Análisis de componentes

prcomp y princomp

pca_prcomp(datos, t=TRUE, n=11, w=TRUE, q=TRUE, m=11)
## Standard deviations (1, .., p=11):
##  [1] 2.3314342 1.4399034 1.1896948 0.8180625 0.6477702 0.5073144 0.4921281
##  [8] 0.4242908 0.3821780 0.3137094 0.2506634
## 
## Rotation (n x k) = (11 x 11):
##            PC1         PC2          PC3         PC4         PC5
## V1  -0.3821641  0.12218707 -0.014056290 -0.01399090 -0.45040647
## V2  -0.3825994 -0.03246375  0.020596338  0.12168423 -0.50160567
## V3   0.1135163 -0.07102210  0.748462737 -0.28112277 -0.14551431
## V4   0.3185078  0.36956111 -0.035427309 -0.28133267 -0.18546059
## V5   0.2515746  0.30962429  0.461138374  0.03612228 -0.18121642
## V6  -0.2973952  0.44790378 -0.019041506 -0.06843929 -0.02615058
## V7  -0.2981321  0.35685649  0.001941143 -0.33119936  0.47685381
## V8   0.2007606  0.57076656 -0.172157282  0.03799432  0.02418820
## V9  -0.2276497  0.24693541  0.332158621  0.74848726  0.22629198
## V10 -0.3429979 -0.16251083  0.288074137 -0.25820884  0.37998114
## V11 -0.3779443  0.07351183 -0.044243799 -0.28773043 -0.18128464
##             PC6          PC7         PC8         PC9         PC10
## V1   0.10872118 -0.058766226  0.07269904 -0.71377358 -0.325106443
## V2  -0.31040509  0.242360223 -0.21878837  0.15627378  0.588707133
## V3   0.07875158  0.451997356 -0.17652047  0.08736735 -0.264553974
## V4   0.48586631  0.040299607 -0.04823410 -0.13254604  0.462776583
## V5  -0.36584593 -0.652186368  0.11398169 -0.01476997  0.105554201
## V6  -0.26393022  0.192630211  0.44281233  0.34556115 -0.233611303
## V7  -0.24709329 -0.056420568 -0.58977760 -0.18023693  0.028838416
## V8   0.02288744  0.343598022  0.16432572 -0.02197933 -0.006208564
## V9   0.37200145  0.005648358 -0.12625079  0.01976721  0.050422895
## V10  0.11148208  0.007228604  0.55245969 -0.20112214  0.418533978
## V11  0.48338993 -0.384840084 -0.09107352  0.49745784 -0.138850465
##             PC11
## V1   0.005981733
## V2   0.108482896
## V3   0.048828928
## V4  -0.418845205
## V5   0.102509603
## V6  -0.477883734
## V7  -0.035935648
## V8   0.675385771
## V9  -0.090213436
## V10  0.169072324
## V11  0.278096752
## Importance of components:
##                           PC1    PC2    PC3     PC4     PC5    PC6     PC7
## Standard deviation     2.3314 1.4399 1.1897 0.81806 0.64777 0.5073 0.49213
## Proportion of Variance 0.4941 0.1885 0.1287 0.06084 0.03815 0.0234 0.02202
## Cumulative Proportion  0.4941 0.6826 0.8113 0.87214 0.91028 0.9337 0.95570
##                            PC8     PC9    PC10    PC11
## Standard deviation     0.42429 0.38218 0.31371 0.25066
## Proportion of Variance 0.01637 0.01328 0.00895 0.00571
## Cumulative Proportion  0.97206 0.98534 0.99429 1.00000

pca_princomp(datos, f=TRUE, w=TRUE, q=TRUE, m=11)
## Call:
## princomp(x = datos, cor = f)
## 
## Standard deviations:
##    Comp.1    Comp.2    Comp.3    Comp.4    Comp.5    Comp.6    Comp.7 
## 2.3314342 1.4399034 1.1896948 0.8180625 0.6477702 0.5073144 0.4921281 
##    Comp.8    Comp.9   Comp.10   Comp.11 
## 0.4242908 0.3821780 0.3137094 0.2506634 
## 
##  11  variables and  50 observations.
## Importance of components:
##                           Comp.1    Comp.2    Comp.3     Comp.4     Comp.5
## Standard deviation     2.3314342 1.4399034 1.1896948 0.81806252 0.64777020
## Proportion of Variance 0.4941441 0.1884838 0.1286703 0.06083875 0.03814602
## Cumulative Proportion  0.4941441 0.6826279 0.8112983 0.87213704 0.91028306
##                            Comp.6     Comp.7    Comp.8     Comp.9
## Standard deviation     0.50731439 0.49212810 0.4242908 0.38217799
## Proportion of Variance 0.02339708 0.02201728 0.0163657 0.01327818
## Cumulative Proportion  0.93368014 0.95569742 0.9720631 0.98534130
##                           Comp.10     Comp.11
## Standard deviation     0.31370941 0.250663389
## Proportion of Variance 0.00894669 0.005712012
## Cumulative Proportion  0.99428799 1.000000000

