN -Inf NaN -Inf NaN -Inf NaN -Inf NaN NaN
10 32 NaN -Inf NaN -Inf NaN -Inf NaN -Inf NaN -Inf NaN -Inf NaN NaN
10 33 NaN -Inf NaN -Inf NaN -Inf NaN -Inf NaN -Inf NaN -Inf NaN NaN
10 34 NaN -Inf NaN -Inf NaN -Inf NaN -Inf NaN -Inf NaN -Inf NaN NaN
10 35 1.3724466 8.4583401 1.0251420 5.972227 0.0212179 1.2171475 -0.0288798 2.78000 0.9110349 3.96750 0.4187298 4.87750 NA 37.77841
10 36 1.3710074 7.8944508 1.2100165 5.972227 0.0224294 1.0186678 0.0116809 3.92625 0.8562380 4.10250 0.5076760 3.37375 NA 37.77850
10 37 1.2468335 8.1138954 0.9082016 5.972227 0.0183513 1.5896089 -0.0487482 3.83750 0.8255454 4.36000 0.5789285 2.31375 NA 37.77836
10 38 0.4187830 7.1361168 0.4974884 5.916671 0.0085493 1.1255242 0.2182481 2.62875 0.6760572 3.58500 0.6566025 4.44625 NA 37.77824
11 1 1.1329488 7.6444506 0.9767612 5.972227 0.0211365 0.9814635 0.2220045 3.91125 0.8177598 3.23625 0.5948260 2.89750 55.466482 24.99500
11 2 0.9444082 6.8666722 0.7684728 5.972227 0.0166183 0.5628548 0.0804035 2.11375 0.7981163 4.86375 0.6319423 3.12000 55.466360 24.99492
11 3 1.0954917 7.0166723 0.8359692 5.944449 0.0190604 0.8690432 -0.1110036 3.20875 0.9041372 4.10500 0.5610811 2.48750 55.466284 24.99490
11 4 0.6739336 7.0111167 0.6227134 5.972227 0.0132708 1.1165924 0.3244478 6.15125 0.7732998 3.15875 0.5964518 3.14125 55.467227 24.99356
11 5 1.1401020 6.8527833 0.9349991 5.972227 0.0211831 0.7206544 -0.0441816 2.81625 0.7603640 3.80625 0.6707251 2.99250 55.466476 24.99503
11 6 0.9591575 6.4638941 0.7063724 5.972227 0.0169275 0.6001305 0.0558240 2.21375 0.6513231 3.89375 0.8058943 4.78750 NA -33.88900
11 7 0.8769744 6.9694500 0.7409901 5.972227 0.0150325 0.6123836 -0.0194200 2.61375 0.7213022 3.01000 0.7756332 3.68375 NA -33.88921
11 8 0.7069599 6.3555606 0.5679929 5.972227 0.0135275 0.5022167 0.0319521 4.02875 0.6979986 3.08875 0.8174040 2.87875 NA -33.88901
11 9 0.6989067 8.2055621 0.5842936 5.972227 0.0122760 0.3232076 -0.0097941 2.05375 0.6786679 2.65750 0.8072461 2.85125 NA -33.88922
11 10 0.9871949 7.8611174 0.7389928 5.972227 0.0176843 1.1374973 0.2224264 3.51750 0.9362697 3.23625 0.4736261 2.93625 NA -33.88911
11 11 1.8185196 7.6833395 1.3139270 5.972227 0.0282057 0.9385358 0.1098039 5.24000 0.7370143 3.47625 0.6906817 3.16500 NA -28.06680
11 12 1.1181127 6.9305611 0.9471186 5.972227 0.0179876 0.4158298 -0.2019906 2.46500 0.6961352 3.14500 0.7423135 2.86250 NA -28.06679
11 13 1.0557954 7.6361172 0.8575624 5.972227 0.0171710 0.6376324 -0.0472773 3.67000 0.7202303 2.88875 0.7508771 2.97625 NA -28.06685
11 14 0.6960214 8.6333402 0.7021378 5.972227 0.0122974 0.5955990 -0.0670269 6.14250 0.7817143 2.97000 0.7334412 3.43000 NA -28.06685
11 15 0.9186701 7.1722280 0.7383380 5.972227 0.0150819 0.3702015 -0.0220054 2.27750 0.7522238 3.87500 0.6955772 3.06875 NA 33.89131
11 16 1.1351525 7.3416725 0.9508152 5.972227 0.0187284 0.5361829 -0.3605222 2.40875 0.6328552 3.82750 0.7320290 3.00125 NA 33.89113
11 17 1.1567382 7.9944508 0.9426209 5.972227 0.0187553 0.4985191 -0.1241898 3.77125 0.7974583 2.87750 0.6549063 3.06000 NA 33.89118
11 18 1.3633585 7.0083389 1.0365822 5.972227 0.0222606 1.0064094 -0.1105426 2.90750 0.6856615 3.22625 0.7765790 2.95000 NA 33.89114
11 19 0.9611618 6.6222275 0.8088290 5.972227 0.0178771 0.9236125 0.0581636 2.48875 0.8686678 3.10625 0.5792884 2.63375 NA 48.43853
11 20 1.2109406 7.8805619 0.9510047 5.972227 0.0195171 0.7362804 -0.0321269 2.60875 0.8477073 3.02000 0.6036256 4.78250 NA 48.43818
11 21 1.5473654 7.3111170 1.1151542 5.972227 0.0275896 0.7872375 0.0116972 3.72875 0.9202959 3.49500 0.4727084 4.10000 NA 48.44315
11 22 1.1800031 8.0416731 0.9826206 5.944449 0.0206110 0.5525153 0.1611355 2.65125 0.9523249 3.92875 0.4301253 3.46750 NA 48.44322
11 23 1.8695886 7.4166726 1.3631907 5.972227 0.0288251 0.7870360 -0.1391284 2.21750 0.7974574 3.16375 0.6732095 3.04125 NA 48.44322
11 24 0.9611618 6.6222275 0.8088290 5.972227 0.0178771 0.9236125 0.0581636 2.48875 0.8686678 3.10625 0.5792884 2.63375 NA 48.43853
11 25 1.2109406 7.8805619 0.9510047 5.972227 0.0195171 0.7362804 -0.0321269 2.60875 0.8477073 3.02000 0.6036256 4.78250 NA 48.43818
11 26 1.5473654 7.3111170 1.1151542 5.972227 0.0275896 0.7872375 0.0116972 3.72875 0.9202959 3.49500 0.4727084 4.10000 NA 48.44315
11 27 1.1800031 8.0416731 0.9826206 5.944449 0.0206110 0.5525153 0.1611355 2.65125 0.9523249 3.92875 0.4301253 3.46750 NA 48.44322
