Все задания выполняются на основе результатов опроса студентов из файла survey01.csv
.
С учётом всех манипуляций с датафреймом на лекции:
dat <- read.csv("http://math-info.hse.ru/f/2018-19/psych-ms/survey01.csv", dec = ",")
dat <- na.omit(dat)
dat <- dat[dat$math != 99 & dat$bio != 100,]
dat <- dat[dat$residence == 1 | dat$residence == 2,]
dat <- dat[dat$gender < 3,]
dat <- dat[dat$length != 0 | dat$angle != 0,]
dat$ege_sum <- dat$math + dat$bio
dat$len_dev <- abs(22 - dat$length)
dat$ang_dev <- abs(18 - dat$angle)
dat[dat$ege_sum >= 150, ]
## height math bio subject gender residence length angle soft ege_sum
## 3 178.0 72 96 2 2 1 25 25.0 R 168
## 8 182.0 68 88 2 1 2 20 25.0 R 156
## 9 172.0 82 80 1 1 1 25 30.0 R 162
## 10 158.0 91 90 1 1 1 50 20.0 R 181
## 11 167.0 76 76 1 1 1 35 20.0 R 152
## 14 157.5 86 92 5 1 1 20 23.0 R 178
## 16 169.5 72 87 2 1 1 25 37.5 R 159
## 18 171.0 78 88 2 1 2 25 22.5 R 166
## 22 170.0 76 90 2 1 1 20 30.0 R 166
## 24 168.0 80 92 5 1 1 23 25.0 SPSS 172
## 25 186.0 80 92 5 2 2 25 25.0 SPSS 172
## 26 166.0 78 72 3 1 1 26 22.0 SPSS 150
## 30 175.0 74 76 3 1 1 31 28.0 SPSS 150
## 39 184.0 72 93 2 2 2 26 30.0 R 165
## 42 164.0 72 89 1 1 1 25 23.0 R 161
## 45 170.0 76 74 2 1 2 25 25.0 R 150
## 47 164.0 80 94 2 1 2 18 11.0 R 174
## 53 174.0 82 88 2 1 1 25 36.0 R 170
## 54 165.0 94 78 1 1 2 24 23.0 R 172
## 55 169.0 85 80 1 1 2 22 17.0 R 165
## 56 190.0 72 86 2 2 2 24 18.0 R 158
## 58 163.0 74 96 2 1 2 3 60.0 R 170
## 59 163.0 74 96 2 1 2 3 60.0 R 170
## 60 170.0 72 96 2 1 1 5 45.0 R 168
## 62 175.0 74 98 1 1 2 20 20.0 R 172
## 64 160.0 70 86 3 1 2 20 30.0 R 156
## 65 163.0 74 96 2 1 2 20 25.0 R 170
## 66 183.0 80 94 2 2 2 25 22.0 R 174
## 67 164.0 78 89 1 1 1 15 23.0 R 167
## 69 185.0 70 88 2 2 2 35 30.0 R 158
## 71 164.0 74 78 5 1 2 23 29.0 R 152
## 74 165.0 80 88 4 1 2 14 20.0 R 168
## 78 175.0 77 86 5 1 1 5 50.0 R 163
## 82 170.0 78 79 5 2 1 20 20.0 R 157
## 83 181.0 78 84 2 1 1 24 25.0 R 162
## 84 167.0 75 90 5 1 1 30 20.0 R 165
## 85 151.0 70 92 4 1 1 23 35.0 R 162
## 87 170.0 78 78 1 1 1 25 25.0 R 156
## 90 170.0 80 80 5 1 1 25 25.0 R 160
## 91 170.0 80 92 4 1 2 20 30.0 R 172
## 92 164.0 78 90 3 1 1 30 20.0 R 168
## 93 160.0 76 88 2 1 2 22 30.0 R 164
## 95 180.0 78 94 1 2 1 25 30.0 R 172
## 98 167.0 82 82 