Cumulative Precipitation

Both sites received less precipitation in 2017 than 2016.

Animal Gains

HREC Animal Gains

HrecCalves <- HrecCalves %>% mutate(Pasture=gsub(" ","",Pasture))
## Warning: package 'bindrcpp' was built under R version 3.4.3
HrecCows <- HrecCows %>% mutate(Pasture=gsub(" ","",Pasture))
HrecSheep <- HrecSheep %>% mutate(Pasture=gsub(" ","",Pasture))

  ADG_HREC_Calves <- aov(avgDday~Year + Error(Pasture), data=HrecCalves)
      summary(ADG_HREC_Calves) # f value 4.466  Pr(>F) 0.0363
## 
## Error: Pasture
##           Df Sum Sq Mean Sq F value Pr(>F)
## Year       1 0.6997  0.6997   1.063   0.49
## Residuals  1 0.6580  0.6580               
## 
## Error: Within
##            Df Sum Sq Mean Sq F value Pr(>F)  
## Year        1   0.38  0.3804   4.466 0.0363 *
## Residuals 143  12.18  0.0852                 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
    ADG_HREC_Cows <- aov(avgDday~Year + Error(Pasture), data =HrecCows)
      summary(ADG_HREC_Cows) # f value 3.827 Pr(>F) 0.0523
## 
## Error: Pasture
##           Df Sum Sq Mean Sq F value Pr(>F)
## Year       1 1.0685  1.0685   3.615  0.308
## Residuals  1 0.2956  0.2956               
## 
## Error: Within
##            Df Sum Sq Mean Sq F value Pr(>F)  
## Year        1   1.43  1.4334   3.827 0.0523 .
## Residuals 150  56.19  0.3746                 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
    ADG_Hrec_Sheep <-aov(avgDday~Year + Error(Pasture), data=HrecSheep)
      summary(ADG_Hrec_Sheep) # f value 29.95 Pr(>F) 5.51e-08
## 
## Error: Pasture
##           Df  Sum Sq Mean Sq F value Pr(>F)
## Year       1 0.05488 0.05488   0.199  0.733
## Residuals  1 0.27568 0.27568               
## 
## Error: Within
##             Df Sum Sq Mean Sq F value   Pr(>F)    
## Year         1  0.274 0.27376   29.95 5.51e-08 ***
## Residuals 1090  9.965 0.00914                     
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
HrecCalves <- HrecCalves %>% mutate(Pasture=gsub(" ","",Pasture))
  HrecCalves$Year <- factor(HrecCalves$Year)
HrecCows <- HrecCows %>% mutate(Pasture=gsub(" ","",Pasture))
  HrecCows$Year <- factor(HrecCows$Year)
HrecSheep <- HrecSheep %>% mutate(Pasture=gsub(" ","",Pasture))
  HrecSheep$Year <- factor(HrecSheep$Year)

  ADG_HREC_Calves2 <- lmer(avgDday~Year + 0 + (1|Pasture), data=HrecCalves)
      Mult_HREC_Calves2 <- glht(ADG_HREC_Calves2, linfct=c("Year2016 = 0",
                                                           "Year2017 = 0"))
      summary(Mult_HREC_Calves2)
## 
##   Simultaneous Tests for General Linear Hypotheses
## 
## Fit: lmer(formula = avgDday ~ Year + 0 + (1 | Pasture), data = HrecCalves)
## 
## Linear Hypotheses:
##               Estimate Std. Error z value Pr(>|z|)    
## Year2016 == 0  2.99256    0.07031   42.56   <1e-10 ***
## Year2017 == 0  3.09562    0.07014   44.13   <1e-10 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## (Adjusted p values reported -- single-step method)
      confint(ADG_HREC_Calves2)
## Computing profile confidence intervals ...
##               2.5 %    97.5 %
## .sig01   0.02663542 0.2721540
## .sigma   0.26022606 0.3279507
## Year2016 2.83880840 3.1479997
## Year2017 2.94142296 3.2502626
ADG_HREC_Cows2 <- lmer(avgDday~Year + 0 + (1|Pasture), data=HrecCows)
      Mult_HREC_Cows2 <- glht(ADG_HREC_Cows2, linfct=c("Year2016 = 0",
                                                           "Year2017 = 0"))
      summary(Mult_HREC_Cows2)
## 
##   Simultaneous Tests for General Linear Hypotheses
## 
## Fit: lmer(formula = avgDday ~ Year + 0 + (1 | Pasture), data = HrecCows)
## 
## Linear Hypotheses:
##               Estimate Std. Error z value Pr(>|z|)    
## Year2016 == 0  0.64285    0.08488   7.574  < 1e-10 ***
## Year2017 == 0  0.45370    0.08556   5.303 2.28e-07 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## (Adjusted p values reported -- single-step method)
      confint(ADG_HREC_Cows2)
## Computing profile confidence intervals ...
## Warning in optwrap(optimizer, par = thopt, fn = mkdevfun(rho, 0L), lower
## = fitted@lower): convergence code 3 from bobyqa: bobyqa -- a trust region
## step failed to reduce q
##              2.5 %    97.5 %
## .sig01   0.0000000 0.2764354
## .sigma   0.5470750 0.6856556
## Year2016 0.4706808 0.8205275
## Year2017 0.2786964 0.6300638
ADG_HREC_Sheep2 <- lmer(avgDday~Year + 0 + (1|Pasture), data=HrecSheep)
      Mult_HREC_Sheep2 <- glht(ADG_HREC_Sheep2, linfct=c("Year2016 = 0",
                                                           "Year2017 = 0"))
      summary(Mult_HREC_Sheep2)
## 
##   Simultaneous Tests for General Linear Hypotheses
## 
## Fit: lmer(formula = avgDday ~ Year + 0 + (1 | Pasture), data = HrecSheep)
## 
## Linear Hypotheses:
##               Estimate Std. Error z value Pr(>|z|)    
## Year2016 == 0  0.25761    0.01255   20.52   <1e-10 ***
## Year2017 == 0  0.28930    0.01263   22.90   <1e-10 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## (Adjusted p values reported -- single-step method)
      confint(ADG_HREC_Sheep2)
## Computing profile confidence intervals ...
##                2.5 %     97.5 %
## .sig01   0.007734052 0.05092279
## .sigma   0.091696304 0.09972491
## Year2016 0.229388738 0.28582508
## Year2017 0.261004367 0.31759827

Calves and sheep are statistically different. Calves performed better in 2017. Sheep are slightly better in 2017? There is very little variation combined with more sheep which seems to account for the significant difference.

Still need to update graphs!!!