11 28 1.8695886 7.4166726 1.3631907 5.972227 0.0288251 0.7870360 -0.1391284 2.21750 0.7974574 3.16375 0.6732095 3.04125 NA 48.44322
11 29 1.0847469 7.5527838 0.9556312 5.972227 0.0197386 2.0721410 0.0570769 3.60625 0.8625542 4.10125 0.5711609 4.45125 2.252989 48.84343
11 30 0.6353776 6.6222275 0.6294805 5.944449 0.0112747 0.7692007 0.0175404 2.10875 0.8917142 3.40875 0.5731946 3.50375 2.252950 48.84176
11 31 1.5835727 7.4666726 1.2442327 5.972227 0.0271895 0.9142690 0.0117155 4.90250 0.8933662 4.27250 0.4838551 5.34000 2.252888 48.84335
11 32 1.3465706 8.0138953 1.1147333 5.972227 0.0224778 0.4944777 -0.2654760 4.45125 0.8852853 3.35125 0.4803006 2.88125 2.252854 48.84238
11 33 1.0498704 7.2138947 0.8759863 5.972227 0.0194105 1.3243243 0.0064421 2.94250 0.9243265 4.04625 0.4815573 5.00375 2.253009 48.84349
11 34 1.2605802 6.4305607 1.1525315 5.972227 0.0215829 0.6901779 0.0309789 3.14750 0.8709407 3.62000 0.5214005 3.37750 2.253024 48.84338
11 35 1.8357416 8.4111178 1.3519610 5.972227 0.0295789 1.1918429 -0.0040872 2.70250 0.8114768 4.64875 0.6535046 2.99750 NA 37.77847
11 36 1.3116439 5.8888936 1.1470008 5.972227 0.0242038 0.8176387 -0.1160389 3.59000 0.7196789 5.63750 0.6964719 3.24000 NA 37.77848
11 37 1.5116255 7.8138951 1.2463924 5.972227 0.0273721 0.6838916 0.0562838 5.33500 0.7809836 4.13125 0.6238953 4.04125 NA 37.77839
11 38 1.1091167 6.5611164 1.0146806 5.972227 0.0214688 1.0073213 -0.0002397 2.89375 0.8756197 4.00375 0.5117605 3.35250 NA 37.77832
12 1 1.5317122 5.9222270 1.2010468 5.972227 0.0271759 1.0766926 0.0369898 2.20500 0.8817968 3.42000 0.4686812 2.82625 55.466327 24.99507
12 2 0.9494142 7.3805615 0.7907993 5.972227 0.0162655 0.5526614 0.0962598 2.22000 0.8405267 3.33250 0.5495368 3.18625 55.466341 24.99495
12 3 1.8289581 6.7361165 1.2916214 5.972227 0.0289222 0.6016205 0.1439721 2.72500 0.9702555 4.54500 0.4131401 2.77625 55.466237 24.99509
12 4 1.4491416 7.2305613 1.1494059 5.972227 0.0242950 0.8291323 0.1022639 5.28250 0.7831222 3.58125 0.6324542 3.22125 55.467426 24.99350
12 5 0.9832579 6.7611165 0.8234724 5.972227 0.0159022 0.4429989 0.0902242 2.31625 0.6585362 2.87750 0.7471757 2.71000 55.466369 24.99495
12 6 1.5534563 7.5611172 1.2191317 5.972227 0.0270324 1.1170212 0.1392228 2.14625 0.9397935 3.41500 0.4311193 2.79625 NA -33.88911
12 7 1.1612825 6.4833385 0.9033328 5.972227 0.0188033 0.3642290 0.2487089 2.43750 0.8632247 3.52125 0.4800882 2.81000 NA -33.91136
12 8 1.2881722 6.0861160 0.9509165 5.972227 0.0216150 0.5077609 -0.0728238 3.12625 0.8550013 3.27000 0.5755418 2.74125 NA -33.88908
12 9 0.9208101 6.0055604 0.7450957 5.972227 0.0159731 0.5346195 0.1261637 3.28250 0.8286311 3.23000 0.5839443 2.98500 NA -33.88921
12 10 0.5906849 5.4638933 0.5075262 5.972227 0.0111849 0.3853480 0.1364192 2.10500 0.9141568 3.27375 0.4736513 2.29750 NA -33.88919
12 11 1.7574872 6.3166717 1.3597218 5.972227 0.0286302 0.7771652 0.1118927 2.22875 0.9241817 5.64875 0.4689100 4.37750 NA -28.06680
12 12 0.2839421 5.1000041 0.3173951 5.972227 0.0047023 0.1543443 0.0893622 1.17000 0.6110700 2.88625 0.7582538 1.80625 NA -28.06689
12 13 0.8442862 6.8527833 0.6764979 5.972227 0.0143523 0.4713960 0.1604644 2.19875 0.7395120 3.94375 0.6350952 3.12500 NA -28.06692
12 14 1.1971274 7.3750059 0.9554507 5.972227 0.0198408 0.3621393 0.0201827 1.94000 0.9229728 3.72625 0.4794067 2.72125 NA -28.06683
12 15 0.7360024 6.7111165 0.6277999 5.972227 0.0124005 0.3053537 -0.0185705 2.02500 0.9021039 3.45250 0.5200042 2.93125 NA 33.89125
12 16 0.2571896 6.0500048 0.3479206 5.972227 0.0050043 0.2613918 0.0133430 1.16625 0.6372913 3.21625 0.7524190 1.78500 NA 33.89138
12 17 1.0285164 6.5833386 0.8083718 5.972227 0.0175870 0.6644367 0.0568679 2.03750 0.7525020 4.63500 0.6558553 2.49125 NA 33.89125
12 18 1.6703015 7.7138951 1.2610552 5.972227 0.0293888 0.8222308 0.0494411 4.61250 0.7999963 3.41000 0.5830939 3.09875 NA 33.89119
12 19 1.3893127 6.5361163 1.1742685 5.972227 0.0232371 0.4709563 0.0073288 3.01875 0.9270253 3.51000 0.4657113 2.68625 NA 48.44322
12 20 1.1462011 7.2194502 0.9436154 5.972227 0.0201825 0.9102157 -0.0662833 2.74625 0.8263931 4.08500 0.5679369 2.80125 NA 48.44326
12 21 0.5325280 4.5500036 0.4330384 5.944449 0.0076133 0.1897717 0.0909617 1.03375 1.0166042 2.96625 0.3690787 1.72875 NA 48.44342
