Guia practica 02

Mario Antonio Herrera Rivera. HR17038. GT02

23 de marzo de 2019

Guia pratica 2

library(dplyr)
library(readr)
ejemp_regresion <- read.csv("M:/Econometria/GUIA 2/ejemplo_regresion.csv")
head(ejemp_regresion,n=6)
##   ï..X1   X2    Y
## 1  3.92 7298 0.75
## 2  3.61 6855 0.71
## 3  3.32 6636 0.66
## 4  3.07 6506 0.61
## 5  3.06 6450 0.70
## 6  3.11 6402 0.72

Regresion Lineal

library(stargazer)
options(scipen = 9999)
modelo_lineal<-lm(formula = Y~ï..X1+X2,data = ejemp_regresion)
summary(modelo_lineal)
## 
## Call:
## lm(formula = Y ~ ï..X1 + X2, data = ejemp_regresion)
## 
## Residuals:
##       Min        1Q    Median        3Q       Max 
## -0.085090 -0.039102 -0.003341  0.030236  0.105692 
## 
## Coefficients:
##                Estimate  Std. Error t value            Pr(>|t|)    
## (Intercept)  1.56449677  0.07939598  19.705 0.00000000000000182 ***
## ï..X1        0.23719747  0.05555937   4.269            0.000313 ***
## X2          -0.00024908  0.00003205  -7.772 0.00000009508790794 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.0533 on 22 degrees of freedom
## Multiple R-squared:  0.8653, Adjusted R-squared:  0.8531 
## F-statistic: 70.66 on 2 and 22 DF,  p-value: 0.000000000265
stargazer(modelo_lineal, title="Regresion Multiple",type = "text",digits = 8)
## 
## Regresion Multiple
## ===============================================
##                         Dependent variable:    
##                     ---------------------------
##                                  Y             
## -----------------------------------------------
## ï..X1                      0.23719750***       
##                            (0.05555937)        
##                                                
## X2                        -0.00024908***       
##                            (0.00003205)        
##                                                
## Constant                   1.56449700***       
##                            (0.07939598)        
##                                                
## -----------------------------------------------
## Observations                    25             
## R2                          0.86529610         
## Adjusted R2                 0.85305030         
## Residual Std. Error    0.05330222 (df = 22)    
## F Statistic         70.66057000*** (df = 2; 22)
## ===============================================
## Note:               *p<0.1; **p<0.05; ***p<0.01

Objetos dentro del modelo de Regresion lineal.

Vector de coeficientes estimados \(\hat{β}\):

options(scipen = 999)
modelo_lineal$coefficients
##   (Intercept)         ï..X1            X2 
##  1.5644967711  0.2371974748 -0.0002490793

Matriz de Varianza - Covarianza de los parametros V[β]

var_covar<-vcov(modelo_lineal)
print(var_covar)
##                  (Intercept)           ï..X1                 X2
## (Intercept)  0.0063037218732  0.000240996434 -0.000000982806321
## ï..X1        0.0002409964344  0.003086843196 -0.000001675537651
## X2          -0.0000009828063 -0.000001675538  0.000000001027106

Intervalos de Confianza.

confint(object = modelo_lineal, level = .95)
##                     2.5 %        97.5 %
## (Intercept)  1.3998395835  1.7291539588
## ï..X1        0.1219744012  0.3524205485
## X2          -0.0003155438 -0.0001826148

Valores Ajustados \(\hat{Y}\)

plot(modelo_lineal$fitted.values,main = "Valores ajustados",ylab = "Y",xlab = "X")

modelo_lineal$fitted.values %>% as.matrix()
##         [,1]
## 1  0.6765303
## 2  0.7133412
## 3  0.6991023
## 4  0.6721832
## 5  0.6837597
## 6  0.7075753
## 7  0.7397638
## 8  0.7585979
## 9  0.7943078
## 10 0.7935605
## 11 0.7984347
## 12 0.8272778
## 13 0.8021665
## 14 0.7992462
## 15 0.7544349
## 16 0.7339716
## 17 0.7048866
## 18 0.6930338
## 19 0.6350898
## 20 0.6127185
## 21 0.5701215
## 22 0.4796371
## 23 0.4374811
## 24 0.3953981
## 25 0.3773799

Residuos del Modelo \(\hat{ϵ}\)

plot(modelo_lineal$residuals,main = "Residuos",ylab = "Residuos",xlab = "Casos")

modelo_lineal$residuals %>% as.matrix()
##            [,1]
## 1   0.073469743
## 2  -0.003341163
## 3  -0.039102258
## 4  -0.062183196
## 5   0.016240338
## 6   0.012424659
## 7   0.030236216
## 8  -0.018597878
## 9   0.105692240
## 10  0.026439478
## 11 -0.048434733
## 12 -0.057277771
## 13 -0.022166535
## 14  0.040753758
## 15  0.035565142
## 16 -0.033971640
## 17 -0.024886579
## 18  0.026966239
## 19 -0.085089833
## 20  0.017281530
## 21 -0.010121525
## 22 -0.069637086
## 23  0.072518915
## 24  0.074601871
## 25 -0.057379932

Ejercicio Practico 2

Ejercicio 2. Reproduce todas las salidas de la presentación con los datos del siguiente ejercicio: se ha recogido datos del coste de mantenimiento (Y) de una empresa, del numero de maquinas (X1) y del tiempo medido (X2) de interrupcion de trabajo por mantenimiento, y se trata de estimar el gasto en mantenimiento en funcion de estos factores.