HREC ADG Violins

HREC ADG +/- sd

ggplot(data=subset(REC_ADG, Location=="HREC"), aes(x=Type, y=mean, color=Type)) +
  geom_errorbar(aes(ymin=mean-sd, ymax=mean+sd), width =0.25, lwd=1.5)+
  theme_bw() +
  geom_hline(yintercept = 0, linetype="dashed") + 
  geom_point(size=4) +
  labs(y="Average Daily Gain (lbs/day)") + 
  facet_wrap(~Year, ncol = 2) +
  theme(axis.text.x = element_text(angle=33, hjust=1))

HREC ADG +/- se

ggplot(data=subset(REC_ADG, Location=="HREC"), aes(x=Type, y=mean, color=Type)) +
  geom_errorbar(aes(ymin=mean-se, ymax=mean+se), width =0.25, lwd=1.5)+
  theme_bw() +
  geom_hline(yintercept = 0, linetype="dashed") + 
  geom_point(size=4) +
  labs(y="Average Daily Gain (lbs/day)") + 
  facet_wrap(~Year, ncol = 2) +
  theme(axis.text.x = element_text(angle=33, hjust=1))

CGREC Animal Gains

      #comparing treatments against each other

    ADG_CGREC_Calves <- lmer(avgDday~Treatment + (1|Pasture), data=CgrecCalves)
    Mult_CREC_Calves <- glht(ADG_CGREC_Calves, linfct=mcp(Treatment = "Tukey"))
    summary(Mult_CREC_Calves)
## 
##   Simultaneous Tests for General Linear Hypotheses
## 
## Multiple Comparisons of Means: Tukey Contrasts
## 
## 
## Fit: lmer(formula = avgDday ~ Treatment + (1 | Pasture), data = CgrecCalves)
## 
## Linear Hypotheses:
##                                Estimate Std. Error z value Pr(>|z|)
## SpringOnly - NoFire == 0        0.09410    0.05204   1.808    0.167
## SpringSummer - NoFire == 0      0.06183    0.05074   1.218    0.442
## SpringSummer - SpringOnly == 0 -0.03227    0.05109  -0.632    0.803
## (Adjusted p values reported -- single-step method)
    ADG_CGREC_Cows <- lmer(avgDday~Treatment + (1|Pasture), data=CgrecCows)
    Mult_CGREC_Cows <- glht(ADG_CGREC_Cows, linfct=mcp(Treatment = "Tukey"))
    summary(Mult_CGREC_Cows) #both fire treatments are diffent than the no fire
## 
##   Simultaneous Tests for General Linear Hypotheses
## 
## Multiple Comparisons of Means: Tukey Contrasts
## 
## 
## Fit: lmer(formula = avgDday ~ Treatment + (1 | Pasture), data = CgrecCows)
## 
## Linear Hypotheses:
##                                Estimate Std. Error z value Pr(>|z|)  
## SpringOnly - NoFire == 0        1.18656    0.46610   2.546   0.0293 *
## SpringSummer - NoFire == 0      1.23397    0.46566   2.650   0.0220 *
## SpringSummer - SpringOnly == 0  0.04741    0.46587   0.102   0.9943  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## (Adjusted p values reported -- single-step method)
      #get the adg and confidence interval for each treatment

    ADG_CGREC_Calves2 <- lmer(avgDday~Treatment + 0 +  (1|Pasture), data=CgrecCalves)
    Mult_CREC_Calves2 <- glht(ADG_CGREC_Calves2, linfct=c("TreatmentNoFire = 0",
                                                          "TreatmentSpringSummer = 0",
                                                          "TreatmentSpringOnly = 0"))
    summary(Mult_CREC_Calves2) #different than zero
## 
##   Simultaneous Tests for General Linear Hypotheses
## 
## Fit: lmer(formula = avgDday ~ Treatment + 0 + (1 | Pasture), data = CgrecCalves)
## 
## Linear Hypotheses:
##                            Estimate Std. Error z value Pr(>|z|)    
## TreatmentNoFire == 0        2.58929    0.03655   70.83   <2e-16 ***
## TreatmentSpringSummer == 0  2.65112    0.03520   75.32   <2e-16 ***
## TreatmentSpringOnly == 0    2.68339    0.03703   72.46   <2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## (Adjusted p values reported -- single-step method)
    confint(ADG_CGREC_Calves2)
## Computing profile confidence intervals ...
## Warning in nextpar(mat, cc, i, delta, lowcut, upcut): unexpected decrease
## in profile: using minstep
## Warning in FUN(X[[i]], ...): non-monotonic profile for .sig01
## Warning in confint.thpr(pp, level = level, zeta = zeta): bad spline fit
## for .sig01: falling back to linear interpolation
##                           2.5 %    97.5 %
## .sig01                0.0000000 0.0781369
## .sigma                0.2790288 0.3285863
## TreatmentNoFire       2.5240188 2.6566023
## TreatmentSpringOnly   2.6190493 2.7443049
## TreatmentSpringSummer 2.5941232 2.7100873
    fixef(ADG_CGREC_Calves2)
##       TreatmentNoFire   TreatmentSpringOnly TreatmentSpringSummer 
##              2.589287              2.683385              2.651116
    ADG_CGREC_Cows2 <- lmer(avgDday~Treatment + 0 + (1|Pasture), data=CgrecCows)
    Mult_CGREC_Cows2 <- glht(ADG_CGREC_Cows2, linfct=c("TreatmentNoFire = 0",
                                                          "TreatmentSpringSummer = 0",
                                                          "TreatmentSpringOnly = 0"))
    summary(Mult_CGREC_Cows2) 
## 
##   Simultaneous Tests for General Linear Hypotheses
## 
## Fit: lmer(formula = avgDday ~ Treatment + 0 + (1 | Pasture), data = CgrecCows)
## 
## Linear Hypotheses:
##                            Estimate Std. Error z value Pr(>|z|)  
## TreatmentNoFire == 0        -0.5045     0.3294  -1.531   0.3316  
## TreatmentSpringSummer == 0   0.7294     0.3291   2.216   0.0779 .
## TreatmentSpringOnly == 0     0.6820     0.3297   2.068   0.1114  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## (Adjusted p values reported -- single-step method)
    confint(ADG_CGREC_Cows2)
## Computing profile confidence intervals ...
##                             2.5 %    97.5 %
## .sig01                 0.38818804 0.8997925
## .sigma                 0.42223219 0.5003632
## TreatmentNoFire       -1.11142191 0.1024986
## TreatmentSpringOnly    0.07450877 1.2894870
## TreatmentSpringSummer  0.12298592 1.3357239
    fixef(ADG_CGREC_Cows2)
##       TreatmentNoFire   TreatmentSpringOnly TreatmentSpringSummer 
##            -0.5045274             0.6820291             0.7294417

No difference in the calves, but both burn treatments are different than the no burn treatment.