12 22 0.6908699 5.4027821 0.5469450 5.972227 0.0119049 1.0904904 0.0883288 3.54750 0.9494395 3.09750 0.4210574 2.88500 NA 48.44338
12 23 0.5114826 5.9916715 0.5137356 5.972227 0.0082373 0.2304807 0.2433538 1.80125 0.9677154 3.11500 0.3517069 1.99500 NA 48.44341
12 24 1.3893127 6.5361163 1.1742685 5.972227 0.0232371 0.4709563 0.0073288 3.01875 0.9270253 3.51000 0.4657113 2.68625 NA 48.44322
12 25 1.1462011 7.2194502 0.9436154 5.972227 0.0201825 0.9102157 -0.0662833 2.74625 0.8263931 4.08500 0.5679369 2.80125 NA 48.44326
12 26 0.5325280 4.5500036 0.4330384 5.944449 0.0076133 0.1897717 0.0909617 1.03375 1.0166042 2.96625 0.3690787 1.72875 NA 48.44342
12 27 0.6908699 5.4027821 0.5469450 5.972227 0.0119049 1.0904904 0.0883288 3.54750 0.9494395 3.09750 0.4210574 2.88500 NA 48.44338
12 28 0.5114826 5.9916710 0.5137356 5.972227 0.0082373 0.2304807 0.2433538 1.80125 0.9677154 3.11500 0.3517069 1.99500 NA 48.44341
12 29 NaN -Inf NaN -Inf NaN -Inf NaN -Inf NaN -Inf NaN -Inf NaN NaN
12 30 NaN -Inf NaN -Inf NaN -Inf NaN -Inf NaN -Inf NaN -Inf NaN NaN
12 31 NaN -Inf NaN -Inf NaN -Inf NaN -Inf NaN -Inf NaN -Inf NaN NaN
12 32 NaN -Inf NaN -Inf NaN -Inf NaN -Inf NaN -Inf NaN -Inf NaN NaN
12 33 NaN -Inf NaN -Inf NaN -Inf NaN -Inf NaN -Inf NaN -Inf NaN NaN
12 34 NaN -Inf NaN -Inf NaN -Inf NaN -Inf NaN -Inf NaN -Inf NaN NaN
12 35 NaN -Inf NaN -Inf NaN -Inf NaN -Inf NaN -Inf NaN -Inf NaN NaN
12 36 NaN -Inf NaN -Inf NaN -Inf NaN -Inf NaN -Inf NaN -Inf NaN NaN
12 37 NaN -Inf NaN -Inf NaN -Inf NaN -Inf NaN -Inf NaN -Inf NaN NaN
12 38 NaN -Inf NaN -Inf NaN -Inf NaN -Inf NaN -Inf NaN -Inf NaN NaN
13 1 0.7086484 7.9944508 0.6568116 5.972227 0.0124926 0.6293921 -0.1313179 4.06625 0.6819531 3.82375 0.7008132 3.71750 55.466533 24.99492
13 2 1.4340241 7.5055616 1.1263311 5.972227 0.0227817 1.3397510 -0.0949296 5.29625 0.8732704 3.56250 0.4908900 6.14625 55.466301 24.99498
13 3 1.0268066 6.8583388 0.8534069 5.972227 0.0170019 0.7425104 -0.0227386 2.78000 0.7766204 3.75250 0.6029652 3.01250 55.466291 24.99493
13 4 0.5683718 6.6500053 0.4860180 5.972227 0.0097190 0.4359716 0.0202937 1.79625 0.7016536 4.01000 0.6661885 2.19375 55.467239 24.99364
13 5 1.2137886 7.9138952 1.0095475 5.972227 0.0216776 0.7717520 -0.0490947 5.29250 0.7662189 5.06000 0.5765227 3.62875 55.466441 24.99502
13 6 1.7625569 7.9055619 1.2602271 5.944449 0.0284930 0.5177363 0.0214877 3.09750 0.9142350 3.67250 0.4697512 3.11625 NA -33.88915
13 7 0.7579863 7.6111172 0.6600505 5.972227 0.0119833 0.4305906 0.0517049 2.32375 0.7510457 3.88375 0.6306099 2.23000 NA -33.88912
13 8 0.9760361 6.9333389 0.7762114 5.972227 0.0170796 0.7315690 -0.0067090 5.37625 0.7284776 4.02750 0.6512477 2.70500 NA -33.88907
13 9 0.8600713 6.5000052 0.6816843 5.944449 0.0153741 0.4777941 0.0301594 2.27500 0.7311711 4.41500 0.6408405 3.87375 NA -33.88909
13 10 0.6066848 6.1500049 0.6169450 5.972227 0.0110632 0.4629449 0.0193191 3.27375 0.7642672 4.03500 0.5830722 3.46375 NA -33.88907
13 11 1.6460324 7.5416727 1.3336619 5.972227 0.0259985 0.6895121 0.0642187 3.59875 0.8943769 4.10125 0.4776744 3.88125 NA -28.06681
13 12 0.4865385 6.3138939 0.5082294 5.972227 0.0090287 0.3172676 -0.0395360 1.62000 0.6738551 3.89625 0.6402601 2.34250 NA -28.06680
13 13 0.9351577 7.1027835 0.7736045 5.972227 0.0161558 0.7294702 0.0076025 4.15875 0.7478319 3.58375 0.5844463 2.66375 NA -28.06685
13 14 0.9139146 7.0666723 0.7983908 5.972227 0.0154935 0.5144972 0.0932839 2.36500 0.7145270 3.80500 0.6558845 2.80125 NA -28.06677
13 15 0.8674478 7.7361173 0.7584253 5.972227 0.0147708 0.9073337 -0.0144591 3.69500 0.9001129 3.83500 0.4435967 3.42625 NA 33.89121
13 16 0.3883882 5.8583380 0.4805657 5.972227 0.0072451 1.3204150 0.1725913 2.04000 0.7859103 3.42000 0.5732870 4.26500 NA 33.89124
13 17 0.8543480 7.4333393 0.7324242 5.972227 0.0140349 0.4754795 0.1581374 3.30500 0.9406755 3.80000 0.3691779 2.82250 NA 33.89125
13 18 0.8834315 7.7027839 0.7458392 5.972227 0.0150391 0.9217481 0.1373066 2.42750 0.8968046 3.50875 0.4270756 3.81625 NA 33.89119
13 19 0.5492168 7.5416727 0.5543088 5.972227 0.0099858 0.4388044 -0.0026202 3.37500 0.7394608 3.35500 0.6536148 4.79875 NA 48.44335
13 20 0.9390311 6.7805610 0.8456086 5.972227 0.0153122 0.5670944 0.0928037 2.03125 0.8231930 3.38000 0.5249091 2.39250 NA 48.44327
