library(car)
## Loading required package: carData
library(mice)
## Warning: package 'mice' was built under R version 3.5.2
## Loading required package: lattice
## 
## Attaching package: 'mice'
## The following objects are masked from 'package:base':
## 
##     cbind, rbind
library(ggplot2)
library(dplyr)
## Warning: package 'dplyr' was built under R version 3.5.2
## 
## Attaching package: 'dplyr'
## The following object is masked from 'package:car':
## 
##     recode
## The following objects are masked from 'package:stats':
## 
##     filter, lag
## The following objects are masked from 'package:base':
## 
##     intersect, setdiff, setequal, union
library(foreign)
brfss2017=read.xport("~/Desktop/DataFolder/brfss.XPT ")
brfss2017$menth<-Recode(brfss2017$MENTHLTH,recodes="88=0;77=NA;99=NA",as.factor=T)
brfss2017$hlthinsur<-Recode(brfss2017$HLTHPLN1,recodes="1='Y';2='N';else=NA",as.factor=T)
brfss2017$medcost<-Recode(brfss2017$MEDCOST,recodes="1='Y';2='N';else=NA",as.factor=T)
brfss2017$sxorient<-Recode(brfss2017$SXORIENT,recodes="1='S';2='G';else=NA",as.factor=T)
brfss2017$marital<-Recode(brfss2017$MARITAL, recodes="1='M';5='S';else=NA",as.factor=T)
summary(brfss2017[,c("menth","hlthinsur","medcost","sxorient","marital")])
##      menth        hlthinsur     medcost       sxorient      marital      
##  0      :300134   N   : 35743   N   :401190   G   :  3167   M   :232891  
##  30     : 24843   Y   :412502   Y   : 47528   S   :190310   S   : 73939  
##  2      : 21661   NA's:  1771   NA's:  1298   NA's:256539   NA's:143186  
##  5      : 15711                                                          
##  1      : 13973                                                          
##  (Other): 66491                                                          
##  NA's   :  7203
#Look at patterns of missingness
md.pattern(brfss2017[,c("menth","hlthinsur","medcost","sxorient","marital")])

