Import Library and Data
library(xgboost)
# load in the agaricus dataset
data(agaricus.train, package='xgboost')
data(agaricus.test, package='xgboost')
dtrain <- xgb.DMatrix(agaricus.train$data, label = agaricus.train$label)
dtest <- xgb.DMatrix(agaricus.test$data, label = agaricus.test$label)
Parameter
watchlist <- list(eval = dtest, train = dtrain)
num_round <- 20
Running the Training
param <- list(max_depth=2, eta=1, nthread = 2, verbosity=0,
objective="my:loss")
bst <- xgb.train(param, dtrain, num_round, watchlist)
## [1] eval-my_loss:0.032816 train-my_loss:0.034209
## [2] eval-my_loss:0.017759 train-my_loss:0.015349
## [3] eval-my_loss:0.010793 train-my_loss:0.010074
## [4] eval-my_loss:0.006098 train-my_loss:0.005906
## [5] eval-my_loss:0.003424 train-my_loss:0.003295
## [6] eval-my_loss:0.003142 train-my_loss:0.003108
## [7] eval-my_loss:0.003028 train-my_loss:0.002983
## [8] eval-my_loss:0.001775 train-my_loss:0.001772
## [9] eval-my_loss:0.001525 train-my_loss:0.001544
## [10] eval-my_loss:0.001399 train-my_loss:0.001478
## [11] eval-my_loss:0.001388 train-my_loss:0.001404
## [12] eval-my_loss:0.001464 train-my_loss:0.001491
## [13] eval-my_loss:0.001385 train-my_loss:0.001375
## [14] eval-my_loss:0.001316 train-my_loss:0.001307
## [15] eval-my_loss:0.001326 train-my_loss:0.001319
## [16] eval-my_loss:0.001051 train-my_loss:0.001050
## [17] eval-my_loss:0.001028 train-my_loss:0.001031
## [18] eval-my_loss:0.001020 train-my_loss:0.001107
## [19] eval-my_loss:0.001030 train-my_loss:0.000986
## [20] eval-my_loss:0.001002 train-my_loss:0.000930