13 21 1.6115505 7.5388949 1.2325616 5.972227 0.0258400 0.9719175 0.0404612 1.93000 0.8796638 5.33750 0.4606881 3.26875 NA 48.44318
13 22 1.0446212 7.5277838 0.8777201 5.972227 0.0171099 0.5619848 0.0796671 2.27750 0.8117948 3.95625 0.5411896 3.68875 NA 48.43848
13 23 1.1852722 7.2194502 1.0424440 5.972227 0.0200475 0.8375829 0.1135275 3.64000 0.8192021 3.27500 0.5115429 3.55625 NA 48.44318
13 24 0.5492168 7.5416727 0.5543088 5.972227 0.0099858 0.4388044 -0.0026202 3.37500 0.7394608 3.35500 0.6536148 4.79875 NA 48.44335
13 25 0.9390311 6.7805610 0.8456086 5.972227 0.0153122 0.5670944 0.0928037 2.03125 0.8231930 3.38000 0.5249091 2.39250 NA 48.44327
13 26 1.6115505 7.5388949 1.2325616 5.972227 0.0258400 0.9719175 0.0404612 1.93000 0.8796638 5.33750 0.4606881 3.26875 NA 48.44318
13 27 1.0446212 7.5277838 0.8777201 5.972227 0.0171099 0.5619848 0.0796671 2.27750 0.8117948 3.95625 0.5411896 3.68875 NA 48.43848
13 28 1.1852722 7.2194500 1.0424440 5.972227 0.0200475 0.8375829 0.1135275 3.64000 0.8192021 3.27500 0.5115429 3.55625 NA 48.44318
13 29 0.9217842 6.4638941 0.7830075 5.972227 0.0152935 0.4237865 0.0609207 1.96750 0.7712458 4.87750 0.6085980 2.47875 2.253004 48.84344
13 30 1.0943285 7.8805619 0.9669524 5.972227 0.0171526 0.4861889 0.0905367 2.02500 0.8324852 4.02000 0.5366646 2.62250 2.253000 48.84342
13 31 0.8237267 7.3861170 0.7664810 5.972227 0.0130955 0.5137256 -0.0031486 3.12000 0.7623328 4.06750 0.6036246 2.56125 2.252894 48.84343
13 32 1.0298464 6.8138943 0.9300777 5.972227 0.0248156 0.5074810 -0.0662261 3.05250 0.7844801 4.14500 0.5519643 2.96500 2.252896 48.84188
13 33 1.0030908 6.1416716 0.9405807 5.972227 0.0184188 0.6599390 0.0996191 4.74250 0.7177374 3.64125 0.5998427 2.99500 2.252819 48.84344
13 34 0.9170059 7.0972279 0.8688187 5.972227 0.0176882 0.6459781 -0.0655496 3.63250 0.8050445 4.03250 0.5043159 3.86000 2.252965 48.84339
13 35 0.8843174 7.1527835 0.7647131 5.944449 0.0140202 0.7088621 0.0553723 2.10000 0.7903803 3.50625 0.5366065 3.98250 NA 37.77841
13 36 0.6083778 7.1027835 0.5725092 5.972227 0.0114373 0.6612275 0.0091233 2.57250 0.7625051 3.42875 0.5485146 3.24125 NA 37.77833
13 37 1.0489711 7.0305612 0.8548164 5.972227 0.0167835 0.5190046 0.0417698 2.28000 0.7872980 4.05750 0.5217253 2.62875 NA 37.77832
13 38 1.0075963 7.0861168 0.8982270 5.972227 0.0175849 0.8638630 -0.0317937 4.11500 0.7633057 4.58375 0.5617262 3.17625 NA 37.77827
14 1 NaN -Inf NaN -Inf NaN -Inf NaN -Inf NaN -Inf NaN -Inf NaN NaN
14 2 NaN -Inf NaN -Inf NaN -Inf NaN -Inf NaN -Inf NaN -Inf NaN NaN
14 3 NaN -Inf NaN -Inf NaN -Inf NaN -Inf NaN -Inf NaN -Inf NaN NaN
14 4 0.6377253 7.7055617 0.7464310 5.972227 0.0095990 0.4327672 0.2053272 2.72500 -0.9242350 1.90875 -0.4873860 0.63875 NA 48.44319
14 5 NaN -Inf NaN -Inf NaN -Inf NaN -Inf NaN -Inf NaN -Inf NaN NaN
14 6 0.0416681 1.7055569 0.1329170 5.972227 0.0022288 0.0736065 -0.0419610 0.64875 -0.5264696 1.17125 -0.9192757 -0.14375 NA -33.88899
14 7 0.3230153 6.0027826 0.3518655 5.972227 0.0056886 0.3324170 0.0255684 1.99000 0.6401134 3.28875 -0.8151680 0.24000 NA -33.88920
14 8 0.4819424 5.2000042 0.4447155 5.916671 0.0078794 0.1868925 -0.1484562 1.38375 0.5442074 2.47625 0.8160232 2.07750 NA -33.88902
14 9 0.5513227 6.0611160 0.5581690 5.972227 0.0096064 0.5020010 0.0404796 3.49375 0.5003206 2.31875 -0.9205619 1.54250 NA -33.91742
14 10 0.5134479 6.1555605 0.5286291 5.944449 0.0093641 0.3643553 -0.0789089 2.20500 -0.6091450 1.95625 -0.8535101 0.51500 NA -33.88914
14 11 NaN -Inf NaN -Inf NaN -Inf NaN -Inf NaN -Inf NaN -Inf NaN NaN
14 12 NaN -Inf NaN -Inf NaN -Inf NaN -Inf NaN -Inf NaN -Inf NaN NaN
14 13 NaN -Inf NaN -Inf NaN -Inf NaN -Inf NaN -Inf NaN -Inf NaN NaN
14 14 NaN -Inf NaN -Inf NaN -Inf NaN -Inf NaN -Inf NaN -Inf NaN NaN
14 15 1.5295857 6.7277832 1.1633056 5.972227 0.0276625 0.8877345 0.0337197 3.38125 -0.8229386 2.99625 -0.6103788 2.81500 NA 33.89115
14 16 1.1968628 7.6944506 1.0263181 5.916671 0.0234457 0.9700126 -0.0181918 3.43000 0.7556461 3.34375 -0.6551101 2.44875 NA 33.89120
14 17 1.0090596 6.8666722 0.8030407 5.944449 0.0176351 0.3879623 0.0196302 2.01375 -0.8473744 2.11500 -0.6416071 0.59125 NA 33.89131
14 18 1.1629186 8.0500064 0.9432846 5.972227 0.0213152 1.1212616 -0.0434660 2.58375 -0.8488769 2.60125 -0.6467696 3.38125 NA 33.89121
14 19 NaN -Inf NaN -Inf NaN -Inf NaN -Inf NaN -Inf NaN -Inf NaN NaN