##        medcost hlthinsur menth marital sxorient       
## 128426       1         1     1       1        1      0
## 172744       1         1     1       1        0      1
## 61305        1         1     1       0        1      1
## 77596        1         1     1       0        0      2
## 1471         1         1     0       1        1      1
## 2251         1         1     0       1        0      2
## 1235         1         1     0       0        1      2
## 1976         1         1     0       0        0      3
## 415          1         0     1       1        1      1
## 739          1         0     1       1        0      2
## 149          1         0     1       0        1      2
## 293          1         0     1       0        0      3
## 25           1         0     0       1        1      2
## 42           1         0     0       1        0      3
## 14           1         0     0       0        1      3
## 37           1         0     0       0        0      4
## 225          0         1     1       1        1      1
## 404          0         1     1       1        0      2
## 156          0         1     1       0        1      2
## 316          0         1     1       0        0      3
## 16           0         1     0       1        1      2
## 44           0         1     0       1        0      3
## 21           0         1     0       0        1      3
## 59           0         1     0       0        0      4
## 9            0         0     1       1        1      2
## 16           0         0     1       1        0      3
## 6            0         0     1       0        1      3
## 14           0         0     1       0        0      4
## 2            0         0     0       1        1      3
## 1            0         0     0       1        0      4
## 2            0         0     0       0        1      4
## 7            0         0     0       0        0      5
##           1298      1771  7203  143186   256539 409997
#Let's see how pairs of variables are missing together...
md.pairs(brfss2017[,c("menth","hlthinsur","medcost","sxorient","marital")])
## $rr
##            menth hlthinsur medcost sxorient marital
## menth     442813    441172  441667   190691  302978
## hlthinsur 441172    448245  447004   192855  305581
## medcost   441667    447004  448718   193040  306113
## sxorient  190691    192855  193040   193477  130589
## marital   302978    305581  306113   130589  306830
## 
## $rm
##           menth hlthinsur medcost sxorient marital
## menth         0      1641    1146   252122  139835
## hlthinsur  7073         0    1241   255390  142664
## medcost    7051      1714       0   255678  142605
## sxorient   2786       622     437        0   62888
## marital    3852      1249     717   176241       0
## 
## $mr
##            menth hlthinsur medcost sxorient marital
## menth          0      7073    7051     2786    3852
## hlthinsur   1641         0    1714      622    1249
## medcost     1146      1241       0      437     717
## sxorient  252122    255390  255678        0  176241
## marital   139835    142664  142605    62888       0
## 
## $mm
##           menth hlthinsur medcost sxorient marital
## menth      7203       130     152     4417    3351
## hlthinsur   130      1771      57     1149     522
## medcost     152        57    1298      861     581
## sxorient   4417      1149     861   256539   80298
## marital    3351       522     581    80298  143186
#find the most common value
mcv.sxorient<-factor(names(which.max(table(brfss2017$sxorient))),levels=levels(brfss2017$sxorient))
mcv.sxorient
## [1] S
## Levels: G S
mcv.marital<-factor(names(which.max(table(brfss2017$marital))),levels=levels(brfss2017$marital))
mcv.marital
## [1] M
## Levels: M S
mcv.medcost<-factor(names(which.max(table(brfss2017$medcost))),levels=levels(brfss2017$medcost))
mcv.medcost
## [1] N
## Levels: N Y
mcv.hlthinsur<-factor(names(which.max(table(brfss2017$hlthinsur))),levels=levels(brfss2017$hlthinsur))
mcv.hlthinsur
## [1] Y
## Levels: N Y
mcv.menth<-factor(names(which.max(table(brfss2017$menth))),levels=levels(brfss2017$menth))
mcv.menth
## [1] 0
## 31 Levels: 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 ... 30
brfss2017$sxorient.imp<-as.factor(ifelse(is.na(brfss2017$sxorient)==T, mcv.sxorient, brfss2017$sxorient))
levels(brfss2017$sxorient.imp)<-levels(brfss2017$sxorient)

prop.table(table(brfss2017$sxorient))
## 
##          G          S 
## 0.01636887 0.98363113
prop.table(table(brfss2017$sxorient.imp))
## 
##           G           S 
## 0.007037528 0.992962472
barplot(prop.table(table(brfss2017$sxorient)), main="Original Data", ylim=c(0, .6))

barplot(prop.table(table(brfss2017$sxorient.imp)), main="Imputed Data",ylim=c(0, .6))

brfss2017$marital.imp<-as.factor(ifelse(is.na(brfss2017$marital)==T, mcv.marital, brfss2017$marital))
levels(brfss2017$marital.imp)<-levels(brfss2017$marital)

prop.table(table(brfss2017$marital))
## 
##         M         S 
## 0.7590229 0.2409771
prop.table(table(brfss2017$marital.imp))
## 
##        M        S 
## 0.835697 0.164303
barplot(prop.table(table(brfss2017$marital)), main="Original Data", ylim=c(0, .6))

barplot(prop.table(table(brfss2017$marital.imp)), main="Imputed Data",ylim=c(0, .6))

brfss2017$medcost.imp<-as.factor(ifelse(is.na(brfss2017$medcost)==T, mcv.medcost, brfss2017$medcost))
levels(brfss2017$medcost.imp)<-levels(brfss2017$medcost)

prop.table(table(brfss2017$medcost))
## 
##         N         Y 
## 0.8940805 0.1059195
prop.table(table(brfss2017$medcost.imp))
## 
##        N        Y 
## 0.894386 0.105614
barplot(prop.table(table(brfss2017$medcost)), main="Original Data", ylim=c(0, .6))

barplot(prop.table(table(brfss2017$medcost.imp)), main="Imputed Data",ylim=c(0, .6))

brfss2017$hlthinsur.imp<-as.factor(ifelse(is.na(brfss2017$hlthinsur)==T, mcv.hlthinsur, brfss2017$hlthinsur))
levels(brfss2017$hlthinsur.imp)<-levels(brfss2017$hlthinsur)

