José Manuel Canales López cl12025
21/3/2019
##
## Attaching package: 'dplyr'
## The following objects are masked from 'package:stats':
##
## filter, lag
## The following objects are masked from 'package:base':
##
## intersect, setdiff, setequal, union
## Parsed with column specification:
## cols(
## X1 = col_double(),
## X2 = col_double(),
## Y = col_double()
## )
## # A tibble: 6 x 3
## X1 X2 Y
## <dbl> <dbl> <dbl>
## 1 3.92 7298 0.75
## 2 3.61 6855 0.71
## 3 3.32 6636 0.66
## 4 3.07 6506 0.61
## 5 3.06 6450 0.7
## 6 3.11 6402 0.72
##
## Please cite as:
## Hlavac, Marek (2018). stargazer: Well-Formatted Regression and Summary Statistics Tables.
## R package version 5.2.2. https://CRAN.R-project.org/package=stargazer
##
## Call:
## lm(formula = Y ~ X1 + X2, data = ejemplo_regresion)
##
## Residuals:
## Min 1Q Median 3Q Max
## -0.085090 -0.039102 -0.003341 0.030236 0.105692
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 1.56449677 0.07939598 19.705 0.00000000000000182 ***
## X1 0.23719747 0.05555937 4.269 0.000313 ***
## X2 -0.00024908 0.00003205 -7.772 0.00000009508790794 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.0533 on 22 degrees of freedom
## Multiple R-squared: 0.8653, Adjusted R-squared: 0.8531
## F-statistic: 70.66 on 2 and 22 DF, p-value: 0.000000000265
##
## Ejemplo de Regresión Multiple
## ===============================================
## Dependent variable:
## ---------------------------
## Y
## -----------------------------------------------
## X1 0.23719750***
## (0.05555937)
##
## X2 -0.00024908***
## (0.00003205)
##
## Constant 1.56449700***
## (0.07939598)
##
## -----------------------------------------------
## Observations 25
## R2 0.86529610
## Adjusted R2 0.85305030
## Residual Std. Error 0.05330222 (df = 22)
## F Statistic 70.66057000*** (df = 2; 22)
## ===============================================
## Note: *p<0.1; **p<0.05; ***p<0.01
#Vector de Coeficientes estimados βˆ:
## (Intercept) X1 X2
## 1.5644967711 0.2371974748 -0.0002490793
#Matriz de Varianza - Covarianza de los parametros V[β]
## (Intercept) X1 X2
## (Intercept) 0.0063037218732 0.000240996434 -0.000000982806321
## X1 0.0002409964344 0.003086843196 -0.000001675537651
## X2 -0.0000009828063 -0.000001675538 0.000000001027106
#Intervalos de confianza
## 2.5 % 97.5 %
## (Intercept) 1.3998395835 1.7291539588
## X1 0.1219744012 0.3524205485
## X2 -0.0003155438 -0.0001826148
#Valores Ajustados Yˆ
## [,1]
## 1 0.6765303
## 2 0.7133412
## 3 0.6991023
## 4 0.6721832
## 5 0.6837597
## 6 0.7075753
## 7 0.7397638
## 8 0.7585979
## 9 0.7943078
## 10 0.7935605
## 11 0.7984347
## 12 0.8272778
## 13 0.8021665
## 14 0.7992462
## 15 0.7544349
## 16 0.7339716
## 17 0.7048866
## 18 0.6930338
## 19 0.6350898
## 20 0.6127185
## 21 0.5701215
## 22 0.4796371
## 23 0.4374811
## 24 0.3953981
## 25 0.3773799
#Residuos del Modelo ϵˆ
## [,1]
## [1,] 0.073469743
## [2,] -0.003341163
## [3,] -0.039102258
## [4,] -0.062183196
## [5,] 0.016240338
## [6,] 0.012424659
## [7,] 0.030236216
## [8,] -0.018597878
## [9,] 0.105692240
## [10,] 0.026439478
## [11,] -0.048434733
## [12,] -0.057277771
## [13,] -0.022166535
## [14,] 0.040753758
## [15,] 0.035565142
## [16,] -0.033971640
## [17,] -0.024886579
## [18,] 0.026966239
## [19,] -0.085089833
## [20,] 0.017281530
## [21,] -0.010121525
## [22,] -0.069637086
## [23,] 0.072518915
## [24,] 0.074601871
## [25,] -0.057379932
## Parsed