Análisis Factorial

Con solución de factor principal; varimax, none y quartimax. scores=regression

FA(D1, n=3, r="varimax", B=FALSE)
## $varianza_acumulada
##        X1        X2        X3        X4        X5        X6        X7 
## 0.4511991 0.4455733 0.2191468 0.3100766 0.2036984 0.1730550 0.8528584 
##        X8        X9       X10       X11 
## 0.8140632 0.8164366 0.1198478 0.2735050 
## 
## $comunalidad
##        X1        X2        X3        X4        X5        X6        X7 
## 0.5488009 0.5544267 0.7808532 0.6899234 0.7963016 0.8269450 0.1471416 
##        X8        X9       X10       X11 
## 0.1859368 0.1835634 0.8801522 0.7264950 
## 
## $pesos_factoriales
## 
## Loadings:
##     PA1    PA3    PA2   
## X1  -0.438 -0.274 -0.531
## X2  -0.717 -0.176       
## X3          0.125  0.872
## X4   0.243  0.792       
## X5   0.140  0.881       
## X6   0.848  0.247  0.218
## X7   0.137  0.163 -0.319
## X8                 0.426
## X9  -0.400 -0.136       
## X10  0.925        -0.129
## X11  0.826        -0.205
## 
##                  PA1   PA3   PA2
## SS loadings    3.230 1.641 1.450
## Proportion Var 0.294 0.149 0.132
## Cumulative Var 0.294 0.443 0.575
FA(D1, n=3, r="none", B=FALSE)
## $varianza_acumulada
##        X1        X2        X3        X4        X5        X6        X7 
## 0.4511991 0.4455733 0.2191468 0.3100766 0.2036984 0.1730550 0.8528584 
##        X8        X9       X10       X11 
## 0.8140632 0.8164366 0.1198478 0.2735050 
## 
## $comunalidad
##        X1        X2        X3        X4        X5        X6        X7 
## 0.5488009 0.5544267 0.7808532 0.6899234 0.7963016 0.8269450 0.1471416 
##        X8        X9       X10       X11 
## 0.1859368 0.1835634 0.8801522 0.7264950 
## 
## $pesos_factoriales
## 
## Loadings:
##     PA1    PA2    PA3   
## X1  -0.579 -0.421  0.189
## X2  -0.728         0.134
## X3   0.232  0.770 -0.366
## X4   0.570  0.300  0.525
## X5   0.512  0.338  0.648
## X6   0.891        -0.182
## X7   0.151 -0.249  0.249
## X8          0.394 -0.175
## X9  -0.406  0.137       
## X10  0.844 -0.377 -0.161
## X11  0.731 -0.423 -0.115
## 
##                  PA1   PA2   PA3
## SS loadings    3.733 1.538 1.049
## Proportion Var 0.339 0.140 0.095
## Cumulative Var 0.339 0.479 0.575
FA(D1, n=3, r="quartimax", B=FALSE)
## $varianza_acumulada
##        X1        X2        X3        X4        X5        X6        X7 
## 0.4511991 0.4455733 0.2191468 0.3100766 0.2036984 0.1730550 0.8528584 
##        X8        X9       X10       X11 
## 0.8140632 0.8164366 0.1198478 0.2735050 
## 
## $comunalidad
##        X1        X2        X3        X4        X5        X6        X7 
## 0.5488009 0.5544267 0.7808532 0.6899234 0.7963016 0.8269450 0.1471416 
##        X8        X9       X10       X11 
## 0.1859368 0.1835634 0.8801522 0.7264950 
## 
## $pesos_factoriales
## 
## Loadings:
##     PA1    PA3    PA2   
## X1  -0.421 -0.232 -0.563
## X2  -0.719 -0.137 -0.139
## X3                 0.879
## X4   0.276  0.776  0.107
## X5   0.180  0.871       
## X6   0.845  0.196  0.272
## X7   0.162  0.168 -0.305
## X8                 0.423
## X9  -0.409 -0.118       
## X10  0.934              
## X11  0.837        -0.159
## 
##                  PA1   PA3   PA2
## SS loadings    3.292 1.525 1.504
## Proportion Var 0.299 0.139 0.137
## Cumulative Var 0.299 0.438 0.575

Gráfico de codo

scree.plot(D1,type = 'R')