prop.table(table(brfss2017$hlthinsur))
## 
##          N          Y 
## 0.07973987 0.92026013
prop.table(table(brfss2017$hlthinsur.imp))
## 
##          N          Y 
## 0.07942606 0.92057394
barplot(prop.table(table(brfss2017$hlthinsur)), main="Original Data", ylim=c(0, .6))

barplot(prop.table(table(brfss2017$hlthinsur.imp)), main="Imputed Data",ylim=c(0, .6))

brfss2017$menth.imp<-as.factor(ifelse(is.na(brfss2017$menth)==T, mcv.menth, brfss2017$menth))
levels(brfss2017$menth.imp)<-levels(brfss2017$menth)

prop.table(table(brfss2017$menth))
## 
##            0            1            2            3            4 
## 6.777895e-01 3.155508e-02 4.891681e-02 2.904612e-02 1.454564e-02 
##            5            6            7            8            9 
## 3.547999e-02 4.236551e-03 1.424529e-02 2.838670e-03 4.674660e-04 
##           10           11           12           13           14 
## 2.595678e-02 1.987295e-04 1.987295e-03 3.251937e-04 5.417637e-03 
##           15           16           17           18           19 
## 2.478247e-02 4.629494e-04 3.635846e-04 5.239232e-04 6.774869e-05 
##           20           21           22           23           24 
## 1.495665e-02 8.829912e-04 2.913194e-04 1.648551e-04 2.235707e-04 
##           25           26           27           28           29 
## 5.207616e-03 1.987295e-04 4.132670e-04 1.497246e-03 8.536335e-04 
##           30 
## 5.610269e-02
prop.table(table(brfss2017$menth.imp))
## 
##            0            1            2            3            4 
## 0.6829468286 0.0310500071 0.0481338441 0.0285812060 0.0143128244 
##            5            6            7            8            9 
## 0.0349120920 0.0041687407 0.0140172794 0.0027932340 0.0004599836 
##           10           11           12           13           14 
## 0.0255413141 0.0001955486 0.0019554860 0.0003199886 0.0053309216 
##           15           16           17           18           19 
## 0.0243857996 0.0004555394 0.0003577651 0.0005155372 0.0000666643 
##           20           21           22           23           24 
## 0.0147172545 0.0008688580 0.0002866565 0.0001622165 0.0002199922 
##           25           26           27           28           29 
## 0.0051242622 0.0001955486 0.0004066522 0.0014732810 0.0008399701 
##           30 
## 0.0552047038
barplot(prop.table(table(brfss2017$menth)), main="Original Data", ylim=c(0, .6))

barplot(prop.table(table(brfss2017$menth.imp)), main="Imputed Data",ylim=c(0, .6))