CGREC ADG Violins

ggplot(data=subset(Livestock, Location=="CGREC"), aes(x=Type, y=avgDday)) + theme_bw(16) +
  geom_hline(yintercept = 0) + 
  geom_violin() +
  geom_jitter(aes(color=Pasture), width=0.3,
              alpha=0.75, show.legend=FALSE) +
  labs(y="Average Daily Gain (lbs/day)") + 
  facet_wrap(~Treatment, ncol = 3) +
  theme(axis.text.x = element_text(angle=33, hjust=1))

CGREC ADG +/- SD

ggplot(data=subset(REC_ADG, Location=="CGREC"), aes(x=Type, y=mean, color=Type)) +
  geom_errorbar(aes(ymin=mean-sd, ymax=mean+sd), width =0.25, lwd=1.5)+
  theme_bw() +
  geom_hline(yintercept = 0, linetype="dashed") + 
  geom_point(size=4) +
  labs(y="Average Daily Gain (lbs/day)") + 
  facet_wrap(~Treatment, ncol = 3) +
  theme(axis.text.x = element_text(angle=33, hjust=1))

CGREC ADG +/- SE

ggplot(data=subset(REC_ADG, Location=="CGREC"), aes(x=Type, y=mean, color=Type)) +
  geom_errorbar(aes(ymin=mean-se, ymax=mean+se), width =0.25, lwd=1.5)+
  theme_bw() +
  geom_hline(yintercept = 0, linetype="dashed") + 
  geom_point(size=4) +
  labs(y="Average Daily Gain (lbs/day)") + 
  facet_wrap(~Treatment, ncol = 3) +
  theme(axis.text.x = element_text(angle=33, hjust=1))

Confidence intervals for Fecal and Protein

I think the bootstrap confidence interval strategy is not working for the fecal counts and protein due to a lack of data points that go into them. I tried using each month as an individual data point to increase the sample size, but that did not do much. The monthly mean difference is how I first tried to test this and incorporate the repeated monthly sampling.

  Fecal.HREC.null <- lmer(Fecal ~ 1  + (1|Pasture/Month), 
                     data=subset(ProGO, REC=="HREC"), REML=FALSE)  
  Fecal.HREC.p <- lmer(Fecal ~ Patch + (1|Pasture/Month), 
                     data=subset(ProGO, REC=="HREC"), REML=FALSE)

Fecal.HREC.pt <- lmer(Fecal ~ Patch + Treatment  + (1|Pasture/Month), 
                     data=subset(ProGO, REC=="HREC"), REML=FALSE)
anova(Fecal.HREC.null, Fecal.HREC.p, Fecal.HREC.pt) %>% 
  pander(caption="comparison of the three models")
comparison of the three models (continued below)
  Df AIC BIC logLik deviance Chisq Chi Df
Fecal.HREC.null 4 1975 1990 -983.3 1967 NA NA
Fecal.HREC.p 5 1934 1954 -962.1 1924 42.44 1
Fecal.HREC.pt 6 1927 1950 -957.3 1915 9.628 1
  Pr(>Chisq)
Fecal.HREC.null NA
Fecal.HREC.p 7.292e-11
Fecal.HREC.pt 0.001916
anova(Fecal.HREC.null, Fecal.HREC.pt) %>% 
  pander(caption="null vs model with patch and treatment")
null vs model with patch and treatment (continued below)
  Df AIC BIC logLik deviance Chisq Chi Df
Fecal.HREC.null 4 1975 1990 -983.3 1967 NA NA
Fecal.HREC.pt 6 1927 1950 -957.3 1915 52.07 2
  Pr(>Chisq)
Fecal.HREC.null NA
Fecal.HREC.pt 4.941e-12
anova(Fecal.HREC.null, Fecal.HREC.p) %>% 
  pander(caption="null vs model with patch")
null vs model with patch (continued below)
  Df AIC BIC logLik deviance Chisq Chi Df
Fecal.HREC.null 4 1975 1990 -983.3 1967 NA NA
Fecal.HREC.p 5 1934 1954 -962.1 1924 42.44 1
  Pr(>Chisq)
Fecal.HREC.null NA
Fecal.HREC.p 7.292e-11
Fecal.HREC.INT <- lmer(Fecal ~ Patch * Treatment  + (1|Pasture/Month), 
                     data=subset(ProGO, REC=="HREC"), REML=FALSE)
anova(Fecal.HREC.pt, Fecal.HREC.INT)
## Data: subset(ProGO, REC == "HREC")
## Models:
## Fecal.HREC.pt: Fecal ~ Patch + Treatment + (1 | Pasture/Month)
## Fecal.HREC.INT: Fecal ~ Patch * Treatment + (1 | Pasture/Month)
##                Df    AIC    BIC  logLik deviance  Chisq Chi Df Pr(>Chisq)
## Fecal.HREC.pt   6 1926.6 1950.3 -957.29   1914.6                         
## Fecal.HREC.INT  7 1925.8 1953.6 -955.92   1911.8 2.7382      1    0.09798
##                 
## Fecal.HREC.pt   
## Fecal.HREC.INT .
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
    summary(Fecal.HREC.pt) 
## Linear mixed model fit by maximum likelihood  ['lmerMod']
## Formula: Fecal ~ Patch + Treatment + (1 | Pasture/Month)
##    Data: subset(ProGO, REC == "HREC")
## 
##      AIC      BIC   logLik deviance df.resid 
##   1926.6   1950.3   -957.3   1914.6      381 
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -1.8643 -0.6093 -0.1039  0.4130  5.4006 
## 
## Random effects:
##  Groups        Name        Variance  Std.Dev. 
##  Month:Pasture (Intercept) 9.807e-01 9.903e-01
##  Pasture       (Intercept) 1.280e-13 3.578e-07
##  Residual                  7.755e+00 2.785e+00
## Number of obs: 387, groups:  Month:Pasture, 18; Pasture, 6
## 
## Fixed effects:
##                Estimate Std. Error t value
## (Intercept)      4.0490     0.4590   8.821
## PatchU          -2.2314     0.3307  -6.748
## TreatmentSheep   2.2983     0.5463   4.207
## 
## Correlation of Fixed Effects:
##             (Intr) PatchU
## PatchU      -0.544       
## TreatmntShp -0.591  0.000
   confint(Fecal.HREC.pt) 
## Computing profile confidence intervals ...
## Warning in zeta(shiftpar, start = opt[seqpar1][-w]): slightly lower
## deviances (diff=-2.27374e-13) detected
## Warning in nextpar(mat, cc, i, delta, lowcut, upcut): Last two rows have
## identical or NA .zeta values: using minstep

## Warning in nextpar(mat, cc, i, delta, lowcut, upcut): Last two rows have
## identical or NA .zeta values: using minstep
## Warning in zetafun(np, ns): slightly lower deviances (diff=-2.27374e-13)
## detected
## Warning in FUN(X[[i]], ...): non-monotonic profile for .sig02
## Warning in confint.thpr(pp, level = level, zeta = zeta): bad spline fit
## for .sig02: falling back to linear interpolation
##                     2.5 %     97.5 %
## .sig01          0.6117623  1.5615556
## .sig02          0.0000000  0.9250144
## .sigma          2.5953345  2.9985164
## (Intercept)     3.1236080  4.9747728
## PatchU         -2.8814333 -1.5816383
## TreatmentSheep  1.1584913  3.4335414
  Fecal.CGREC.null <- lmer(Fecal ~ 1  + (1|Pasture/Month), 
                     data=subset(ProGO, REC=="CGREC"), REML=FALSE)  
  Fecal.CGREC.p <- lmer(Fecal ~ Patch + (1|Pasture/Month), 
                     data=subset(ProGO, REC=="CGREC"), REML=FALSE)

