# load Brazil 2017 data
f <- 'data/1-TRADE/CD/EXPORT/BRAZIL/DATAMYNE/DASHBOARD/2017/CD_BRAZIL_2017.csv'
obj <- get_object(object = f, bucket = 'trase-storage')
data <- read_delim(obj, delim = ";")
## Parsed with column specification:
## cols(
## Date..Month. = col_character(),
## Product.HS = col_double(),
## HS.Description = col_character(),
## Country.of.Destination = col_character(),
## Port.of.Departure = col_character(),
## FOB.Value..US.. = col_double(),
## Exporter.Name = col_character(),
## State...Department.of.the.Exporter = col_character(),
## Exporter.Municipality = col_character(),
## Transport.Method = col_character(),
## Net.Weight = col_double(),
## Exporter.CNJP = col_double(),
## HS6 = col_double()
## )
## Warning: 1 parsing failure.
## row col expected actual file
## 10014 Exporter.CNJP a double SINFORMACAO <raw vector>
J <- list()
i = 1
comms <- c('beef', 'chicken', 'corn', 'cocoa', 'coffee', 'cotton', 'pork', 'leather', 'timber',
'palmoil', 'palmkernel', 'cpo', 'woodpulp', 'shrimps', 'soy', 'sugarcane')
# for each commodity in string of commodities
for (i in 1:length(comms)){ #)){
# create dataframe, rows: HS codes, columns: weight
numbers <- data.frame(commodity = commodities[[i]])
# get leading zeroes
numbers$commodity <- as.numeric(as.character(numbers$commodity))
numbers$commodity <- AT.add.leading.zeros(numbers$commodity, digits = 6)
# for each HS code, weight <- sum of weights in dataframe where hs code is that hs code (need new column for six digits)
data$HS6 <- as.numeric(as.character(data$HS6))
data$HS6 <- AT.add.leading.zeros(data$HS6, digits = 6)
for (j in 1:length(numbers$commodity)){
numbers$weight[j] <- sum(data$'Net.Weight'[data$HS6 %in% numbers$commodity[j]])
}
# total weight for that commodity <- sum of weights from table
total_weight <- sum(numbers$weight)
# new column: % <- weight column divided by total weight, and formatted *100 etc
numbers$perc <- round((numbers$weight / total_weight) *100, digits = 4)
# sort table by % column, descending
numbers <- numbers[order(-numbers$perc),]
# ok, ready
rownames(numbers) <- c()
print(kable(numbers, caption = comms[i]))
cat('\n')
}
beef
| 020230 |
1073020031 |
62.2618 |
| 050400 |
146128018 |
8.4790 |
| 020629 |
126210317 |
7.3233 |
| 020130 |
124723338 |
7.2370 |
| 010229 |
124706876 |
7.2361 |
| 160250 |
88106998 |
5.1124 |
| 020621 |
12897884 |
0.7484 |
| 020220 |
11962301 |
0.6941 |
| 021020 |
5496727 |
0.3189 |
| 010290 |
3959090 |
0.2297 |
| 020622 |
3712077 |
0.2154 |
| 010221 |
1646885 |
0.0956 |
| 020120 |
463730 |
0.0269 |
| 020610 |
367202 |
0.0213 |
| 010210 |
0 |
0.0000 |
| 020110 |
0 |
0.0000 |
| 020210 |
0 |
0.0000 |
chicken
| 020714 |
2699545048 |
68.3992 |
| 020712 |
1245581281 |
31.5597 |
| 010511 |
842101 |
0.0213 |
| 020713 |
783000 |
0.0198 |
| 010591 |
0 |
0.0000 |
| 010594 |
0 |
0.0000 |
| 020711 |
0 |
0.0000 |
| 020741 |
0 |
0.0000 |
| 160232 |
0 |
0.0000 |
corn
| 100590 |
29245735088 |
98.9709 |
| 110220 |
186931340 |
0.6326 |
| 110812 |
34349733 |
0.1162 |
| 151521 |
33893615 |
0.1147 |
| 100510 |
19995620 |
0.0677 |
| 110423 |
13433544 |
0.0455 |
| 110313 |
10170297 |
0.0344 |
| 230210 |
4655369 |
0.0158 |
| 151529 |
667998 |
0.0023 |
cocoa
| 180400 |
30480526 |
49.9800 |
| 180500 |
22361454 |