14 20 NaN -Inf NaN -Inf NaN -Inf NaN -Inf NaN -Inf NaN -Inf NaN NaN
14 21 NaN -Inf NaN -Inf NaN -Inf NaN -Inf NaN -Inf NaN -Inf NaN NaN
14 22 NaN -Inf NaN -Inf NaN -Inf NaN -Inf NaN -Inf NaN -Inf NaN NaN
14 23 NaN -Inf NaN -Inf NaN -Inf NaN -Inf NaN -Inf NaN -Inf NaN NaN
14 24 NaN -Inf NaN -Inf NaN -Inf NaN -Inf NaN -Inf NaN -Inf NaN NaN
14 25 NaN -Inf NaN -Inf NaN -Inf NaN -Inf NaN -Inf NaN -Inf NaN NaN
14 26 NaN -Inf NaN -Inf NaN -Inf NaN -Inf NaN -Inf NaN -Inf NaN NaN
14 27 NaN -Inf NaN -Inf NaN -Inf NaN -Inf NaN -Inf NaN -Inf NaN NaN
14 28 NaN -Inf NaN -Inf NaN -Inf NaN -Inf NaN -Inf NaN -Inf NaN NaN
14 29 0.5353562 7.3527837 0.5624323 5.972227 0.0100746 0.3378143 0.1838901 2.73875 -0.7830200 1.59875 -0.6649805 0.53000 2.253119 48.84354
14 30 0.6733223 7.4722282 0.7358816 5.972227 0.0132944 1.3126463 0.0986007 2.36125 -0.8317486 2.63000 -0.6047626 1.13625 2.253060 48.84352
14 31 0.4330630 5.7611157 0.4524920 5.944449 0.0072656 0.2499178 -0.0584165 0.96750 0.8379525 3.22500 -0.6460837 0.81125 2.252956 48.84371
14 32 0.4480549 7.1194501 0.4705382 5.972227 0.0086043 0.4439378 0.0163073 1.42625 -0.6989945 1.57000 -0.7950503 0.61000 2.252898 48.84369
14 33 NaN -Inf NaN -Inf NaN -Inf NaN -Inf NaN -Inf NaN -Inf NaN NaN
14 34 NaN -Inf NaN -Inf NaN -Inf NaN -Inf NaN -Inf NaN -Inf NaN NaN
14 35 0.5376443 5.6444490 0.5394507 5.944449 0.0082885 0.4046542 0.0776518 2.22875 0.7339043 2.60250 -0.7935689 0.17750 NA 37.77832
14 36 0.2585033 5.2416709 0.3739303 5.888894 0.0045323 0.1554146 0.1686718 1.28625 0.7450578 2.77375 -0.7610783 0.58375 NA 37.77829
14 37 0.1987647 4.2638923 0.2895898 5.944449 0.0036334 0.1791414 0.0110991 1.09625 -0.7837030 1.36250 -0.7355293 0.22500 NA 37.77819
14 38 0.6960191 7.4333393 0.6638147 5.972227 0.0116856 0.8760604 -0.1634317 2.26125 -0.6020071 2.83875 -0.8418335 1.46750 NA 37.77824
15 1 NaN -Inf NaN -Inf NaN -Inf NaN -Inf NaN -Inf NaN -Inf NaN NaN
15 2 NaN -Inf NaN -Inf NaN -Inf NaN -Inf NaN -Inf NaN -Inf NaN NaN
15 3 NaN -Inf NaN -Inf NaN -Inf NaN -Inf NaN -Inf NaN -Inf NaN NaN
15 4 0.4508549 4.6972260 0.7311369 5.944449 0.0069219 0.3001736 -0.0701699 2.46375 0.9276792 3.00875 0.4412328 3.02000 NA 48.44313
15 5 NaN -Inf NaN -Inf NaN -Inf NaN -Inf NaN -Inf NaN -Inf NaN NaN
15 6 NaN -Inf NaN -Inf NaN -Inf NaN -Inf NaN -Inf NaN -Inf NaN NaN
15 7 NaN -Inf NaN -Inf NaN -Inf NaN -Inf NaN -Inf NaN -Inf NaN NaN
15 8 NaN -Inf NaN -Inf NaN -Inf NaN -Inf NaN -Inf NaN -Inf NaN NaN
15 9 NaN -Inf NaN -Inf NaN -Inf NaN -Inf NaN -Inf NaN -Inf NaN NaN
15 10 NaN -Inf NaN -Inf NaN -Inf NaN -Inf NaN -Inf NaN -Inf NaN NaN
15 11 NaN -Inf NaN -Inf NaN -Inf NaN -Inf NaN -Inf NaN -Inf NaN NaN
15 12 NaN -Inf NaN -Inf NaN -Inf NaN -Inf NaN -Inf NaN -Inf NaN NaN
15 13 NaN -Inf NaN -Inf NaN -Inf NaN -Inf NaN -Inf NaN -Inf NaN NaN
15 14 NaN -Inf NaN -Inf NaN -Inf NaN -Inf NaN -Inf NaN -Inf NaN NaN
15 15 NaN -Inf NaN -Inf NaN -Inf NaN -Inf NaN -Inf NaN -Inf NaN NaN
15 16 NaN -Inf NaN -Inf NaN -Inf NaN -Inf NaN -Inf NaN -Inf NaN NaN
15 17 NaN -Inf NaN -Inf NaN -Inf NaN -Inf NaN -Inf NaN -Inf NaN NaN
15 18 NaN -Inf NaN -Inf NaN -Inf NaN -Inf NaN -Inf NaN -Inf NaN NaN
15 19 0.9939897 6.5777830 0.8242145 5.972227 0.0169931 0.6332761 0.1491897 3.04750 0.9459862 3.21500 0.3474349 3.74125 NA 48.44328
15 20 0.6190476 6.9194500 0.5906588 5.972227 0.0117472 0.9983788 -0.0362221 4.23250 0.9474491 3.44750 0.3528362 2.51125 NA 48.44334
15 21 0.0993496 4.3638924 0.2218412 5.944449 0.0029483 0.1469528 -0.1496917 1.19000 0.9555287 3.28750 0.3376195 2.03125 NA 48.44346
15 22 1.1148425 6.9888945 0.9705510 5.972227 0.0186096 0.6701419 0.2730343 4.56250 0.8373919 4.28125 0.4735550 4.96500 NA 48.44330
15 23 0.5385065 6.2638939 0.6306015 5.972227 0.0098531 0.7277127 -0.0973510 2.58625 0.9530010 4.34375 0.3310978 3.41125 NA 48.44341
15 24 0.9939897 6.5777830 0.8242145 5.972227 0.0169931 0.6332761 0.1491897 3.04750 0.9459862 3.21500 0.3474349 3.74125 NA 48.44328
15 25 0.6190476 6.9194500 0.5906588 5.972227 0.0117472 0.9983788 -0.0362221 4.23250 0.9474491 3.44750 0.3528362 2.51125 NA 48.44334
15 26 0.0993496 4.3638924 0.2218412 5.944449 0.0029483 0.1469528 -0.1496917 1.19000 0.9555287 3.28750 0.3376195 2.03125 NA 48.44346
15 27 1.1148425 6.9888945 0.9705510 5.972227 0.0186096 0.6701419 0.2730343 4.56250 0.8373919 4.28125 0.4735550 4.96500 NA 48.44330
