Loading Libaries and my ggtheme

library(lme4)
library(plyr)
library(ggplot2)
library(afex)
library(ggthemes)
library(tidyverse)
library(kableExtra)
library(Hmisc)
library(binom)
library(Rmisc)

theme_alan <- function(base_size = 12 , base_family = "")
{
  half_line <- base_size/2
  colors <- ggthemes_data$few
  gray <- colors$medium["gray"]
  black <- colors$dark["black"]
  
  theme(
    line = element_line(colour = "black", size = 0.5, linetype = 1, lineend = "butt"),
    rect = element_rect(fill = "white", 
                        colour = "black", size = 0.5, linetype = 1),
    text = element_text(family = base_family, face = "plain", colour = "black", 
                        size = base_size, lineheight = 0.9, hjust = 0.5, vjust = 0.5,
                        angle = 0, margin = margin(), debug = FALSE),
    
    axis.line = element_blank(),
    axis.line.x = NULL,
    axis.line.y = NULL, 
    axis.text = element_text(size = rel(0.8), colour = "grey30"),
    axis.text.x = element_text(margin = margin(t = 0.8 * half_line/2), vjust = 1),
    axis.text.x.top = element_text(margin = margin(b = 0.8 * half_line/2), vjust = 0),
    axis.text.y = element_text(margin = margin(r = 0.8 * half_line/2), hjust = 1),
    axis.text.y.right = element_text(margin = margin(l = 0.8 * half_line/2), hjust = 0), 
    axis.ticks = element_line(colour = "grey20"), 
    axis.ticks.length = unit(half_line/2, "pt"),
    axis.title.x = element_text(margin = margin(t = half_line), vjust = 1),
    axis.title.x.top = element_text(margin = margin(b = half_line), vjust = 0),
    axis.title.y = element_text(angle = 90, margin = margin(r = half_line), vjust = 1),
    axis.title.y.right = element_text(angle = -90, margin = margin(l = half_line), vjust = 0),
    
    legend.background = element_rect(colour = NA),
    legend.spacing = unit(0.4, "cm"), 
    legend.spacing.x = NULL, 
    legend.spacing.y = NULL,
    legend.margin = margin(0.2, 0.2, 0.2, 0.2, "cm"),
    legend.key = element_rect(fill = "white", colour = NA), 
    legend.key.size = unit(1.2, "lines"), 
    legend.key.height = NULL,
    legend.key.width = NULL,
    legend.text = element_text(size = rel(0.8)), 
    legend.text.align = NULL,
    legend.title = element_text(hjust = 0),
    legend.title.align = NULL,
    legend.position = "right", 
    legend.direction = NULL,
    legend.justification = "center", 
    legend.box = NULL,
    legend.box.margin = margin(0, 0, 0, 0, "cm"),
    legend.box.background = element_blank(),
    legend.box.spacing = unit(0.4, "cm"),
    
    panel.background = element_rect(fill = "white", colour = NA),
    panel.border = element_rect(fill = NA, colour = "grey20"),
    panel.grid.major = element_line(colour = "grey92"),
    panel.grid.minor = element_line(colour = "grey92", size = 0.25),
    panel.spacing = unit(half_line, "pt"),
    panel.spacing.x = NULL,
    panel.spacing.y = NULL,
    panel.ontop = FALSE,
    
    strip.background = element_rect(fill = "NA", colour = "NA"),
    strip.text = element_text(colour = "grey10", size = rel(0.8)),
    strip.text.x = element_text(margin = margin(t = half_line, b = half_line)),
    strip.text.y = element_text(angle = 0, margin = margin(l = half_line, r = half_line)),
    strip.placement = "inside",
    strip.placement.x = NULL, 
    strip.placement.y = NULL,
    strip.switch.pad.grid = unit(0.1, "cm"), 
    strip.switch.pad.wrap = unit(0.1, "cm"), 
    
    plot.background = element_rect(colour = "white"),
    plot.title = element_text(size = rel(1.2), hjust = 0, vjust = 1, margin = margin(b = half_line * 1.2)),
    plot.subtitle = element_text(size = rel(0.9), hjust = 0, vjust = 1, margin = margin(b = half_line * 0.9)),
    plot.caption = element_text(size = rel(0.9), hjust = 1, vjust = 1, margin = margin(t = half_line * 0.9)), 
    plot.margin = margin(half_line, half_line, half_line, half_line),
    
    complete = TRUE)
}

Experiment 1

In Experiment 1, we explore the learnability of four different lexicons (in a between subjects design) that differ in the mapping between the features of labels and their meanings.