with column specification:
## cols(
## `X1;X2;Y` = col_character()
## )
## # A tibble: 6 x 3
## X1 X2 Y
## <dbl> <dbl> <dbl>
## 1 3.92 7298 0.75
## 2 3.61 6855 0.71
## 3 3.32 6636 0.66
## 4 3.07 6506 0.61
## 5 3.06 6450 0.7
## 6 3.11 6402 0.72
## X1
## [1,] 28608.16
## [2,] 24746.55
## [3,] 22031.52
## [4,] 19973.42
## [5,] 19737.00
## [6,] 19910.22
## [7,] 20441.28
## [8,] 20668.40
## [9,] 21713.58
## [10,] 21723.84
## [11,] 21945.45
## [12,] 22801.02
## [13,] 23958.36
## [14,] 25220.16
## [15,] 26319.80
## [16,] 28246.55
## [17,] 29820.89
## [18,] 32070.50
## [19,] 34975.71
## [20,] 36355.53
## [21,] 39799.60
## [22,] 39923.86
## [23,] 42167.79
## [24,] 43233.09
## [25,] 44540.04
library(stargazer)
options(scipen = 9999)
modelo_lineal2<-lm(formula = Y~X1+X2+X3,data = ejemplo_regresion)
summary(modelo_lineal2)##
## Call:
## lm(formula = Y ~ X1 + X2 + X3, data = ejemplo_regresion)
##
## Residuals:
## Min 1Q Median 3Q Max
## -0.083899 -0.037236 -0.000873 0.029121 0.103552
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 1.795015397 1.423255597 1.261 0.221
## X1 0.192561146 0.280950175 0.685 0.501
## X2 -0.000287021 0.000236164 -1.215 0.238
## X3 0.000007607 0.000046889 0.162 0.873
##
## Residual standard error: 0.05452 on 21 degrees of freedom
## Multiple R-squared: 0.8655, Adjusted R-squared: 0.8462
## F-statistic: 45.03 on 3 and 21 DF, p-value: 0.000000002526
##
## Regresion Multiple
## ===============================================
## Dependent variable:
## ---------------------------
## Y
## -----------------------------------------------
## X1 0.19256110
## (0.28095020)
##
## X2 -0.00028702
## (0.00023616)
##
## X3 0.00000761
## (0.00004689)
##
## Constant 1.79501500
## (1.42325600)
##
## -----------------------------------------------
## Observations 25
## R2 0.86546470
## Adjusted R2 0.84624530
## Residual Std. Error 0.05452240 (df = 21)
## F Statistic 45.03094000*** (df = 3; 21)
## ===============================================
## Note: *p<0.1; **p<0.05; ***p<0.01
## (Intercept) X1 X2
## 1.5644967711 0.2371974748 -0.0002490793
## (Intercept) X1 X2
## (Intercept) 0.0063037218732 0.000240996434 -0.000000982806321
## X1 0.0002409964344 0.003086843196 -0.000001675537651
## X2 -0.0000009828063 -0.000001675538 0.000000001027106
## 2.5 % 97.5 %
## (Intercept) -1.16480664772 4.7548374408
## X1 -0.39170672684 0.7768290183
## X2 -0.00077815041 0.0002041080
## X3 -0.00008990443 0.0001051181
## [,1]
## 1 0.6727915
## 2 0.7108734
## 3 0.6972355
## 4 0.6707524
## 5 0.6831016
## 6 0.7078243
## 7 0.7408788
## 8 0.7602711
## 9 0.7964482
## 10 0.7956652
## 11 0.8005446
## 12 0.8297895
## 13 0.8031953
## 14 0.7997363
## 15 0.7532329
## 16 0.7321937
## 17 0.7025771
## 18 0.6914928
## 19 0.6338989
## 20 0.6121543
## 21 0.5723057
## 22 0.4786753
## 23 0.4382824
## 24 0.3962772
## 25 0.3798022
## [,1]
## [1,] 0.0772085032
## [2,] -0.0008733529
## [3,] -0.0372355120
## [4,] -0.0607523795
## [5,] 0.0168984492
## [6,] 0.0121757197
## [7,] 0.0291212040
## [8,] -0.0202711091
## [9,] 0.1035517985
## [10,] 0.0243348161
## [11,] -0.0505445755
## [12,] -0.0597895249
## [13,] -0.0231953430
## [14,] 0.0402637023
## [15,] 0.0367671136
## [16,] -0.0321937327
## [17,] -0.0225770767
## [18,] 0.0285071762
## [19,] -0.0838988599
## [20,] 0.0178457225
## [21,] -0.0123056810
## [22,] -0.0686752851
## [23,] 0.0717176216
## [24,] 0.0737228376
## [25,] -0.0598022321