#Multiple imputation
imp<-mice(data=brfss2017[,c("menth","hlthinsur","medcost","sxorient","marital")],seed=22,m=5)
## 
##  iter imp variable
##   1   1  menth  hlthinsur  medcost  sxorient  marital
##   1   2  menth  hlthinsur  medcost  sxorient  marital
##   1   3  menth  hlthinsur  medcost  sxorient  marital
##   1   4  menth  hlthinsur  medcost  sxorient  marital
##   1   5  menth  hlthinsur  medcost  sxorient  marital
##   2   1  menth  hlthinsur  medcost  sxorient  marital
##   2   2  menth  hlthinsur  medcost  sxorient  marital
##   2   3  menth  hlthinsur  medcost  sxorient  marital
##   2   4  menth  hlthinsur  medcost  sxorient  marital
##   2   5  menth  hlthinsur  medcost  sxorient  marital
##   3   1  menth  hlthinsur  medcost  sxorient  marital
##   3   2  menth  hlthinsur  medcost  sxorient  marital
##   3   3  menth  hlthinsur  medcost  sxorient  marital
##   3   4  menth  hlthinsur  medcost  sxorient  marital
##   3   5  menth  hlthinsur  medcost  sxorient  marital
##   4   1  menth  hlthinsur  medcost  sxorient  marital
##   4   2  menth  hlthinsur  medcost  sxorient  marital
##   4   3  menth  hlthinsur  medcost  sxorient  marital
##   4   4  menth  hlthinsur  medcost  sxorient  marital
##   4   5  menth  hlthinsur  medcost  sxorient  marital
##   5   1  menth  hlthinsur  medcost  sxorient  marital
##   5   2  menth  hlthinsur  medcost  sxorient  marital
##   5   3  menth  hlthinsur  medcost  sxorient  marital
##   5   4  menth  hlthinsur  medcost  sxorient  marital
##   5   5  menth  hlthinsur  medcost  sxorient  marital
## Warning: Number of logged events: 83
print(imp)
## Class: mids
## Number of multiple imputations:  5 
## Imputation methods:
##     menth hlthinsur   medcost  sxorient   marital 
## "polyreg"  "logreg"  "logreg"  "logreg"  "logreg" 
## PredictorMatrix:
##           menth hlthinsur medcost sxorient marital
## menth         0         1       1        1       1
## hlthinsur     1         0       1        1       1
## medcost       1         1       0        1       1
## sxorient      1         1       1        0       1
## marital       1         1       1        1       0
## Number of logged events:  83 
##   it im       dep   meth     out
## 1  1  1 hlthinsur logreg menth19
## 2  1  1   medcost logreg menth19
## 3  1  1  sxorient logreg menth19
## 4  1  1   marital logreg menth19
## 5  1  2 hlthinsur logreg menth19
## 6  1  2   medcost logreg menth19
dat.imp<-complete(imp,action=1)
head(dat.imp,n=20)
##    menth hlthinsur medcost sxorient marital
## 1      0         Y       N        S       M
## 2      0         Y       N        S       M
## 3      0         Y       N        S       M
## 4      0         Y       N        S       M
## 5      0         Y       N        S       M
## 6      0         Y       N        S       M
## 7      0         Y       N        S       M
## 8      0         Y       N        S       M
## 9     25         Y       N        S       M
## 10     1         Y       N        S       M
## 11     0         Y       N        S       M
## 12     0         Y       N        S       M
## 13     0         Y       N        S       M
## 14     0         Y       N        S       M
## 15     0         Y       N        S       M
## 16     0         Y       N        S       M
## 17     0         Y       N        S       M
## 18     0         Y       N        S       M
## 19    30         Y       N        S       M
## 20     0         N       N        S       M
#compare to the original data
head(brfss2017[,c("menth","hlthinsur","medcost","sxorient","marital")],n=20)
##    menth hlthinsur medcost sxorient marital
## 1      0         Y       N     <NA>    <NA>
## 2      0         Y       N     <NA>       M
## 3      0         Y       N     <NA>       M
## 4      0         Y       N     <NA>    <NA>
## 5      0         Y       N     <NA>    <NA>
## 6      0         Y       N     <NA>    <NA>
## 7      0         Y       N     <NA>       M
## 8      0         Y       N     <NA>    <NA>
## 9     25         Y       N     <NA>       M
## 10     1         Y       N     <NA>    <NA>
## 11     0         Y       N     <NA>    <NA>
## 12     0         Y       N     <NA>    <NA>
## 13     0         Y       N     <NA>    <NA>
## 14     0         Y       N     <NA>       M
## 15     0         Y       N     <NA>       M
## 16     0         Y       N     <NA>    <NA>
## 17     0         Y       N     <NA>    <NA>
## 18  <NA>         Y       N     <NA>    <NA>
## 19    30         Y       N     <NA>    <NA>
## 20     0         N       N     <NA>    <NA>
fit.medcost<-with(data=imp,expr=lm(medcost~sxorient+marital+hlthinsur+menth))
## Warning in model.response(mf, "numeric"): using type = "numeric" with a
## factor response will be ignored
## Warning in Ops.factor(y, z$residuals): '-' not meaningful for factors
## Warning in model.response(mf, "numeric"): using type = "numeric" with a
## factor response will be ignored
## Warning in Ops.factor(y, z$residuals): '-' not meaningful for factors
## Warning in model.response(mf, "numeric"): using type = "numeric" with a
## factor response will be ignored
## Warning in Ops.factor(y, z$residuals): '-' not meaningful for factors
## Warning in model.response(mf, "numeric"): using type = "numeric" with a
## factor response will be ignored
## Warning in Ops.factor(y, z$residuals): '-' not meaningful for factors
## Warning in model.response(mf, "numeric"): using type = "numeric" with a
## factor response will be ignored
## Warning in Ops.factor(y, z$residuals): '-' not meaningful for factors
fit.medcost