Fecal.CGREC.pt <- lmer(Fecal ~ Patch + Treatment  + (1|Pasture/Month), 
                     data=subset(ProGO, REC=="CGREC"), REML=FALSE)
anova(Fecal.CGREC.null, Fecal.CGREC.p, Fecal.CGREC.pt) %>% 
  pander(caption="comparison of the three models")
comparison of the three models (continued below)
  Df AIC BIC logLik deviance Chisq Chi Df
Fecal.CGREC.null 4 2765 2784 -1379 2757 NA NA
Fecal.CGREC.p 5 2589 2613 -1290 2579 177.7 1
Fecal.CGREC.pt 6 2587 2614 -1287 2575 4.955 1
  Pr(>Chisq)
Fecal.CGREC.null NA
Fecal.CGREC.p 1.539e-40
Fecal.CGREC.pt 0.02602
anova(Fecal.CGREC.null,Fecal.CGREC.pt) %>% 
  pander(caption="null vs patch and treatment")
null vs patch and treatment (continued below)
  Df AIC BIC logLik deviance Chisq Chi Df
Fecal.CGREC.null 4 2765 2784 -1379 2757 NA NA
Fecal.CGREC.pt 6 2587 2614 -1287 2575 182.7 2
  Pr(>Chisq)
Fecal.CGREC.null NA
Fecal.CGREC.pt 2.171e-40
anova(Fecal.CGREC.null, Fecal.CGREC.p) %>% 
  pander(caption="null vs patch only")
null vs patch only (continued below)
  Df AIC BIC logLik deviance Chisq Chi Df
Fecal.CGREC.null 4 2765 2784 -1379 2757 NA NA
Fecal.CGREC.p 5 2589 2613 -1290 2579 177.7 1
  Pr(>Chisq)
Fecal.CGREC.null NA
Fecal.CGREC.p 1.539e-40
anova(Fecal.CGREC.pt, Fecal.CGREC.p) %>% 
  pander(caption="patch and treatment vs patch only")
patch and treatment vs patch only (continued below)
  Df AIC BIC logLik deviance Chisq Chi Df
Fecal.CGREC.p 5 2589 2613 -1290 2579 NA NA
Fecal.CGREC.pt 6 2587 2614 -1287 2575 4.955 1
  Pr(>Chisq)
Fecal.CGREC.p NA
Fecal.CGREC.pt 0.02602
Fecal.CGREC.INT <- lmer(Fecal ~ Patch * Treatment  + (1|Pasture/Month), 
                     data=subset(ProGO, REC=="CGREC"), REML=FALSE)
anova(Fecal.CGREC.pt, Fecal.CGREC.INT)
## Data: subset(ProGO, REC == "CGREC")
## Models:
## Fecal.CGREC.pt: Fecal ~ Patch + Treatment + (1 | Pasture/Month)
## Fecal.CGREC.INT: Fecal ~ Patch * Treatment + (1 | Pasture/Month)
##                 Df    AIC    BIC  logLik deviance  Chisq Chi Df Pr(>Chisq)
## Fecal.CGREC.pt   6 2586.5 2614.3 -1287.3   2574.5                         
## Fecal.CGREC.INT  7 2588.5 2620.9 -1287.3   2574.5 0.0021      1     0.9638
    summary(Fecal.CGREC.pt)
## Linear mixed model fit by maximum likelihood  ['lmerMod']
## Formula: Fecal ~ Patch + Treatment + (1 | Pasture/Month)
##    Data: subset(ProGO, REC == "CGREC")
## 
##      AIC      BIC   logLik deviance df.resid 
##   2586.5   2614.3  -1287.3   2574.5      751 
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -2.2632 -0.5794 -0.2970  0.3760  7.7836 
## 
## Random effects:
##  Groups        Name        Variance Std.Dev.
##  Month:Pasture (Intercept) 0.07048  0.2655  
##  Pasture       (Intercept) 0.00000  0.0000  
##  Residual                  1.71050  1.3079  
## Number of obs: 757, groups:  Month:Pasture, 24; Pasture, 8
## 
## Fixed effects:
##                      Estimate Std. Error t value
## (Intercept)            2.6878     0.1515  17.737
## PatchU                -1.8529     0.1295 -14.311
## TreatmentSpring Only  -0.3385     0.1448  -2.337
## 
## Correlation of Fixed Effects:
##             (Intr) PatchU
## PatchU      -0.743       
## TrtmntSprnO -0.515  0.062
   confint(Fecal.CGREC.pt) 
## Computing profile confidence intervals ...
##                           2.5 %      97.5 %
## .sig01                0.1380031  0.42457752
## .sig02                0.0000000  0.19460993
## .sigma                1.2436480  1.37779835
## (Intercept)           2.3886292  2.98842573
## PatchU               -2.1069856 -1.59878928
## TreatmentSpring Only -0.6353726 -0.04389973
   summary(Fecal.CGREC.p)
## Linear mixed model fit by maximum likelihood  ['lmerMod']
## Formula: Fecal ~ Patch + (1 | Pasture/Month)
##    Data: subset(ProGO, REC == "CGREC")
## 
##      AIC      BIC   logLik deviance df.resid 
##   2589.5   2612.6  -1289.7   2579.5      752 
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -2.3702 -0.5547 -0.3021  0.3328  7.8266 
## 
## Random effects:
##  Groups        Name        Variance  Std.Dev. 
##  Month:Pasture (Intercept) 9.851e-02 3.139e-01
##  Pasture       (Intercept) 1.996e-47 4.468e-24
##  Residual                  1.711e+00 1.308e+00
## Number of obs: 757, groups:  Month:Pasture, 24; Pasture, 8
## 
## Fixed effects:
##             Estimate Std. Error t value
## (Intercept)   2.5087     0.1344   18.67
## PatchU       -1.8380     0.1293  -14.21
## 
## Correlation of Fixed Effects:
##        (Intr)
## PatchU -0.804
   confint(Fecal.CGREC.p)
## Computing profile confidence intervals ...
## Warning in zeta(shiftpar, start = opt[seqpar1][-w]): slightly lower
## deviances (diff=-4.54747e-13) detected
## Warning in nextpar(mat, cc, i, delta, lowcut, upcut): Last two rows have
## identical or NA .zeta values: using minstep

## Warning in nextpar(mat, cc, i, delta, lowcut, upcut): Last two rows have
## identical or NA .zeta values: using minstep
## Warning in zetafun(np, ns): slightly lower deviances (diff=-4.54747e-13)
## detected
## Warning in FUN(X[[i]], ...): non-monotonic profile for .sig02
## Warning in confint.thpr(pp, level = level, zeta = zeta): bad spline fit
## for .sig02: falling back to linear interpolation
##                  2.5 %     97.5 %
## .sig01       0.1818811  0.4831699
## .sig02       0.0000000  0.2972714
## .sigma       1.2437317  1.3779110
## (Intercept)  2.2444090  2.7746637
## PatchU      -2.0919826 -1.5838729