15 28 0.5385065 6.2638939 0.6306015 5.972227 0.0098531 0.7277127 -0.0973510 2.58625 0.9530010 4.34375 0.3310978 3.41125 NA 48.44341
15 29 0.0701438 6.2694495 0.1725099 5.861116 0.0031321 0.4866520 0.2434423 2.96000 0.8307119 2.89750 0.5550796 2.49625 2.253154 48.84357
15 30 0.7448162 8.2833400 0.6270627 5.972227 0.0114504 0.3921290 -0.5363607 1.69500 -0.6843966 2.04875 0.6035908 2.48250 2.253020 48.84350
15 31 0.6012971 6.9750056 0.5968628 5.972227 0.0116229 0.7316344 -0.0325727 4.96125 -0.6765442 3.44875 0.8080612 5.38875 2.252916 48.84360
15 32 0.1768045 4.9416706 0.2723005 5.972227 0.0037208 0.1568199 0.0383727 0.97500 0.8365404 2.53375 0.5720354 2.42500 2.252817 48.84364
15 33 0.7629832 6.9027833 0.6916858 5.972227 0.0120069 1.0058732 0.1208272 2.54000 0.6394220 2.71000 0.7635335 3.28625 2.252993 48.84181
15 34 0.8438236 7.3916726 0.8438710 5.972227 0.0138968 0.7468799 -0.4014126 3.54000 0.6598724 3.34875 0.6041442 4.81000 2.253108 48.84345
15 35 0.8195450 7.9305619 0.7590966 5.972227 0.0125037 1.1737915 -0.0068675 3.22625 0.5713335 3.62750 0.8126175 3.68250 NA 37.77843
15 36 0.4853367 7.1750057 0.5461402 5.944449 0.0096385 1.4692570 -0.2158933 3.11750 0.8145594 4.46125 0.5265242 5.05000 NA 37.77834
15 37 0.7984787 5.4722266 0.6581168 5.972227 0.0113894 0.6278977 0.5869414 3.30125 0.5711441 2.62000 0.5826168 2.89875 NA 37.77824
15 38 1.0186470 7.0472279 0.9212152 5.972227 0.0146039 0.7144199 0.0112076 2.62375 0.7775361 3.52250 0.6064757 3.17125 NA 37.77677
16 1 NaN -Inf NaN -Inf NaN -Inf NaN -Inf NaN -Inf NaN -Inf NaN NaN
16 2 NaN -Inf NaN -Inf NaN -Inf NaN -Inf NaN -Inf NaN -Inf NaN NaN
16 3 NaN -Inf NaN -Inf NaN -Inf NaN -Inf NaN -Inf NaN -Inf NaN NaN
16 4 0.7784708 7.6416728 0.8516172 5.972227 0.0105336 0.3161747 -0.2232197 1.98625 0.9479813 3.12625 0.3535472 2.42000 NA 48.44314
16 5 NaN -Inf NaN -Inf NaN -Inf NaN -Inf NaN -Inf NaN -Inf NaN NaN
16 6 NaN -Inf NaN -Inf NaN -Inf NaN -Inf NaN -Inf NaN -Inf NaN NaN
16 7 NaN -Inf NaN -Inf NaN -Inf NaN -Inf NaN -Inf NaN -Inf NaN NaN
16 8 NaN -Inf NaN -Inf NaN -Inf NaN -Inf NaN -Inf NaN -Inf NaN NaN
16 9 NaN -Inf NaN -Inf NaN -Inf NaN -Inf NaN -Inf NaN -Inf NaN NaN
16 10 NaN -Inf NaN -Inf NaN -Inf NaN -Inf NaN -Inf NaN -Inf NaN NaN
16 11 0.8994106 6.6444498 0.7114886 5.916671 0.0137232 0.8291391 -0.0473608 3.39250 0.6806688 2.97250 0.7796164 3.88750 NA -28.06674
16 12 0.3538306 6.2694495 0.3006622 5.972227 0.0054188 0.4554412 0.3179215 2.31500 0.7397361 2.99500 0.6461013 1.72125 NA -28.06684
16 13 0.7707168 8.0416731 0.6767776 5.972227 0.0125495 0.7783470 0.0971228 2.46750 0.6845153 4.24000 0.7509543 2.77625 NA -28.06692
16 14 0.8409802 5.8194491 0.7075947 5.972227 0.0129587 0.7045349 0.0388872 2.23375 0.6820330 3.77875 0.7499324 5.75750 NA -28.06678
16 15 0.2786096 4.3638924 0.3405567 5.972227 0.0044231 0.1430552 -0.1510616 0.88000 0.7286120 2.15750 0.6796911 2.04375 NA 33.89138
16 16 0.9043969 6.2166716 0.7781261 5.972227 0.0133731 1.1144405 -0.1597973 4.24250 0.5487720 3.14250 0.7803290 3.05250 NA 33.89125
16 17 1.0710210 6.9777834 0.8673028 5.972227 0.0162114 0.6671621 -0.0286152 2.96375 0.7203143 3.16125 0.6696227 2.49000 NA 33.89119
16 18 1.1542069 6.1833383 0.8917922 5.972227 0.0165398 0.4828424 -0.0853596 1.78750 0.8911479 3.31750 0.4678468 2.26375 NA 33.89120
16 19 1.3145971 7.1388946 1.0882653 5.972227 0.0200753 1.0088555 0.3518684 3.28875 0.8061241 3.65500 0.4662357 3.08250 NA 48.44319
16 20 0.9717359 6.1833383 0.8582689 5.972227 0.0170737 0.5914368 -0.0606543 5.42125 -0.9123931 3.31250 0.4562554 3.68250 NA 48.44326
16 21 0.1372092 4.3333368 0.2857867 5.944449 0.0042073 0.1817527 -0.0662815 0.66000 0.7571685 4.46250 0.6900393 3.19500 NA 48.44344
16 22 1.9428921 7.2138947 1.3175444 5.972227 0.0278602 0.8150707 -0.1416320 5.11875 0.6091637 3.75875 0.7493801 3.27125 NA 48.44309
16 23 1.0676130 7.1500057 0.9035944 5.972227 0.0163990 0.7333412 -0.2248847 2.09375 0.8870120 3.34875 0.4211207 2.16875 NA 48.44329
16 24 1.3145971 7.1388946 1.0882653 5.972227 0.0200753 1.0088555 0.3518684 3.28875 0.8061241 3.65500 0.4662357 3.08250 NA 48.44319
16 25 0.9717359 6.1833383 0.8582689 5.972227 0.0170737 0.5914368 -0.0606543 5.42125 -0.9123931 3.31250 0.4562554 3.68250 NA 48.44326
16 26 0.1372092 4.3333368 0.2857867 5.944449 0.0042073 0.1817527 -0.0662815 0.66000 0.7571685 4.46250 0.6900393 3.19500 NA 48.44344
