load("more/nc.RData")
nrow(nc)
## [1] 1000
summary(nc)
## fage mage mature weeks
## Min. :14.00 Min. :13 mature mom :133 Min. :20.00
## 1st Qu.:25.00 1st Qu.:22 younger mom:867 1st Qu.:37.00
## Median :30.00 Median :27 Median :39.00
## Mean :30.26 Mean :27 Mean :38.33
## 3rd Qu.:35.00 3rd Qu.:32 3rd Qu.:40.00
## Max. :55.00 Max. :50 Max. :45.00
## NA's :171 NA's :2
## premie visits marital gained
## full term:846 Min. : 0.0 married :386 Min. : 0.00
## premie :152 1st Qu.:10.0 not married:613 1st Qu.:20.00
## NA's : 2 Median :12.0 NA's : 1 Median :30.00
## Mean :12.1 Mean :30.33
## 3rd Qu.:15.0 3rd Qu.:38.00
## Max. :30.0 Max. :85.00
## NA's :9 NA's :27
## weight lowbirthweight gender habit
## Min. : 1.000 low :111 female:503 nonsmoker:873
## 1st Qu.: 6.380 not low:889 male :497 smoker :126
## Median : 7.310 NA's : 1
## Mean : 7.101
## 3rd Qu.: 8.060
## Max. :11.750
##
## whitemom
## not white:284
## white :714
## NA's : 2
##
##
##
##
boxplot(nc$fage,nc$mage,nc$weeks,nc$visits, nc$gained,nc$weight)
###Ex2: Make a side-by-side boxplot of habit and weight. What does the plot highlight about the relationship between these two variables?
library('ggplot2')
## Warning: package 'ggplot2' was built under R version 3.5.2
df <- data.frame(nc$habit, nc$weight)
ggplot(aes(y = nc.weight , x = nc.habit, fill = nc.habit), data = df) + geom_boxplot()+ggtitle("Smoking habit and Weight")
###The plot shows that mothers who smoke tend to give birth to babies with lower weight at birth.
by(nc$weight, nc$habit, mean)
## nc$habit: nonsmoker
## [1] 7.144273
## --------------------------------------------------------
## nc$habit: smoker
## [1] 6.82873
by(nc$weight, nc$habit, length)
## nc$habit: nonsmoker
## [1] 873
## --------------------------------------------------------
## nc$habit: smoker
## [1] 126
inference(y = nc$weight, x = nc$habit, est = "mean", type = "ht", null = 0,
alternative = "twosided", method = "theoretical")
## Warning: package 'openintro' was built under R version 3.5.2
## Warning: package 'BHH2' was built under R version 3.5.3
## Response variable: numerical, Explanatory variable: categorical
## Difference between two means
## Summary statistics:
## n_nonsmoker = 873, mean_nonsmoker = 7.1443, sd_nonsmoker = 1.5187
## n_smoker = 126, mean_smoker = 6.8287, sd_smoker = 1.3862
## Observed difference between means (nonsmoker-smoker) = 0.3155
##
## H0: mu_nonsmoker - mu_smoker = 0
## HA: mu_nonsmoker - mu_smoker != 0
## Standard error = 0.134
## Test statistic: Z = 2.359
## p-value = 0.0184
###Ex5: Change the type argument to “ci” to construct and record a confidence interval for the difference between the weights of babies born to smoking and non-smoking mothers.