Protein

  Pro.HREC.null <- lmer(PROTEIN ~ 1  + (1|Pasture/Month), 
                     data=subset(ProGO, REC=="HREC"), REML=FALSE)  
  Pro.HREC.p <- lmer(PROTEIN ~ Patch + (1|Pasture/Month), 
                     data=subset(ProGO, REC=="HREC"), REML=FALSE)

Pro.HREC.pt <- lmer(PROTEIN ~ Patch + Treatment  + (1|Pasture/Month), 
                     data=subset(ProGO, REC=="HREC"), REML=FALSE)
anova(Pro.HREC.null, Pro.HREC.p, Pro.HREC.pt) %>% 
  pander(caption="comparison of the three models")
comparison of the three models (continued below)
  Df AIC BIC logLik deviance Chisq Chi Df
Pro.HREC.null 4 1708 1724 -850.1 1700 NA NA
Pro.HREC.p 5 1707 1727 -848.5 1697 3.169 1
Pro.HREC.pt 6 1703 1726 -845.3 1691 6.373 1
  Pr(>Chisq)
Pro.HREC.null NA
Pro.HREC.p 0.07505
Pro.HREC.pt 0.01158
#Not different than the null model

anova(Pro.HREC.null, Pro.HREC.p) %>% 
  pander(caption="null vs patch only")
null vs patch only (continued below)
  Df AIC BIC logLik deviance Chisq Chi Df
Pro.HREC.null 4 1708 1724 -850.1 1700 NA NA
Pro.HREC.p 5 1707 1727 -848.5 1697 3.169 1
  Pr(>Chisq)
Pro.HREC.null NA
Pro.HREC.p 0.07505
anova(Pro.HREC.null, Pro.HREC.pt) %>% 
  pander(caption="null vs patch and treatment")
null vs patch and treatment (continued below)
  Df AIC BIC logLik deviance Chisq Chi Df
Pro.HREC.null 4 1708 1724 -850.1 1700 NA NA
Pro.HREC.pt 6 1703 1726 -845.3 1691 9.542 2
  Pr(>Chisq)
Pro.HREC.null NA
Pro.HREC.pt 0.00847
anova(Pro.HREC.p, Pro.HREC.pt) %>% 
  pander(caption="patch vs patch and treatment")
patch vs patch and treatment
  Df AIC BIC logLik deviance Chisq Chi Df Pr(>Chisq)
Pro.HREC.p 5 1707 1727 -848.5 1697 NA NA NA
Pro.HREC.pt 6 1703 1726 -845.3 1691 6.373 1 0.01158
Pro.HREC.INT <- lmer(PROTEIN ~ Patch * Treatment  + (1|Pasture/Month), 
                     data=subset(ProGO, REC=="HREC"), REML=FALSE)
anova(Pro.HREC.pt, Pro.HREC.INT) 
## Data: subset(ProGO, REC == "HREC")
## Models:
## Pro.HREC.pt: PROTEIN ~ Patch + Treatment + (1 | Pasture/Month)
## Pro.HREC.INT: PROTEIN ~ Patch * Treatment + (1 | Pasture/Month)
##              Df    AIC    BIC  logLik deviance  Chisq Chi Df Pr(>Chisq)
## Pro.HREC.pt   6 1702.6 1726.3 -845.28   1690.6                         
## Pro.HREC.INT  7 1704.4 1732.1 -845.19   1690.4 0.1761      1     0.6748
    summary(Pro.HREC.pt)
## Linear mixed model fit by maximum likelihood  ['lmerMod']
## Formula: PROTEIN ~ Patch + Treatment + (1 | Pasture/Month)
##    Data: subset(ProGO, REC == "HREC")
## 
##      AIC      BIC   logLik deviance df.resid 
##   1702.6   1726.3   -845.3   1690.6      381 
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -2.4975 -0.6211 -0.1070  0.4765  5.3782 
## 
## Random effects:
##  Groups        Name        Variance Std.Dev.
##  Month:Pasture (Intercept) 0.26903  0.5187  
##  Pasture       (Intercept) 0.07008  0.2647  
##  Residual                  4.41918  2.1022  
## Number of obs: 387, groups:  Month:Pasture, 18; Pasture, 6
## 
## Fixed effects:
##                Estimate Std. Error t value
## (Intercept)     10.0808     0.3335  30.226
## PatchU          -0.4386     0.2496  -1.757
## TreatmentSheep  -1.3074     0.3904  -3.349
## 
## Correlation of Fixed Effects:
##             (Intr) PatchU
## PatchU      -0.566       
## TreatmntShp -0.581  0.000
   confint(Pro.HREC.pt) #no protein difference at patch, sheep lower than cattle
## Computing profile confidence intervals ...
##                     2.5 %      97.5 %
## .sig01          0.1687074  0.94355440
## .sig02          0.0000000  0.87170367
## .sigma          1.9592320  2.26340034
## (Intercept)     9.3657468 10.79909521
## PatchU         -0.9291927  0.05209052
## TreatmentSheep -2.2147505 -0.40692034
   fixef(Pro.HREC.pt)
##    (Intercept)         PatchU TreatmentSheep 
##      10.080797      -0.438619      -1.307373
   summary(Pro.HREC.p)
## Linear mixed model fit by maximum likelihood  ['lmerMod']
## Formula: PROTEIN ~ Patch + (1 | Pasture/Month)
##    Data: subset(ProGO, REC == "HREC")
## 
##      AIC      BIC   logLik deviance df.resid 
##   1706.9   1726.7   -848.5   1696.9      382 
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -2.4440 -0.6055 -0.1066  0.4862  5.4384 
## 
## Random effects:
##  Groups        Name        Variance Std.Dev.
##  Month:Pasture (Intercept) 0.2690   0.5186  
##  Pasture       (Intercept) 0.4964   0.7046  
##  Residual                  4.4199   2.1024  
## Number of obs: 387, groups:  Month:Pasture, 18; Pasture, 6
## 
## Fixed effects:
##             Estimate Std. Error t value
## (Intercept)   9.4290     0.3805  24.782
## PatchU       -0.4456     0.2497  -1.784
## 
## Correlation of Fixed Effects:
##        (Intr)
## PatchU -0.496
  confint(Pro.HREC.p)
## Computing profile confidence intervals ...
##                  2.5 %      97.5 %
## .sig01       0.1671093  0.99173263
## .sig02       0.1691537  1.57480330
## .sigma       1.9593667  2.26360723
## (Intercept)  8.5959614 10.26074984
## PatchU      -0.9363244  0.04522755
  Pro.CGREC.null <- lmer(PROTEIN ~ 1  + (1|Pasture/Month), 
                     data=subset(ProGO, REC=="CGREC"), REML=FALSE)  
  Pro.CGREC.p <- lmer(PROTEIN ~ Patch + (1|Pasture/Month), 
                     data=subset(ProGO, REC=="CGREC"), REML=FALSE)