1 1 2 27 30.0 R 164
## 100 164.0 84 74 3 1 1 21 25.0 R 158
## 101 158.0 75 77 4 1 1 43 12.0 R 152
## 105 157.0 76 77 2 1 1 18 20.0 R 153
## 106 181.0 88 68 1 1 2 25 30.0 R 156
## len_dev ang_dev
## 3 3 7.0
## 8 2 7.0
## 9 3 12.0
## 10 28 2.0
## 11 13 2.0
## 14 2 5.0
## 16 3 19.5
## 18 3 4.5
## 22 2 12.0
## 24 1 7.0
## 25 3 7.0
## 26 4 4.0
## 30 9 10.0
## 39 4 12.0
## 42 3 5.0
## 45 3 7.0
## 47 4 7.0
## 53 3 18.0
## 54 2 5.0
## 55 0 1.0
## 56 2 0.0
## 58 19 42.0
## 59 19 42.0
## 60 17 27.0
## 62 2 2.0
## 64 2 12.0
## 65 2 7.0
## 66 3 4.0
## 67 7 5.0
## 69 13 12.0
## 71 1 11.0
## 74 8 2.0
## 78 17 32.0
## 82 2 2.0
## 83 2 7.0
## 84 8 2.0
## 85 1 17.0
## 87 3 7.0
## 90 3 7.0
## 91 2 12.0
## 92 8 2.0
## 93 0 12.0
## 95 3 12.0
## 98 5 12.0
## 100 1 7.0
## 101 21 6.0
## 105 4 2.0
## 106 3 12.0
nrow(dat[dat$ege_sum >= 150, ]) # сколько
## [1] 48
top <- dat[dat$ege_sum >= 150, ]
summary(top)
## height math bio subject
## Min. :151.0 Min. :68.00 Min. :68.00 Min. :1.000
## 1st Qu.:164.0 1st Qu.:74.00 1st Qu.:79.75 1st Qu.:1.750
## Median :169.2 Median :77.50 Median :88.00 Median :2.000
## Mean :169.6 Mean :77.48 Mean :86.19 Mean :2.521
## 3rd Qu.:175.0 3rd Qu.:80.00 3rd Qu.:92.00 3rd Qu.:3.250
## Max. :190.0 Max. :94.00 Max. :98.00 Max. :5.000
## gender residence length angle soft
## Min. :1.000 Min. :1.000 Min. : 3.00 Min. :11.00 R :44
## 1st Qu.:1.000 1st Qu.:1.000 1st Qu.:20.00 1st Qu.:21.50 SPSS: 4
## Median :1.000 Median :1.000 Median :24.00 Median :25.00
## Mean :1.167 Mean :1.458 Mean :23.02 Mean :27.23
## 3rd Qu.:1.000 3rd Qu.:2.000 3rd Qu.:25.00 3rd Qu.:30.00
## Max. :2.000 Max. :2.000 Max. :50.00 Max. :60.00
## ege_sum len_dev ang_dev
## Min. :150.0 Min. : 0.000 Min. : 0.000
## 1st Qu.:157.8 1st Qu.: 2.000 1st Qu.: 4.375
## Median :164.5 Median : 3.000 Median : 7.000
## Mean :163.7 Mean : 5.688 Mean : 9.812
## 3rd Qu.:170.0 3rd Qu.: 7.250 3rd Qu.:12.000
## Max. :181.0 Max. :28.000 Max. :42.000
View(dat[dat$len_dev < 2, ])
dat1
.dat1 <- dat[dat$len_dev < 2, ]
min(dat1$ang_dev)
## [1] 1
max(dat1$ang_dev)
## [1] 17
rstud
.rstud <- dat[dat$soft == "R", ]
spstud
.spstud <- dat[dat$soft == "SPSS", ]
mean(rstud$len_dev)
## [1] 5.901408
mean(spstud$len_dev)
## [1] 5.777778
mean(rstud$ang_dev)
## [1] 11.01408
mean(spstud$ang_dev)
## [1] 6.666667