inference(y = nc$weight, x = nc$habit, est = "mean", type = "ci", null = 0,
alternative = "twosided", method = "theoretical")
## Response variable: numerical, Explanatory variable: categorical
## Difference between two means
## Summary statistics:
## n_nonsmoker = 873, mean_nonsmoker = 7.1443, sd_nonsmoker = 1.5187
## n_smoker = 126, mean_smoker = 6.8287, sd_smoker = 1.3862
## Observed difference between means (nonsmoker-smoker) = 0.3155
##
## Standard error = 0.1338
## 95 % Confidence interval = ( 0.0534 , 0.5777 )
inference(y = nc$weight, x = nc$habit, est = "mean", type = "ci", null = 0,
alternative = "twosided", method = "theoretical",
order = c("smoker","nonsmoker"))
## Response variable: numerical, Explanatory variable: categorical
## Difference between two means
## Summary statistics:
## n_smoker = 126, mean_smoker = 6.8287, sd_smoker = 1.3862
## n_nonsmoker = 873, mean_nonsmoker = 7.1443, sd_nonsmoker = 1.5187
## Observed difference between means (smoker-nonsmoker) = -0.3155
##
## Standard error = 0.1338
## 95 % Confidence interval = ( -0.5777 , -0.0534 )
inference(y = nc$weeks, est = "mean", type = "ci", null = 0,
alternative = "twosided", method = "theoretical")
## Single mean
## Summary statistics:
## mean = 38.3347 ; sd = 2.9316 ; n = 998
## Standard error = 0.0928
## 95 % Confidence interval = ( 38.1528 , 38.5165 )
inference(y = nc$weeks, est = "mean", type = "ci", conflevel = 0.90, null = 0,
alternative = "twosided", method = "theoretical")
## Single mean
## Summary statistics:
## mean = 38.3347 ; sd = 2.9316 ; n = 998
## Standard error = 0.0928
## 90 % Confidence interval = ( 38.182 , 38.4873 )
inference(y = nc$gained, x = nc$mature, est = "mean", type = "ht", null = 0,
alternative = "twosided", method = "theoretical")
## Response variable: numerical, Explanatory variable: categorical
## Difference between two means
## Summary statistics:
## n_mature mom = 129, mean_mature mom = 28.7907, sd_mature mom = 13.4824
## n_younger mom = 844, mean_younger mom = 30.5604, sd_younger mom = 14.3469
## Observed difference between means (mature mom-younger mom) = -1.7697
##
## H0: mu_mature mom - mu_younger mom = 0
## HA: mu_mature mom - mu_younger mom != 0
## Standard error = 1.286
## Test statistic: Z = -1.376
## p-value = 0.1686
###P value of 0.15 is higher than alpha value of 0.05. The data does not provide a convincing evidence that the average weight gained by young mothers is significantly different than that gained by mature mothers. ###Therefore we FAIL to REJECT the Null Hypothesis.
by(nc$mage, nc$mature, range)
## nc$mature: mature mom
## [1] 35 50
## --------------------------------------------------------
## nc$mature: younger mom
## [1] 13 34
inference(y = nc$weight, x = nc$whitemom, est = "mean", type = "ht", null = 0,
alternative = "twosided", method = "theoretical")
## Response variable: numerical, Explanatory variable: categorical
## Difference between two means
## Summary statistics:
## n_not white = 284, mean_not white = 6.7195, sd_not white = 1.6207
## n_white = 714, mean_white = 7.2505, sd_white = 1.4333
## Observed difference between means (not white-white) = -0.5309
##
## H0: mu_not white - mu_white = 0
## HA: mu_not white - mu_white != 0
## Standard error = 0.11
## Test statistic: Z = -4.821
## p-value = 0
###P value is 0 and less than alpha of 0.05. The data provides a convincing evidence that there is a significant difference between the weights of babies born to white mothers compared to non white mothers. ###We reject the null hypotheis in this case.
inference(y = nc$weight, x = nc$whitemom, est = "mean", type = "ci", null = 0,
alternative = "twosided", method = "theoretical")
## Response variable: numerical, Explanatory variable: categorical
## Difference between two means
## Summary statistics:
## n_not white = 284, mean_not white = 6.7195, sd_not white = 1.6207
## n_white = 714, mean_white = 7.2505, sd_white = 1.4333
## Observed difference between means (not white-white) = -0.5309
##
## Standard error = 0.1101
## 95 % Confidence interval = ( -0.7467 , -0.3151 )