Pro.CGREC.pt <- lmer(PROTEIN ~ Patch + Treatment  + (1|Pasture/Month), 
                     data=subset(ProGO, REC=="CGREC"), REML=FALSE)
anova(Pro.CGREC.null, Pro.CGREC.p, Pro.CGREC.pt) %>% 
  pander(caption="comparison of the three models")
comparison of the three models (continued below)
  Df AIC BIC logLik deviance Chisq Chi Df
Pro.CGREC.null 4 3383 3402 -1688 3375 NA NA
Pro.CGREC.p 5 3160 3183 -1575 3150 225.1 1
Pro.CGREC.pt 6 3162 3190 -1575 3150 0.0004245 1
  Pr(>Chisq)
Pro.CGREC.null NA
Pro.CGREC.p 6.906e-51
Pro.CGREC.pt 0.9836
#.P IS THE BETTER MODEL

anova(Pro.CGREC.null, Pro.CGREC.p) %>% 
  pander(caption=" null vs patch")
null vs patch (continued below)
  Df AIC BIC logLik deviance Chisq Chi Df
Pro.CGREC.null 4 3383 3402 -1688 3375 NA NA
Pro.CGREC.p 5 3160 3183 -1575 3150 225.1 1
  Pr(>Chisq)
Pro.CGREC.null NA
Pro.CGREC.p 6.906e-51
anova(Pro.CGREC.null, Pro.CGREC.pt) %>% 
  pander(caption="null vs patch and treatment")
null vs patch and treatment (continued below)
  Df AIC BIC logLik deviance Chisq Chi Df
Pro.CGREC.null 4 3383 3402 -1688 3375 NA NA
Pro.CGREC.pt 6 3162 3190 -1575 3150 225.1 2
  Pr(>Chisq)
Pro.CGREC.null NA
Pro.CGREC.pt 1.304e-49
anova(Pro.CGREC.p, Pro.CGREC.pt) %>% 
  pander(caption="patch vs patch and treatment")
patch vs patch and treatment (continued below)
  Df AIC BIC logLik deviance Chisq Chi Df
Pro.CGREC.p 5 3160 3183 -1575 3150 NA NA
Pro.CGREC.pt 6 3162 3190 -1575 3150 0.0004245 1
  Pr(>Chisq)
Pro.CGREC.p NA
Pro.CGREC.pt 0.9836
Pro.CGREC.INT <- lmer(PROTEIN ~ Patch * Treatment  + (1|Pasture/Month), 
                     data=subset(ProGO, REC=="CGREC"), REML=FALSE)
anova(Pro.CGREC.pt, Pro.CGREC.INT) 
## Data: subset(ProGO, REC == "CGREC")
## Models:
## Pro.CGREC.pt: PROTEIN ~ Patch + Treatment + (1 | Pasture/Month)
## Pro.CGREC.INT: PROTEIN ~ Patch * Treatment + (1 | Pasture/Month)
##               Df    AIC    BIC  logLik deviance  Chisq Chi Df Pr(>Chisq)
## Pro.CGREC.pt   6 3162.0 3189.7 -1575.0   3150.0                         
## Pro.CGREC.INT  7 3137.5 3169.9 -1561.8   3123.5 26.428      1  2.735e-07
##                  
## Pro.CGREC.pt     
## Pro.CGREC.INT ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
    summary(Pro.CGREC.pt)
## Linear mixed model fit by maximum likelihood  ['lmerMod']
## Formula: PROTEIN ~ Patch + Treatment + (1 | Pasture/Month)
##    Data: subset(ProGO, REC == "CGREC")
## 
##      AIC      BIC   logLik deviance df.resid 
##   3162.0   3189.7  -1575.0   3150.0      751 
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -3.1770 -0.6828 -0.1490  0.5190  4.9338 
## 
## Random effects:
##  Groups        Name        Variance Std.Dev.
##  Month:Pasture (Intercept) 0.377739 0.6146  
##  Pasture       (Intercept) 0.008836 0.0940  
##  Residual                  3.583823 1.8931  
## Number of obs: 757, groups:  Month:Pasture, 24; Pasture, 8
## 
## Fixed effects:
##                       Estimate Std. Error t value
## (Intercept)          12.188125   0.263938  46.178
## PatchU               -3.040369   0.187688 -16.199
## TreatmentSpring Only  0.006072   0.294560   0.021
## 
## Correlation of Fixed Effects:
##             (Intr) PatchU
## PatchU      -0.619       
## TrtmntSprnO -0.581  0.045
   confint(Pro.CGREC.pt)
## Computing profile confidence intervals ...
##                           2.5 %     97.5 %
## .sig01                0.3918434  0.9030728
## .sig02                0.0000000  0.6318090
## .sigma                1.8002131  1.9942528
## (Intercept)          11.6337283 12.7277087
## PatchU               -3.4089867 -2.6718668
## TreatmentSpring Only -0.6397023  0.6672886
   fixef(Pro.CGREC.pt)
##          (Intercept)               PatchU TreatmentSpring Only 
##         12.188124924         -3.040368577          0.006071581
   summary(Pro.CGREC.p)
## Linear mixed model fit by maximum likelihood  ['lmerMod']
## Formula: PROTEIN ~ Patch + (1 | Pasture/Month)
##    Data: subset(ProGO, REC == "CGREC")
## 
##      AIC      BIC   logLik deviance df.resid 
##   3160.0   3183.1  -1575.0   3150.0      752 
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -3.1774 -0.6825 -0.1494  0.5193  4.9335 
## 
## Random effects:
##  Groups        Name        Variance Std.Dev.
##  Month:Pasture (Intercept) 0.377738 0.61460 
##  Pasture       (Intercept) 0.008784 0.09372 
##  Residual                  3.583837 1.89310 
## Number of obs: 757, groups:  Month:Pasture, 24; Pasture, 8
## 
## Fixed effects:
##             Estimate Std. Error t value
## (Intercept)  12.1913     0.2148   56.75
## PatchU       -3.0405     0.1875  -16.22
## 
## Correlation of Fixed Effects:
##        (Intr)
## PatchU -0.729
   confint(Pro.CGREC.p) #p or pt give basically the same CI for protein; pt accounts for                               # treatment
## Computing profile confidence intervals ...
##                  2.5 %     97.5 %
## .sig01       0.3918435  0.9030232
## .sig02       0.0000000  0.6317193
## .sigma       1.8002166  1.9942563
## (Intercept) 11.7528694 12.6227237
## PatchU      -3.4087572 -2.6724256
#Pro.CGREC.F <- lmer(PROTEIN ~ Patch + Treatment + (1|Month) + (1|Pasture), 
  #                       data=subset(ProGO, REC=="CGREC"), REML=FALSE)
#   summary(Pro.CGREC.F)
#   confint(Pro.CGREC.F)

Biomass

  Bio.HREC.null <- lmer(Biomass ~ 1  + (1|Pasture/Month), 
                     data=subset(ProGO, REC=="HREC"), REML=FALSE)  
  Bio.HREC.p <- lmer(Biomass ~ Patch + (1|Pasture/Month), 
                     data=subset(ProGO, REC=="HREC"), REML=FALSE)