Reading in and cleaning up data

#Read in the data
Exp1Data <- read.csv("C:/Users/Alan/Google Drive/Experiments/Edinburgh Experiments/Experiment 5B- Motivated vs. Conventional/Data/5B Data CSV.csv")

#Relabel the Condition Column
Exp1Data$Condition <- factor(Exp1Data$Condition,
                             levels = c(1,2,3,4),
                             labels = c("Iconic", "Conventional", "Mixed Systematicity", "Counter-Iconic"))

#Add the BlockMinus Column
Exp1Data$BlockMinus <- Exp1Data$Block - 1

Exploring Subconditions

#Add in subconditions for Condition 2- Conventional mappings can go one of two ways and we need to take a look at those right away

Exp1DataSub <- subset(Exp1Data, Condition == "Conventional")
Exp1DataSub$Holder <- paste(Exp1DataSub$Condition, substr(Exp1DataSub$Label, 1,2), sep = "-")

Exp1DataSub$SubCondition1 <- grepl("th",Exp1DataSub$Label)

Exp1DataSub$SubCondition2 <- paste(Exp1DataSub$SubCondition1, Exp1DataSub$LabelType, sep = "-" )

Exp1DataSub$SubCondition3 <- mapvalues(Exp1DataSub$SubCondition2,
                                         from = c("TRUE-C", "FALSE-S", "FALSE-C", "TRUE-S"),
                                         to = c("A", "A", "B", "B"))


#Look at the difference between subconditions- 
SubConditions <- data.frame(tapply(Exp1DataSub$RespCorr, Exp1DataSub$SubCondition3, mean))
colnames(SubConditions) <- "Proportion of Correct Responses"

knitr::kable(SubConditions, caption = 'Mean Proportion Correct by Subcondition') %>%
  kable_styling()
Mean Proportion Correct by Subcondition
Proportion of Correct Responses
A 0.7916667
B 0.7897727
#Very basic statistical comparison

afex.Exp1Sub <- mixed(RespCorr ~ SubCondition3 * Block + (1|ID),
                         data=Exp1DataSub,
                         family=binomial,
                         control=glmerControl(optimizer="bobyqa"),
                         method = 'LRT',
                         progress=FALSE)
## Contrasts set to contr.sum for the following variables: ID
## Numerical variables NOT centered on 0: Block
## If in interactions, interpretation of lower order (e.g., main) effects difficult.
afex.Exp1Sub$anova_table
## Mixed Model Anova Table (Type 3 tests, LRT-method)
## 
## Model: RespCorr ~ SubCondition3 * Block + (1 | ID)
## Data: Exp1DataSub
## Df full model: 5
##                     Df   Chisq Chi Df Pr(>Chisq)    
## SubCondition3        4  0.0157      1     0.9004    
## Block                4 15.4034      1  8.683e-05 ***
## SubCondition3:Block  4  0.0534      1     0.8173    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
#Aggregating Data for Visualisation

Exp1SubAgg <- aggregate(RespCorr ~ SubCondition3 + Block + ID , data=Exp1DataSub, mean, na.rm= FALSE)
Exp1SubAgg$Block <- factor(Exp1SubAgg$Block)

#Plotting subconditions for visualisation

ggplot(data=Exp1SubAgg, aes(x=Block, y=RespCorr, group= SubCondition3)) +
  #geom_line(aes(color= Condition)) +
  #geom_point(size=1.75, aes(colour = Condition)) +
  geom_smooth(method='loess', formula= y ~ x, se= TRUE, aes(linetype = SubCondition3)) +
 # scale_linetype_manual(values = c("solid", "solid", "solid",
  #                        "longdash", "longdash", "longdash", "dotdash",
  #                        "dotted")) +
  scale_color_manual(values= c("#0066CC", "#CC0033","#33FF00", "#000000")) +
  labs(x="Block", y="Proportion of Correct Responses") +
  scale_y_continuous(limits = c(0.45,1), breaks=c(0.5,0.6,0.7,0.8,0.9,1.0)) +
  theme_tufte() +
  ggtitle("Comparison of Conventional Subconditions of Experiment 1")

There definitely does not appear to be any difference between subconditions at all, nor an interaction of subcondition x block. This suggests that we can collapse those subconditions (and note a lack of difference between them in Experiment 1 Results section.)