## call :
## with.mids(data = imp, expr = lm(medcost ~ sxorient + marital + 
##     hlthinsur + menth))
## 
## call1 :
## mice(data = brfss2017[, c("menth", "hlthinsur", "medcost", "sxorient", 
##     "marital")], m = 5, seed = 22)
## 
## nmis :
##     menth hlthinsur   medcost  sxorient   marital 
##      7203      1771      1298    256539    143186 
## 
## analyses :
## [[1]]
## 
## Call:
## lm(formula = medcost ~ sxorient + marital + hlthinsur + menth)
## 
## Coefficients:
## (Intercept)    sxorientS     maritalS   hlthinsurY       menth1  
##    1.315824     0.007322     0.022407    -0.278471     0.033247  
##      menth2       menth3       menth4       menth5       menth6  
##    0.044017     0.058818     0.074817     0.073632     0.102440  
##      menth7       menth8       menth9      menth10      menth11  
##    0.110330     0.118964     0.175612     0.107438     0.100749  
##     menth12      menth13      menth14      menth15      menth16  
##    0.164317     0.155460     0.144571     0.137274     0.221114  
##     menth17      menth18      menth19      menth20      menth21  
##    0.182974     0.140609     0.552699     0.169977     0.176432  
##     menth22      menth23      menth24      menth25      menth26  
##    0.130470     0.228769     0.315181     0.169919     0.219150  
##     menth27      menth28      menth29      menth30  
##    0.191353     0.209948     0.168221     0.191851  
## 
## 
## [[2]]
## 
## Call:
## lm(formula = medcost ~ sxorient + marital + hlthinsur + menth)
## 
## Coefficients:
## (Intercept)    sxorientS     maritalS   hlthinsurY       menth1  
##     1.30605      0.01663      0.02362     -0.27800      0.03357  
##      menth2       menth3       menth4       menth5       menth6  
##     0.04323      0.05910      0.07428      0.07232      0.10004  
##      menth7       menth8       menth9      menth10      menth11  
##     0.10524      0.12393      0.18364      0.10582      0.08172  
##     menth12      menth13      menth14      menth15      menth16  
##     0.15892      0.17399      0.14637      0.13889      0.19176  
##     menth17      menth18      menth19      menth20      menth21  
##     0.17907      0.14139      0.18094      0.17019      0.19286  
##     menth22      menth23      menth24      menth25      menth26  
##     0.18983      0.20212      0.29457      0.17085      0.26537  
##     menth27      menth28      menth29      menth30  
##     0.16628      0.20945      0.16834      0.19105  
## 
## 
## [[3]]
## 
## Call:
## lm(formula = medcost ~ sxorient + marital + hlthinsur + menth)
## 
## Coefficients:
## (Intercept)    sxorientS     maritalS   hlthinsurY       menth1  
##    1.320329     0.002152     0.023929    -0.278106     0.034140  
##      menth2       menth3       menth4       menth5       menth6  
##    0.043804     0.058773     0.077379     0.072838     0.098975  
##      menth7       menth8       menth9      menth10      menth11  
##    0.104329     0.117892     0.204228     0.107136     0.074838  
##     menth12      menth13      menth14      menth15      menth16  
##    0.165840     0.143811     0.138470     0.135658     0.194247  
##     menth17      menth18      menth19      menth20      menth21  
##    0.169491     0.167640     0.215022     0.170305     0.184884  
##     menth22      menth23      menth24      menth25      menth26  
##    0.118580     0.237609     0.261767     0.166496     0.198076  
##     menth27      menth28      menth29      menth30  
##    0.171988     0.208537     0.171109     0.193082  
## 
## 
## [[4]]
## 
## Call:
## lm(formula = medcost ~ sxorient + marital + hlthinsur + menth)
## 
## Coefficients:
## (Intercept)    sxorientS     maritalS   hlthinsurY       menth1  
##    1.315898     0.007552     0.023063    -0.278454     0.031945  
##      menth2       menth3       menth4       menth5       menth6  
##    0.042079     0.057917     0.072290     0.071466     0.097126  
##      menth7       menth8       menth9      menth10      menth11  
##    0.103850     0.127157     0.169804     0.108018     0.057621  
##     menth12      menth13      menth14      menth15      menth16  
##    0.160279     0.155768     0.138171     0.138768     0.204975  
##     menth17      menth18      menth19      menth20      menth21  
##    0.169220     0.141436     0.150977     0.168838     0.186721  
##     menth22      menth23      menth24      menth25      menth26  
##    0.139654     0.250025     0.250326     0.167148     0.251222  
##     menth27      menth28      menth29      menth30  
##    0.171380     0.221416     0.185457     0.189881  
## 
## 
## [[5]]
## 
## Call:
## lm(formula = medcost ~ sxorient + marital + hlthinsur + menth)
## 
## Coefficients:
## (Intercept)    sxorientS     maritalS   hlthinsurY       menth1  
##    1.324529    -0.001018     0.022636    -0.278643     0.031968  
##      menth2       menth3       menth4       menth5       menth6  
##    0.043694     0.058835     0.073432     0.074154     0.095260  
##      menth7       menth8       menth9      menth10      menth11  
##    0.099728     0.117560     0.185639     0.109510     0.059035  
##     menth12      menth13      menth14      menth15      menth16  
##    0.159508     0.197981     0.139320     0.138713     0.197408  
##     menth17      menth18      menth19      menth20      menth21  
##    0.172766     0.149258     0.272098     0.169639     0.181810  
##     menth22      menth23      menth24      menth25      menth26  
##    0.130215     0.227693     0.235637     0.167465     0.239681  
##     menth27      menth28      menth29      menth30  
##    0.259925     0.207774     0.170602     0.188507
esp.p<-pool(fit.medcost)
## Warning in Ops.factor(r, 2): '^' not meaningful for factors
## Warning in Ops.factor(res, 2): '^' not meaningful for factors