Como el numero de máquinas y el tiempo medio de averías pueden interaccionar, causando un efecto sobre el coste del mantenimiento (al producirse una avería, se intent recuperar el tiempo, mediante un trabajo mas intenso), se usa la variable X3=X1X2, que representa el efecto de esa interacción.

library(dplyr)
library(readr)
ejemp_regresion2 <- read.csv("M:/Econometria/GUIA 2/guia2.csv")
print(ejemp_regresion2)
##     X1   X2    Y
## 1   50  7.4  320
## 2   53  5.1  450
## 3   60  4.2  370
## 4   63  3.9  470
## 5   69  1.4  420
## 6   82  2.2  500
## 7  100  7.0  570
## 8  104  5.7  640
## 9  113 13.1  670
## 10 130 16.4  780
## 11 150  5.1  690
## 12 181  2.9  700
## 13 202  4.5  910
## 14 217  6.2  930
## 15 229  3.2  940
## 16 240  2.4 1070
## 17 243  4.9 1160
## 18 247  8.8 1210
## 19 249 10.1 1450
## 20 254  6.7 1220
ejemp_regresion2 <- read.csv("M:/Econometria/GUIA 2/guia2.csv")
head(ejemp_regresion2,n=6)
##   X1  X2   Y
## 1 50 7.4 320
## 2 53 5.1 450
## 3 60 4.2 370
## 4 63 3.9 470
## 5 69 1.4 420
## 6 82 2.2 500

Regresion Lineal.

library(stargazer)
options(scipen = 9999)
modelo_lineal2<-lm(formula = Y~X1+X2+ (X1*X2),data = ejemp_regresion2)
summary(modelo_lineal2)
## 
## Call:
## lm(formula = Y ~ X1 + X2 + (X1 * X2), data = ejemp_regresion2)
## 
## Residuals:
##      Min       1Q   Median       3Q      Max 
## -108.527  -37.595   -2.745   52.292  102.808 
## 
## Coefficients:
##              Estimate Std. Error t value Pr(>|t|)    
## (Intercept) 303.50401   71.54695   4.242 0.000621 ***
## X1            2.32927    0.47698   4.883 0.000166 ***
## X2          -25.07113   11.48487  -2.183 0.044283 *  
## X1:X2         0.28617    0.07681   3.726 0.001840 ** 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 67.68 on 16 degrees of freedom
## Multiple R-squared:  0.9634, Adjusted R-squared:  0.9566 
## F-statistic: 140.4 on 3 and 16 DF,  p-value: 0.00000000001054
stargazer(modelo_lineal2, title="Regresion Multiple",type = "text",digits = 8)
## 
## Regresion Multiple
## ================================================
##                         Dependent variable:     
##                     ----------------------------
##                                  Y              
## ------------------------------------------------
## X1                         2.32927500***        
##                             (0.47698220)        
##                                                 
## X2                         -25.07113000**       
##                            (11.48487000)        
##                                                 
## X1:X2                      0.28616860***        
##                             (0.07681293)        
##                                                 
## Constant                  303.50400000***       
##                            (71.54695000)        
##                                                 
## ------------------------------------------------
## Observations                     20             
## R2                           0.96341370         
## Adjusted R2                  0.95655370         
## Residual Std. Error    67.67775000 (df = 16)    
## F Statistic         140.44060000*** (df = 3; 16)
## ================================================
## Note:                *p<0.1; **p<0.05; ***p<0.01

Objetos dentro del modelo de Regresion lineal.

Vector de coeficientes estimados \(\hat{β}\):

options(scipen = 999)
modelo_lineal$coefficients
##   (Intercept)         ï..X1            X2 
##  1.5644967711  0.2371974748 -0.0002490793

Matriz de Varianza - Covarianza de los parametros V[β]

var_covar2<-vcov(modelo_lineal2)
print(var_covar2)
##             (Intercept)           X1           X2        X1:X2
## (Intercept)  5118.96645 -31.10997447 -722.8989902  4.493190281
## X1            -31.10997   0.22751204    4.5755139 -0.033223456
## X2           -722.89899   4.57551391  131.9021598 -0.822206343
## X1:X2           4.49319  -0.03322346   -0.8222063  0.005900226

Intervalos de Confianza.

confint(object = modelo_lineal2, level = .95)
##                   2.5 %      97.5 %
## (Intercept) 151.8312499 455.1767786
## X1            1.3181175   3.3404318
## X2          -49.4179582  -0.7242993
## X1:X2         0.1233324   0.4490047

Valores Ajustados \(\hat{Y}\)

plot(modelo_lineal2$fitted.values,main = "Valores ajustados",ylab = "Y",xlab = "X")

modelo_lineal2$fitted.values %>% as.matrix()
##         [,1]
## 1   340.3238
## 2   376.4442
## 3   410.0762
## 4   422.7825
## 5   456.7683
## 6   490.9729
## 7   561.2516
## 8   572.4839
## 9   661.8956
## 10  805.2546
## 11  743.9514
## 12  802.6063
## 13  921.3246
## 14 1038.5268
## 15  966.3846
## 16  967.1923
## 17 1087.4101
## 18 1280.2249
## 19 1349.9604
## 20 1214.1649

Residuos del Modelo \(\hat{ϵ}\)

plot(modelo_lineal2$residuals,main = "Residuos",ylab = "Residuos",xlab = "Casos")

modelo_lineal2$residuals %>% matrix()
##              [,1]
##  [1,]  -20.323767
##  [2,]   73.555820
##  [3,]  -40.076233
##  [4,]   47.217467
##  [5,]  -36.768268
##  [6,]    9.027138
##  [7,]    8.748419
##  [8,]   67.516125
##  [9,]    8.104393
## [10,]  -25.254613
## [11,]  -53.951414
## [12,] -102.606335
## [13,]  -11.324647
## [14,] -108.526815
## [15,]  -26.384626
## [16,]  102.807683
## [17,]   72.589856
## [18,]  -70.224936
## [19,]  100.039646
## [20,]    5.835106