Bio.HREC.pt <- lmer(Biomass ~ Patch + Treatment  + (1|Pasture/Month), 
                     data=subset(ProGO, REC=="HREC"), REML=FALSE)
anova(Bio.HREC.null, Bio.HREC.p, Bio.HREC.pt) %>% 
  pander(caption="comparison of the three models")
comparison of the three models (continued below)
  Df AIC BIC logLik deviance Chisq Chi Df
Bio.HREC.null 4 3011 3027 -1501 3003 NA NA
Bio.HREC.p 5 2974 2994 -1482 2964 39.05 1
Bio.HREC.pt 6 2976 2999 -1482 2964 0.2868 1
  Pr(>Chisq)
Bio.HREC.null NA
Bio.HREC.p 4.139e-10
Bio.HREC.pt 0.5923
#.P AND PT ARE ABOUT THE SAME

anova(Bio.HREC.null, Bio.HREC.p) %>% 
  pander(caption="null vs patch")
null vs patch (continued below)
  Df AIC BIC logLik deviance Chisq Chi Df
Bio.HREC.null 4 3011 3027 -1501 3003 NA NA
Bio.HREC.p 5 2974 2994 -1482 2964 39.05 1
  Pr(>Chisq)
Bio.HREC.null NA
Bio.HREC.p 4.139e-10
anova(Bio.HREC.null, Bio.HREC.p, Bio.HREC.pt) %>% 
  pander(caption="null vs patch and treatment")
null vs patch and treatment (continued below)
  Df AIC BIC logLik deviance Chisq Chi Df
Bio.HREC.null 4 3011 3027 -1501 3003 NA NA
Bio.HREC.p 5 2974 2994 -1482 2964 39.05 1
Bio.HREC.pt 6 2976 2999 -1482 2964 0.2868 1
  Pr(>Chisq)
Bio.HREC.null NA
Bio.HREC.p 4.139e-10
Bio.HREC.pt 0.5923
Bio.HREC.INT <- lmer(Biomass ~ Patch * Treatment  + (1|Pasture/Month), 
                     data=subset(ProGO, REC=="HREC"), REML=FALSE)
anova(Bio.HREC.pt, Bio.HREC.INT) 
## Data: subset(ProGO, REC == "HREC")
## Models:
## Bio.HREC.pt: Biomass ~ Patch + Treatment + (1 | Pasture/Month)
## Bio.HREC.INT: Biomass ~ Patch * Treatment + (1 | Pasture/Month)
##              Df    AIC    BIC  logLik deviance  Chisq Chi Df Pr(>Chisq)   
## Bio.HREC.pt   6 2975.6 2999.3 -1481.8   2963.6                            
## Bio.HREC.INT  7 2967.0 2994.7 -1476.5   2953.0 10.565      1   0.001152 **
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
    summary(Bio.HREC.pt)
## Linear mixed model fit by maximum likelihood  ['lmerMod']
## Formula: Biomass ~ Patch + Treatment + (1 | Pasture/Month)
##    Data: subset(ProGO, REC == "HREC")
## 
##      AIC      BIC   logLik deviance df.resid 
##   2975.6   2999.3  -1481.8   2963.6      381 
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -1.8403 -0.7404 -0.1928  0.5383  2.9856 
## 
## Random effects:
##  Groups        Name        Variance Std.Dev.
##  Month:Pasture (Intercept)   4.832   2.198  
##  Pasture       (Intercept)  15.985   3.998  
##  Residual                  117.168  10.824  
## Number of obs: 387, groups:  Month:Pasture, 18; Pasture, 6
## 
## Fixed effects:
##                Estimate Std. Error t value
## (Intercept)      15.572      2.721   5.723
## PatchU            8.250      1.286   6.416
## TreatmentSheep    1.949      3.598   0.542
## 
## Correlation of Fixed Effects:
##             (Intr) PatchU
## PatchU      -0.357       
## TreatmntShp -0.660  0.000
   confint(Bio.HREC.pt) #PATCH SIG, TREATMENT NOT
## Computing profile confidence intervals ...
##                    2.5 %    97.5 %
## .sig01          0.000000  4.522105
## .sig02          1.760247  8.627888
## .sigma         10.088122 11.654854
## (Intercept)     9.450430 21.690614
## PatchU          5.723598 10.777187
## TreatmentSheep -6.375216 10.303160
  summary(Bio.HREC.p)
## Linear mixed model fit by maximum likelihood  ['lmerMod']
## Formula: Biomass ~ Patch + (1 | Pasture/Month)
##    Data: subset(ProGO, REC == "HREC")
## 
##      AIC      BIC   logLik deviance df.resid 
##   2973.9   2993.7  -1481.9   2963.9      382 
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -1.8305 -0.7365 -0.1879  0.5464  2.9937 
## 
## Random effects:
##  Groups        Name        Variance Std.Dev.
##  Month:Pasture (Intercept)   4.832   2.198  
##  Pasture       (Intercept)  16.898   4.111  
##  Residual                  117.172  10.825  
## Number of obs: 387, groups:  Month:Pasture, 18; Pasture, 6
## 
## Fixed effects:
##             Estimate Std. Error t value
## (Intercept)   16.545      2.082   7.948
## PatchU         8.250      1.286   6.416
## 
## Correlation of Fixed Effects:
##        (Intr)
## PatchU -0.467
   confint(Bio.HREC.p) #PATCH IS SIGNIFICANT
## Computing profile confidence intervals ...
##                 2.5 %    97.5 %
## .sig01       0.000000  4.522122
## .sig02       1.867843  8.843722
## .sigma      10.088254 11.655059
## (Intercept) 11.969645 21.132414
## PatchU       5.723341 10.777057
  Bio.CGREC.null <- lmer(Biomass ~ 1  + (1|Pasture/Month), 
                     data=subset(ProGO, REC=="CGREC"), REML=FALSE)  
  Bio.CGREC.p <- lmer(Biomass ~ Patch + (1|Pasture/Month), 
                     data=subset(ProGO, REC=="CGREC"), REML=FALSE)