## Warning in Ops.factor(res, 2): '^' not meaningful for factors

## Warning in Ops.factor(res, 2): '^' not meaningful for factors
## Warning in Ops.factor(weighted.residuals(object), 2): '^' not meaningful
## for factors
## Warning in Ops.factor(r, 2): '^' not meaningful for factors
## Warning in Ops.factor(res, 2): '^' not meaningful for factors

## Warning in Ops.factor(res, 2): '^' not meaningful for factors

## Warning in Ops.factor(res, 2): '^' not meaningful for factors
## Warning in Ops.factor(weighted.residuals(object), 2): '^' not meaningful
## for factors
## Warning in Ops.factor(r, 2): '^' not meaningful for factors
## Warning in Ops.factor(res, 2): '^' not meaningful for factors

## Warning in Ops.factor(res, 2): '^' not meaningful for factors

## Warning in Ops.factor(res, 2): '^' not meaningful for factors
## Warning in Ops.factor(weighted.residuals(object), 2): '^' not meaningful
## for factors
## Warning in Ops.factor(r, 2): '^' not meaningful for factors
## Warning in Ops.factor(res, 2): '^' not meaningful for factors

## Warning in Ops.factor(res, 2): '^' not meaningful for factors

## Warning in Ops.factor(res, 2): '^' not meaningful for factors
## Warning in Ops.factor(weighted.residuals(object), 2): '^' not meaningful
## for factors
## Warning in Ops.factor(r, 2): '^' not meaningful for factors
## Warning in Ops.factor(res, 2): '^' not meaningful for factors

