We have seen \(dy(t)/dt \approx y_{t+1} - y_t\). For discrete data points, the differentiation operator is discretized as matrix. For example, for \(3\) data points \(\mathbf{y}=[y_1, y_2, y_3]^T\), the backward difference matrix: \[\mathbf{D}=\left[\begin{array}{ccc} 1\\ -1 & 1\\ & -1 & 1\\ & & -1 \end{array}\right],\:\mathbf{D}\mathbf{y}=\left[\begin{array}{c} y_{1}\\ y_{2}-y_{1}\\ y_{3}-y_{2}\\ -y_{3} \end{array}\right]\]
Forward difference matrix: \[\mathbf{D}^{T}=\left[\begin{array}{cccc} 1 & -1\\ & 1 & -1\\ & & 1 & -1 \end{array}\right],\:\mathbf{D}^{T}\mathbf{y}=\left[\begin{array}{c} y_{1}-y_{2}\\ y_{2}-y_{3}\\ y_{3}-y_{4} \end{array}\right]\]