Bio.CGREC.pt <- lmer(Biomass ~ Patch + Treatment  + (1|Pasture/Month), 
                     data=subset(ProGO, REC=="CGREC"), REML=FALSE)
anova(Bio.CGREC.null, Bio.CGREC.p, Bio.CGREC.pt) %>% 
  pander(caption="comparison of the three models")
comparison of the three models (continued below)
  Df AIC BIC logLik deviance Chisq Chi Df
Bio.CGREC.null 4 5499 5517 -2745 5491 NA NA
Bio.CGREC.p 5 5429 5453 -2710 5419 71.18 1
Bio.CGREC.pt 6 5430 5458 -2709 5418 1.298 1
  Pr(>Chisq)
Bio.CGREC.null NA
Bio.CGREC.p 3.255e-17
Bio.CGREC.pt 0.2546
#.P IS THE BETTER MODEL

anova(Bio.CGREC.null, Bio.CGREC.p) %>% 
  pander(caption="null vs patch")
null vs patch (continued below)
  Df AIC BIC logLik deviance Chisq Chi Df
Bio.CGREC.null 4 5499 5517 -2745 5491 NA NA
Bio.CGREC.p 5 5429 5453 -2710 5419 71.18 1
  Pr(>Chisq)
Bio.CGREC.null NA
Bio.CGREC.p 3.255e-17
anova(Bio.CGREC.null, Bio.CGREC.pt) %>% 
  pander(caption="null vs patch and treatment")
null vs patch and treatment (continued below)
  Df AIC BIC logLik deviance Chisq Chi Df
Bio.CGREC.null 4 5499 5517 -2745 5491 NA NA
Bio.CGREC.pt 6 5430 5458 -2709 5418 72.48 2
  Pr(>Chisq)
Bio.CGREC.null NA
Bio.CGREC.pt 1.823e-16
Bio.CGREC.INT <- lmer(Biomass ~ Patch * Treatment  + (1|Pasture/Month), 
                     data=subset(ProGO, REC=="CGREC"), REML=FALSE)
anova(Bio.CGREC.pt, Bio.CGREC.INT) 
## Data: subset(ProGO, REC == "CGREC")
## Models:
## Bio.CGREC.pt: Biomass ~ Patch + Treatment + (1 | Pasture/Month)
## Bio.CGREC.INT: Biomass ~ Patch * Treatment + (1 | Pasture/Month)
##               Df    AIC    BIC  logLik deviance  Chisq Chi Df Pr(>Chisq)  
## Bio.CGREC.pt   6 5430.2 5457.9 -2709.1   5418.2                           
## Bio.CGREC.INT  7 5427.3 5459.7 -2706.7   5413.3 4.8385      1    0.02783 *
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
    summary(Bio.CGREC.pt)
## Linear mixed model fit by maximum likelihood  ['lmerMod']
## Formula: Biomass ~ Patch + Treatment + (1 | Pasture/Month)
##    Data: subset(ProGO, REC == "CGREC")
## 
##      AIC      BIC   logLik deviance df.resid 
##   5430.2   5457.9  -2709.1   5418.2      751 
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -2.1457 -0.6682 -0.1832  0.4933  4.8393 
## 
## Random effects:
##  Groups        Name        Variance  Std.Dev. 
##  Month:Pasture (Intercept) 5.292e+00 2.301e+00
##  Pasture       (Intercept) 2.978e-13 5.457e-07
##  Residual                  7.237e+01 8.507e+00
## Number of obs: 757, groups:  Month:Pasture, 24; Pasture, 8
## 
## Fixed effects:
##                      Estimate Std. Error t value
## (Intercept)           15.4692     1.0799  14.325
## PatchU                 7.3321     0.8429   8.698
## TreatmentSpring Only   1.3027     1.1283   1.155
## 
## Correlation of Fixed Effects:
##             (Intr) PatchU
## PatchU      -0.679       
## TrtmntSprnO -0.552  0.053
   confint(Bio.CGREC.pt)
## Computing profile confidence intervals ...
## Warning in nextpar(mat, cc, i, delta, lowcut, upcut): Last two rows have
## identical or NA .zeta values: using minstep

## Warning in nextpar(mat, cc, i, delta, lowcut, upcut): Last two rows have
## identical or NA .zeta values: using minstep
## Warning in FUN(X[[i]], ...): non-monotonic profile for .sig02
## Warning in confint.thpr(pp, level = level, zeta = zeta): bad spline fit
## for .sig02: falling back to linear interpolation
##                          2.5 %    97.5 %
## .sig01                1.438861  3.448834
## .sig02                0.000000  2.144707
## .sigma                8.089442  8.961712
## (Intercept)          13.316869 17.611006
## PatchU                5.677675  8.986246
## TreatmentSpring Only -1.057132  3.662826
   fixef(Bio.CGREC.pt)
##          (Intercept)               PatchU TreatmentSpring Only 
##            15.469173             7.332050             1.302719
   summary(Bio.CGREC.p)
## Linear mixed model fit by maximum likelihood  ['lmerMod']
## Formula: Biomass ~ Patch + (1 | Pasture/Month)
##    Data: subset(ProGO, REC == "CGREC")
## 
##      AIC      BIC   logLik deviance df.resid 
##   5429.5   5452.6  -2709.7   5419.5      752 
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -2.1674 -0.6667 -0.1902  0.5015  4.8265 
## 
## Random effects:
##  Groups        Name        Variance Std.Dev.
##  Month:Pasture (Intercept)  5.712   2.390   
##  Pasture       (Intercept)  0.000   0.000   
##  Residual                  72.370   8.507   
## Number of obs: 757, groups:  Month:Pasture, 24; Pasture, 8
## 
## Fixed effects:
##             Estimate Std. Error t value
## (Intercept)  16.1534     0.9105  17.741
## PatchU        7.2843     0.8419   8.652
## 
## Correlation of Fixed Effects:
##        (Intr)
## PatchU -0.772
   confint(Bio.CGREC.p)
## Computing profile confidence intervals ...
##                 2.5 %    97.5 %
## .sig01       1.455832  3.561241
## .sig02       0.000000  2.395668
## .sigma       8.089484  8.961780
## (Intercept) 14.325825 17.954553
## PatchU       5.631343  8.936701

Veg Structure

CI for patch difference

kable(VOR, caption="Overall structure difference and 95% CI")
Overall structure difference and 95% CI
Location Grassland Treatment ci.L ci.U sim.mean
CGREC Mixed-Native Spring Only -33 -14 -22.9
CGREC Mixed-Native Spring + Summer -49 -10 -29.5
HREC Mixed-Introduced Cattle -74 -12 -43.4
HREC Mixed-Introduced Sheep -46 -39 -42.5
 ggplot(VOR, aes(x=Treatment, Y=sim.mean, color=Treatment))+
      geom_point(aes(y=sim.mean, shape=Location),size=5)+
      scale_color_brewer(palette="Set1")+
      scale_fill_brewer(palette="Set1")+
      geom_hline(yintercept = 0, color="black", linetype="dashed")+
      geom_errorbar(aes(ymin=ci.L, ymax=ci.U),size=2, width=0.2)+
      coord_cartesian(ylim=c(-100,20))+
      scale_y_continuous(breaks=c(-80,-60,-40,-20,0,20))+
      xlab ("Treatment")+
      ylab ("Vegetative Structure (% Difference) + 95 % CI")+
      guides(shape=guide_legend(title="Location:"), color=guide_legend(title="Treatment:"))+
      theme_bw()+
      theme (axis.text=element_text(size=12, face="bold"),
             #legend.position = c(.5, .88),
             legend.position="bottom",
             panel.grid.minor = element_blank(),
             panel.grid.major = element_blank(),
             axis.title=element_text(size=14, face="bold"), 
             plot.title=element_text(size=12, face="bold", hjust=0.5))