16 27 1.9428921 7.2138947 1.3175444 5.972227 0.0278602 0.8150707 -0.1416320 5.11875 0.6091637 3.75875 0.7493801 3.27125 NA 48.44309
16 28 1.0676130 7.1500057 0.9035944 5.972227 0.0163990 0.7333412 -0.2248847 2.09375 0.8870120 3.34875 0.4211207 2.16875 NA 48.44329
16 29 1.0052458 6.7694499 0.8354933 5.972227 0.0158993 0.5775253 -0.1872562 2.69125 0.8237296 4.60500 0.5160688 1.89375 2.252981 48.84342
16 30 0.4364110 7.3694503 0.4873287 5.944449 0.0082633 0.9243608 -0.2282503 3.41500 0.6708100 3.85375 0.7039955 2.96500 2.253088 48.84357
16 31 0.8402851 7.4000059 0.7190946 5.972227 0.0141978 1.8814027 -0.0988433 3.95875 0.6750068 4.68500 0.7176745 3.11125 2.252877 48.84353
16 32 1.0726992 6.1861161 0.9132908 5.972227 0.0172027 0.6197147 -0.2491085 4.70875 0.8525535 3.97625 0.4514871 3.97125 2.252836 48.84346
16 33 0.4058759 4.7833372 0.4570657 5.944449 0.0057264 0.1452445 -0.2302242 1.11250 0.7333974 2.51375 0.6632129 1.89125 2.253117 48.84359
16 34 NaN -Inf NaN -Inf NaN -Inf NaN -Inf NaN -Inf NaN -Inf NaN NaN
16 35 1.5559953 6.5777830 1.1387313 5.972227 0.0229261 1.3509143 -0.0925608 6.79125 0.6697039 4.70750 0.6775574 3.41625 NA 37.77849
16 36 0.9433015 7.0083389 0.8711755 5.972227 0.0145691 0.5996859 -0.1473030 2.51875 0.8201102 3.55375 0.5495458 3.27000 NA 37.77842
16 37 0.8263417 7.4138948 0.6738465 5.972227 0.0131754 0.4463057 -0.2832569 1.92250 0.6550987 2.83750 0.6804955 2.62000 NA 37.77828
16 38 0.9069608 6.1583383 0.7921818 5.972227 0.0133971 0.4962002 -0.1951907 3.25625 0.6067869 3.40500 0.7295870 2.67375 NA 37.77830
nrow(out); 16*38
## [1] 608
## [1] 608

GPS Season Stats (Team/Game Level)

tournaments <- df.games %>% distinct(tour, game)

gps_season_stats <- out %>% group_by(game) %>% 
  summarise(avg_speed = mean(avg.speed, na.rm = TRUE),  
            avg_imp = mean(avg.acc.imp, na.rm = TRUE),  
            avg_load = mean(avg.acc.load, na.rm = TRUE), 
            avg_x = mean(avg.x, na.rm = TRUE), 
            avg_y = mean(avg.y, na.rm = TRUE),
            avg_z = mean(avg.z, na.rm = TRUE)) %>% 
  mutate_if(is.double, round, 4)

gps_season_stats <- cbind(tournaments$tour, gps_season_stats)

names(gps_season_stats) <- c("Tournament", "Game", "Average Speed",
                             "Average Impulse Accel",
                             "Average Acceleromator Load",
                             "Average X Acccel",
                             "Average Y Accel",
                             "Average Z Accel")
kable(gps_season_stats)
Tournament Game Average Speed Average Impulse Accel Average Acceleromator Load Average X Acccel Average Y Accel Average Z Accel
Dubai 1 1.0576 0.8996 0.0178 0.0296 0.7840 0.5956
Dubai 2 1.0696 0.8687 0.0175 0.0353 0.7837 0.5789
Dubai 3 1.2277 0.9464 0.0195 0.0488 0.8176 0.5647
Dubai 4 0.9689 0.8352 0.0157 0.0033 0.5908 0.4667
Dubai 5 1.1289 0.8071 0.0191 0.0653 0.7682 0.6118
Dubai 6 1.0971 0.8392 0.0183 0.0442 0.6474 0.4723
Sydney 7 1.0365 0.8489 0.0165 0.0647 0.7991 0.4400
Sydney 8 1.1448 0.8957 0.0194 -0.0298 0.7641 0.6253
Sydney 9 1.0355 0.8508 0.0171 0.0026 0.7350 0.4796
Sydney 10 1.0760 0.9114 0.0176 0.0511 0.5545 0.2075
Sydney 11 1.0825 0.8871 0.0180 0.0088 0.8050 0.4610
Sydney 12 0.9076 0.7936 0.0141 0.0117 0.7378 0.6367
Commonwealth 13 1.0329 0.8716 0.0162 -0.0023 0.7620 0.5929
Commonwealth 14 0.9497 0.8448 0.0150 -0.0007 0.8102 0.5792
Commonwealth 15 1.0225 0.8379 0.0166 -0.0082 0.5221 0.4917
Commonwealth 16 0.9487 0.8216 0.0153 -0.0407 0.7398 0.4199
Commonwealth 17 1.1611 0.9510 0.0192 0.0094 0.6395 0.4840
Kitakyushu 18 1.2456 0.9811 0.0207 0.0265 0.6787 0.4000
Kitakyushu 19 1.2164 1.0449 0.0205 -0.0065 0.8455 0.4900
Kitakyushu 20 1.1201 0.9673 0.0184 -0.0203 0.7119 0.4966
Kitakyushu 21 1.0977 0.9065 0.0181 -0.0201 0.8495 0.5172
Kitakyushu 22 1.2304 0.9935 0.0202 0.0336 0.8266 0.5351
Langford 23 1.1882 1.0171 0.0196 -0.0112 0.7424 0.4956
Langford 24 1.2164 1.0449 0.0205 -0.0065 0.8455 0.4900
Langford 25 1.1201 0.9673 0.0184 -0.0203 0.7119 0.4966
Langford 26 1.0977 0.9065 0.0181 -0.0201 0.8495 0.5172
Langford 27 1.2304 0.9935 0.0202 0.0336 0.8266 0.5351
Langford 28 1.1882 1.0171 0.0196 -0.0112 0.7424 0.4956
Paris 29 1.0308 0.9139 0.0171 -0.0123 0.5378 0.4906
Paris 30 1.0811 0.9199 0.0174 -0.0391 0.2432 0.4735
Paris 31 0.9820 0.8694 0.0162 -0.0154 0.6274 0.5204
