(1). Thirty recreational basketball players were asked to shoot two free throws. Data on whether the made or missed their shots are shown in the table below. The question of interest is whether the probability of making a shot on the first attempt is different than the probability of making a shot on the second attempt.
mat<-matrix(c(4,5,14,7),ncol=2)
rownames(mat)<-c("Made First","Missed First")
colnames(mat)<-c("Made Second","Missed Second")
mcnemar.test(mat)
##
## McNemar's Chi-squared test with continuity correction
##
## data: mat
## McNemar's chi-squared = 3.3684, df = 1, p-value = 0.06646
At \(\alpha\)=0.05 and p=0.06646, we fail to reject the null hypothesis and do not have enough evidence to suggest there is a difference in the probability of making the first free throw shot vs the second free throw shot.
fisher.test(mat)
##
## Fisher's Exact Test for Count Data
##
## data: mat
## p-value = 0.4181
## alternative hypothesis: true odds ratio is not equal to 1
## 95 percent confidence interval:
## 0.05986525 2.61005193
## sample estimates:
## odds ratio
## 0.4131166
At \(\alpha\)=0.05 and p=0.4181, we fail to reject the null hypothesis and do not have enough evidence to suggest there is a difference in the probability of making the first free throw shot vs the second free throw shot.
Both tests reported p-values > 0.05 and we failed to reject the null hypothesis in both cases, although the p-value from McNemar’s test was much lower and relatively close to the significant/not significant cut off (despite how conservative continuity corrections are).
(2). The data below are the eosinophil counts taken from blood samples of 40 health rabbits. Obtain bootstrap estimates of the MSE and standard error of the sample mean, the standard deviation and the 95th percentile.
eosinophil <- c(55,140,91,122,111,185,203,101,
76,145,95,101,196,45,299,226,
65,70,196,72,121,171,151,113,
112,67,276,125,100,81,122,71,
158,78,162,128,96,79,67,119)
n<-length(eosinophil)
set.seed(1234)
nsim<-1000
theta.hat<-mean(eosinophil)
theta.boots<-rep(NA,nsim)
for (i in 1:nsim){
boots.sample<-eosinophil[sample(1:n,n,replace=TRUE)]
theta.boots[i]<-mean(boots.sample)
}
# MSE
mean((theta.boots-theta.hat)^2)
## [1] 84.1727
# Standard Error
sd(theta.boots)
## [1] 9.154394
set.seed(1234)
nsim<-1000
theta.hat<-sd(eosinophil)
theta.boots<-rep(NA,nsim)
for (i in 1:nsim){
boots.sample<-eosinophil[sample(1:n,n,replace=TRUE)]
theta.boots[i]<-sd(boots.sample)
}
# MSE
mean((theta.boots-theta.hat)^2)
## [1] 70.37959
# Standard Error
sd(theta.boots)
## [1] 8.313093
set.seed(1234)
nsim<-1000
theta.hat<-quantile(eosinophil, probs=0.95)
pct.boots<-rep(NA,nsim)
for (i in 1:nsim){
boots.sample<-eosinophil[sample(1:n,n,replace=TRUE)]
pct.boots[i]<-quantile(boots.sample, probs=0.95)
}
# MSE
mean((pct.boots-theta.hat)^2)
## [1] 1393.55
# Standard Error
sd(pct.boots)
## [1] 36.85756
(3). Simulation Study 1:
set.seed(1234)
n<-15
xbar<-rnorm(n, 5, sqrt(36))
mean(xbar)
## [1] 2.976218
36/n
## [1] 2.4
set.seed(1234)
nsim<-1000
theta.boots<-rep(NA,nsim)
for (i in 1:nsim){
boots.sample<-xbar[sample(1:n,n,replace=TRUE)]
theta.boots[i]<-mean(boots.sample)
}
var(theta.boots)
## [1] 1.844354
Bootstrap estimate var(\(\bar{X}\))=1.84 < theoretical var(\(\bar{X}\))=2.4
(4). (GRAD STUDENTS ONLY) Simulation Study 2:
\[ X|B=1∼Normal(20, 5) \]
\[ X|B=0∼Normal(10, 10) \]
\[ B=Binomial(1, p=0.75) \]
set.seed(1234)
N<-100
B<-rbinom(N, 1, 0.75)
X <- rep(NA,N)
for(i in 1:N){
if (B[i] == 1) {
X[i] = rnorm(1,20,sqrt(5))
}
else {
X[i] = rnorm(1,10,sqrt(10))
}
}
# Sample mean
mean(X)
## [1] 18.30675
p.success=0.75; mu.success=20; var.success=5;
p.fail=0.25; mu.fail=10; var.fail=10;
((p.success*(mu.success^2 + var.success) + p.fail* (mu.fail^2 + var.fail)) - (p.success*mu.success + p.fail*mu.fail)^2)/100
## [1] 0.25
True value of var(\(\bar{X}\))=0.25
set.seed(1234)
nsim<-1000
theta.boots<-rep(NA,nsim)
for (i in 1:nsim){
boots.sample<-X[sample(1:N,N,replace=TRUE)]
theta.boots[i]<-mean(boots.sample)
}
var(theta.boots)
## [1] 0.1885444
Bootstrap estimate var(\(\bar{X}\))=0.1885 < theoretical var(\(\bar{X}\))=0.25