Bárbara M. González
21 de marzo de 2019
library(dplyr)
library(readr)
library(stargazer)
ej_reg <- read_csv("F:/DESCARGAS/ejemplo_regresion.csv")head(ej_reg,n = 6)## # A tibble: 6 x 3
## X1 X2 Y
## <dbl> <dbl> <dbl>
## 1 3.92 7298 0.75
## 2 3.61 6855 0.71
## 3 3.32 6636 0.66
## 4 3.07 6506 0.61
## 5 3.06 6450 0.7
## 6 3.11 6402 0.72
options(scipen = 9999)
mod_lineal<- lm(formula = Y~X1+X2, data = ej_reg)
summary(mod_lineal)##
## Call:
## lm(formula = Y ~ X1 + X2, data = ej_reg)
##
## Residuals:
## Min 1Q Median 3Q Max
## -0.085090 -0.039102 -0.003341 0.030236 0.105692
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 1.56449677 0.07939598 19.705 0.00000000000000182 ***
## X1 0.23719747 0.05555937 4.269 0.000313 ***
## X2 -0.00024908 0.00003205 -7.772 0.00000009508790794 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.0533 on 22 degrees of freedom
## Multiple R-squared: 0.8653, Adjusted R-squared: 0.8531
## F-statistic: 70.66 on 2 and 22 DF, p-value: 0.000000000265
stargazer(mod_lineal, title= "Ejemplo de Regrsión Multiple", type = "text", digits = 8)##
## Ejemplo de Regrsión Multiple
## ===============================================
## Dependent variable:
## ---------------------------
## Y
## -----------------------------------------------
## X1 0.23719750***
## (0.05555937)
##
## X2 -0.00024908***
## (0.00003205)
##
## Constant 1.56449700***
## (0.07939598)
##
## -----------------------------------------------
## Observations 25
## R2 0.86529610
## Adjusted R2 0.85305030
## Residual Std. Error 0.05330222 (df = 22)
## F Statistic 70.66057000*** (df = 2; 22)
## ===============================================
## Note: *p<0.1; **p<0.05; ***p<0.01
options(scipen = 999)
mod_lineal$coefficients## (Intercept) X1 X2
## 1.5644967711 0.2371974748 -0.0002490793
-Matriz de Varianza - Covarianza de los parámetros V[\(\beta\)]:
var_covar <- vcov(mod_lineal)
print(var_covar)## (Intercept) X1 X2
## (Intercept) 0.0063037218732 0.000240996434 -0.000000982806321
## X1 0.0002409964344 0.003086843196 -0.000001675537651
## X2 -0.0000009828063 -0.000001675538 0.000000001027106
confint(object = mod_lineal, level = .95)## 2.5 % 97.5 %
## (Intercept) 1.3998395835 1.7291539588
## X1 0.1219744012 0.3524205485
## X2 -0.0003155438 -0.0001826148
plot(mod_lineal$fitted.values, main = "Valores Ajustados", ylab = "Y", xlab = "casos")mod_lineal$fitted.values %>% as.matrix()## [,1]
## 1 0.6765303
## 2 0.7133412
## 3 0.6991023
## 4 0.6721832
## 5 0.6837597
## 6 0.7075753
## 7 0.7397638
## 8 0.7585979
## 9 0.7943078
## 10 0.7935605
## 11 0.7984347
## 12 0.8272778
## 13 0.8021665
## 14 0.7992462
## 15 0.7544349
## 16 0.7339716
## 17 0.7048866
## 18 0.6930338
## 19 0.6350898
## 20 0.6127185
## 21 0.5701215
## 22 0.4796371
## 23 0.4374811
## 24 0.3953981
## 25 0.3773799
plot(mod_lineal$residuals, main = "Residuos", ylab = "Residuos", xlab = "casos")mod_lineal$residuals %>% as.matrix()## [,1]
## 1 0.073469743
## 2 -0.003341163
## 3 -0.039102258
## 4 -0.062183196
## 5 0.016240338
## 6 0.012424659
## 7 0.030236216
## 8 -0.018597878
## 9 0.105692240
## 10 0.026439478
## 11 -0.048434733
## 12 -0.057277771
## 13 -0.022166535
## 14 0.040753758
## 15 0.035565142
## 16 -0.033971640
## 17 -0.024886579
## 18 0.026966239
## 19 -0.085089833
## 20 0.017281530
## 21 -0.010121525
## 22 -0.069637086
## 23 0.072518915
## 24 0.074601871
## 25 -0.057379932