## Warning in Ops.factor(res, 2): '^' not meaningful for factors

## Warning in Ops.factor(res, 2): '^' not meaningful for factors
## Warning in Ops.factor(weighted.residuals(object), 2): '^' not meaningful
## for factors
## Warning in Ops.factor(r, 2): '^' not meaningful for factors

## Warning in Ops.factor(r, 2): '^' not meaningful for factors

## Warning in Ops.factor(r, 2): '^' not meaningful for factors

## Warning in Ops.factor(r, 2): '^' not meaningful for factors

## Warning in Ops.factor(r, 2): '^' not meaningful for factors
print(esp.p)
## Class: mipo    m = 5 
##                 estimate ubar            b  t  dfcom df riv lambda fmi
## (Intercept)  1.316526733   NA 4.726706e-05 NA 449982 NA  NA     NA  NA
## sxorientS    0.006527692   NA 4.495935e-05 NA 449982 NA  NA     NA  NA
## maritalS     0.023130156   NA 4.112672e-07 NA 449982 NA  NA     NA  NA
## hlthinsurY  -0.278335346   NA 7.250145e-08 NA 449982 NA  NA     NA  NA
## menth1       0.032974222   NA 9.655629e-07 NA 449982 NA  NA     NA  NA
## menth2       0.043365554   NA 5.993608e-07 NA 449982 NA  NA     NA  NA
## menth3       0.058687621   NA 2.014692e-07 NA 449982 NA  NA     NA  NA
## menth4       0.074439551   NA 3.610693e-06 NA 449982 NA  NA     NA  NA
## menth5       0.072882282   NA 1.125303e-06 NA 449982 NA  NA     NA  NA
## menth6       0.098768680   NA 7.537712e-06 NA 449982 NA  NA     NA  NA
## menth7       0.104694764   NA 1.439055e-05 NA 449982 NA  NA     NA  NA
## menth8       0.121100188   NA 1.801720e-05 NA 449982 NA  NA     NA  NA
## menth9       0.183784314   NA 1.709126e-04 NA 449982 NA  NA     NA  NA
## menth10      0.107584565   NA 1.808701e-06 NA 449982 NA  NA     NA  NA
## menth11      0.074793317   NA 3.162268e-04 NA 449982 NA  NA     NA  NA
## menth12      0.161773711   NA 9.620781e-06 NA 449982 NA  NA     NA  NA
## menth13      0.165401636   NA 4.482311e-04 NA 449982 NA  NA     NA  NA
## menth14      0.141381362   NA 1.453403e-05 NA 449982 NA  NA     NA  NA
## menth15      0.137860212   NA 1.950415e-06 NA 449982 NA  NA     NA  NA
## menth16      0.201899975   NA 1.400641e-04 NA 449982 NA  NA     NA  NA
## menth17      0.174704157   NA 3.711406e-05 NA 449982 NA  NA     NA  NA
## menth18      0.148066144   NA 1.321813e-04 NA 449982 NA  NA     NA  NA
## menth19      0.274348057   NA 2.623717e-02 NA 449982 NA  NA     NA  NA
## menth20      0.169789363   NA 3.469835e-07 NA 449982 NA  NA     NA  NA
## menth21      0.184541511   NA 3.681791e-05 NA 449982 NA  NA     NA  NA
## menth22      0.141749310   NA 7.782614e-04 NA 449982 NA  NA     NA  NA
## menth23      0.229242532   NA 3.100889e-04 NA 449982 NA  NA     NA  NA
## menth24      0.271496767   NA 1.067403e-03 NA 449982 NA  NA     NA  NA
## menth25      0.168375500   NA 3.591787e-06 NA 449982 NA  NA     NA  NA
## menth26      0.234699694   NA 7.053979e-04 NA 449982 NA  NA     NA  NA
## menth27      0.192184464   NA 1.525341e-03 NA 449982 NA  NA     NA  NA
## menth28      0.211424940   NA 3.189427e-05 NA 449982 NA  NA     NA  NA
## menth29      0.172744842   NA 5.219573e-05 NA 449982 NA  NA     NA  NA
## menth30      0.190875128   NA 3.113271e-06 NA 449982 NA  NA     NA  NA