Paris 32 1.0668 0.9427 0.0177 -0.0570 0.5400 0.4429
Paris 33 1.1111 0.9590 0.0175 -0.0286 0.7670 0.5989
Paris 34 1.1079 1.0482 0.0184 -0.0363 0.7618 0.5907
World Cup 35 1.1233 0.9306 0.0171 -0.0308 0.8071 0.4491
World Cup 36 1.0994 0.9924 0.0180 -0.0476 0.7835 0.4654
World Cup 37 1.0393 0.8511 0.0160 -0.0087 0.6443 0.4685
World Cup 38 1.0681 0.9567 0.0174 -0.0723 0.6623 0.4635

Player GPS Stats (Individual/Season Level)

player_gps_season_stats <- out %>% 
  group_by(player) %>% 
  summarise(games = sum(is.finite(max.speed)), 
            avg_speed = mean(avg.speed, na.rm = TRUE), 
            max_speed = max(max.speed, na.rm = TRUE), 
            avg_imp = mean(avg.acc.imp, na.rm = TRUE), 
            max_imp = max(max.imp, na.rm = TRUE), 
            avg_load = mean(avg.acc.load, na.rm = TRUE), 
            max_load = max(max.load, na.rm = TRUE), 
            avg_x = mean(avg.x, na.rm = TRUE), 
            max_x = max(max.x, na.rm = TRUE), 
            avg_y = mean(avg.y, na.rm = TRUE), 
            max_y = max(max.y, na.rm = TRUE), 
            avg_z = mean(avg.z, na.rm = TRUE), 
            max_z = max(max.z, na.rm = TRUE)) %>% 
  mutate_if(is.double, round, 4)

names(player_gps_season_stats) <- c("Player ID", "Games Played",  
                                    "Average Speed", "Max Speed", 
                                    "Average Impulse Accel", "Max Impulse Accel", 
                                    "Average Acceleromator Load", "Max Acceleromator Load", 
                                    "Average X Acccel", "Max X Accel", 
                                    "Average Y Accel", "Max Y Accel", 
                                    "Average Z Accel", "Max Z Accel")
kable(player_gps_season_stats, 
      caption = "Women's Sevens Rugby GPS Stats (Team Canada, 2017-2018 Season)")

Women’s Sevens Rugby GPS Stats (Team Canada, 2017-2018 Season)

Player ID Games Played Average Speed Max Speed Average Impulse Accel Max Impulse Accel Average Acceleromator Load Max Acceleromator Load Average X Acccel Max X Accel Average Y Accel Max Y Accel Average Z Accel Max Z Accel
1 28 1.4724 8.6500 1.2091 5.9722 0.0236 1.5673 -0.1254 6.9437 0.5116 7.3025 0.6817 6.0175
2 38 1.0501 8.6945 0.8877 5.9722 0.0207 1.3478 0.0517 6.1000 0.7680 6.4450 0.5275 4.8650
3 26 1.2723 8.8889 0.9888 5.9722 0.0166 1.2495 0.0181 8.5887 0.8042 5.2663 0.4714 7.1350
4 37 1.1875 8.6750 1.1087 5.9722 0.0182 1.1994 -0.0108 8.3737 0.8427 5.8637 0.5460 4.8900
5 28 0.9507 9.0167 0.8268 5.9722 0.0140 1.4836 -0.0792 6.0025 0.8238 4.9313 0.3999 5.6837
6 5 0.7413 8.3750 0.6542 5.9722 0.0123 0.8276 -0.0600 3.6113 0.6770 3.3300 0.7570 3.7750
7 34 1.2955 8.7667 1.0910 5.9722 0.0215 1.6284 0.0535 7.5538 0.7771 5.7512 0.5193 4.0062
8 34 1.1586 8.9611 0.9519 5.9722 0.0189 1.3862 -0.0256 7.4125 0.7501 5.9325 0.5978 7.2562
9 10 0.9950 7.9083 0.7811 5.9722 0.0163 1.7706 -0.0079 3.7388 0.5486 4.4950 0.6627 4.6612
10 26 1.3231 8.9083 0.9968 5.9722 0.0207 1.6814 0.0164 6.4300 0.7498 5.8438 0.5118 5.9100
11 38 1.1775 8.6333 0.9511 5.9722 0.0203 2.0721 -0.0041 6.1513 0.8114 5.6375 0.6217 5.3400
12 28 1.0204 7.7139 0.8271 5.9722 0.0172 1.1170 0.0806 5.2825 0.8643 5.6487 0.5200 4.3775
13 38 0.9708 7.9945 0.8345 5.9722 0.0165 1.3398 0.0330 5.3762 0.7939 5.3375 0.5564 6.1463
14 18 0.6238 8.0500 0.5993 5.9722 0.0112 1.3126 0.0182 3.4937 -0.1956 3.3438 -0.6431 3.3813
15 21 0.6431 8.2833 0.6331 5.9722 0.0110 1.4693 0.0007 4.9612 0.6927 4.4612 0.5029 5.3887
16 28 0.9255 8.0417 0.7829 5.9722 0.0144 1.8814 -0.0799 6.7912 0.6223 4.7075 0.6119 5.7575

Spatio-Temporal Visualization

gps <- fread("data/raw/gps.csv")
names(gps) <- c("game", "half", "player", 
                "frame", "time", "game.time", 
                "speed", "accel.impulse", "accel.load", 
                "accel.x", "accel.y", "accel.z", 
                "longitude", "latitude")
df <- gps[gps$game == 1 & gps$player != 10,]

df$t <- as.difftime(df$time, units = "secs")
df$latitude <- c(scale(df$latitude))
df$longitude <- c(scale(df$longitude))

options(gganimate.fps = 20, gganimate.nframes = 400) 
ggplot(df, aes(x = latitude, y = longitude, col = as.factor(player), alpha = 0.3)) + 
  geom_point() + 
  transition_time(t) + 
  shadow_wake(wake_length = 0.025, alpha = FALSE) + 
  guides(alpha = FALSE)