36.6669 |
| 180310 |
6996780 |
11.4729 |
| 180100 |
753767 |
1.2360 |
| 180200 |
194618 |
0.3191 |
| 180610 |
136297 |
0.2235 |
| 180320 |
62001 |
0.1017 |
coffee
| 090111 |
1647927506 |
94.8293 |
| 210111 |
84102663 |
4.8397 |
| 210112 |
3972694 |
0.2286 |
| 090121 |
1764584 |
0.1015 |
| 090122 |
10633 |
0.0006 |
| 090190 |
4362 |
0.0003 |
| 090112 |
0 |
0.0000 |
cotton
| 520100 |
833826831 |
94.9904 |
| 140420 |
21714203 |
2.4737 |
| 120729 |
16421003 |
1.8707 |
| 151229 |
3968644 |
0.4521 |
| 520291 |
1120622 |
0.1277 |
| 520299 |
478021 |
0.0545 |
| 230610 |
263222 |
0.0300 |
| 470610 |
6693 |
0.0008 |
| 520210 |
1255 |
0.0001 |
| 520300 |
1113 |
0.0001 |
| 120721 |
0 |
0.0000 |
| 151221 |
0 |
0.0000 |
pork
| 020329 |
561001823 |
83.7556 |
| 020649 |
70113052 |
10.4676 |
| 020322 |
21688615 |
3.2380 |
| 020321 |
9494724 |
1.4175 |
| 020641 |
4870789 |
0.7272 |
| 021019 |
1285954 |
0.1920 |
| 020630 |
377846 |
0.0564 |
| 020319 |
283762 |
0.0424 |
| 010310 |
258192 |
0.0385 |
| 010392 |
225901 |
0.0337 |
| 020311 |
206766 |
0.0309 |
| 021012 |
667 |
0.0001 |
| 010391 |
0 |
0.0000 |
| 020312 |
0 |
0.0000 |
| 021011 |
0 |
0.0000 |
leather
| 410411 |
242119503 |
53.2296 |
| 410419 |
127456932 |
28.0212 |
| 410712 |
47967678 |
10.5456 |
| 410441 |
17619402 |
3.8736 |
| 410792 |
9499849 |
2.0885 |
| 410150 |
2859694 |
0.6287 |
| 410711 |
2569612 |
0.5649 |
| 410791 |
1271399 |
0.2795 |
| 410449 |
964399 |
0.2120 |
| 410799 |
911932 |
0.2005 |
| 410719 |
836459 |
0.1839 |
| 410190 |
577395 |
0.1269 |
| 410120 |
204408 |
0.0449 |
timber
| 440711 |
1044764827 |
85.7109 |
| 440729 |
101245733 |
8.3060 |
| 440322 |
49050063 |
4.0240 |
| 440410 |
7540875 |
0.6186 |
| 440349 |
7143140 |
0.5860 |
| 440722 |
4426047 |
0.3631 |
| 440721 |
3270338 |
0.2683 |
| 440326 |
1088820 |
0.0893 |
| 440312 |
319650 |
0.0262 |
| 440420 |
53856 |
0.0044 |
| 440725 |
21616 |
0.0018 |
| 440311 |
15777 |
0.0013 |
| 440321 |
0 |
0.0000 |
| 440325 |
0 |
0.0000 |
| 440341 |
0 |
0.0000 |
| 440726 |
0 |
0.0000 |
| 440727 |
0 |
0.0000 |
| 440728 |
0 |
0.0000 |
palmoil
| 151110 |
88530349 |
98.4687 |
| 151190 |
1376775 |
1.5313 |
| 120710 |
0 |
0.0000 |
| 230660 |
0 |
0.0000 |
palmkernel
| 151329 |
2344946 |
88.9297 |
| 151321 |
291908 |
11.0703 |
cpo
| 151110 |
88530349 |
98.4687 |
| 151190 |
1376775 |
1.5313 |
woodpulp
| 470329 |
13007012322 |
93.9709 |
| 470200 |
642152998 |
4.6393 |
| 470321 |
192173823 |
1.3884 |
| 470100 |
184021 |
0.0013 |
| 470500 |
16000 |
0.0001 |
| 470311 |
4 |
0.0000 |
| 470319 |
0 |
0.0000 |
| 470411 |
0 |
0.0000 |
| 470419 |
0 |
0.0000 |
| 470421 |
0 |
0.0000 |
| 470429 |
0 |
0.0000 |
shrimps
| 030617 |
214476 |
100 |
| 030616 |
0 |
0 |
| 030635 |
0 |
0 |
| 030636 |
0 |
0 |
| 030695 |
0 |
0 |
soy
| 120190 |
68147704876 |
81.4448 |
| 230400 |
14176266088 |
16.9424 |
| 150710 |
1223792233 |
1.4626 |
| 150790 |
118575118 |
0.1417 |
| 120110 |
7103059 |
0.0085 |
| 120810 |
58596 |
0.0001 |
| 120100 |
0 |
0.0000 |
sugarcane
| 170114 |
23330603899 |
78.1951 |
| 170199 |
5363162110 |
17.9752 |
| 220710 |
1133524463 |
3.7991 |
| 170191 |
6780216 |
0.0227 |
| 220720 |
1617361 |
0.0054 |
| 170113 |
694876 |
0.0023 |
| 121292 |
0 |
0.0000 |
| 121293 |
129 |
0.0000 |
| 170111 |
0 |
0.0000 |
| 170310 |
0 |
0.0000 |