Lets take a look then at the overall results

Experiment 1 Main Analysis

#Changed this analysis to afex - originally done with clunkier model comparison. Heartening that it yields the same results (and no convergence issues)
afex.Exp1 <- mixed(RespCorr ~ Condition * BlockMinus + (1+BlockMinus|ID),
                         data=Exp1Data,
                         family=binomial,
                         control=glmerControl(optimizer="bobyqa"),
                         method = 'LRT',
                         progress=FALSE)


afex.Exp1$anova_table
## Mixed Model Anova Table (Type 3 tests, LRT-method)
## 
## Model: RespCorr ~ Condition * BlockMinus + (1 + BlockMinus | ID)
## Data: Exp1Data
## Df full model: 11
##                      Df   Chisq Chi Df Pr(>Chisq)    
## Condition             8 19.0744      3  0.0002639 ***
## BlockMinus           10 64.1597      1  1.147e-15 ***
## Condition:BlockMinus  8  7.9971      3  0.0460711 *  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
model1 <- glmer(RespCorr ~ Condition * BlockMinus + (1 + BlockMinus | ID),data=Exp1Data,family="binomial",control=glmerControl(optimizer="bobyqa"))

#relevel the Condition factor in the model to see if Mixed Systematicity is different from chance and from other levels
Exp1Data$ConditionP <- relevel(Exp1Data$Condition,ref="Mixed Systematicity")

#show the non-significant intercept of this model, which shows that Mixed Systematicity is not different from chance at Block 1
model1p <- glmer(RespCorr ~ ConditionP * BlockMinus + (1 + BlockMinus | ID),data=Exp1Data,family="binomial",control=glmerControl(optimizer="bobyqa"))
summary(model1p)
## Generalized linear mixed model fit by maximum likelihood (Laplace
##   Approximation) [glmerMod]
##  Family: binomial  ( logit )
## Formula: RespCorr ~ ConditionP * BlockMinus + (1 + BlockMinus | ID)
##    Data: Exp1Data
## Control: glmerControl(optimizer = "bobyqa")
## 
##      AIC      BIC   logLik deviance df.resid 
##   5099.3   5173.1  -2538.6   5077.3     6037 
## 
## Scaled residuals: 
##      Min       1Q   Median       3Q      Max 
## -11.5722   0.0778   0.2546   0.5160   1.3229 
## 
## Random effects:
##  Groups Name        Variance Std.Dev. Corr
##  ID     (Intercept) 0.6997   0.8365       
##         BlockMinus  0.2996   0.5473   0.59
## Number of obs: 6048, groups:  ID, 63
## 
## Fixed effects:
##                                     Estimate Std. Error z value Pr(>|z|)
## (Intercept)                           0.2399     0.2503   0.959  0.33780
## ConditionPIconic                      1.5715     0.3416   4.600 4.23e-06
## ConditionPConventional                0.7439     0.3366   2.210  0.02712
## ConditionPCounter-Iconic              0.7532     0.3476   2.167  0.03023
## BlockMinus                            0.4540     0.1721   2.638  0.00835
## ConditionPIconic:BlockMinus           0.5890     0.2585   2.278  0.02270
## ConditionPConventional:BlockMinus     0.4680     0.2434   1.923  0.05453
## ConditionPCounter-Iconic:BlockMinus   0.6563     0.2549   2.575  0.01003
##                                        
## (Intercept)                            
## ConditionPIconic                    ***
## ConditionPConventional              *  
## ConditionPCounter-Iconic            *  
## BlockMinus                          ** 
## ConditionPIconic:BlockMinus         *  
## ConditionPConventional:BlockMinus   .  
## ConditionPCounter-Iconic:BlockMinus *  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) CndtPI CndtPC CnPC-I BlckMn CPI:BM CPC:BM
## CondtnPIcnc -0.732                                          
## CndtnPCnvnt -0.743  0.547                                   
## CndtnPCnt-I -0.720  0.533  0.537                            
## BlockMinus   0.353 -0.260 -0.264 -0.255                     
## CndtnPIc:BM -0.237  0.248  0.171  0.161 -0.658              
## CndtnPCn:BM -0.251  0.177  0.308  0.176 -0.698  0.497       
## CndtPC-I:BM -0.240  0.166  0.175  0.296 -0.670  0.480  0.492
Exp1Agg <- aggregate(RespCorr ~ Condition + Block + ID , data=Exp1Data, mean, na.rm= FALSE)
Exp1Agg$Block <- factor(Exp1Agg$Block)

Plotting subconditions for visualisation

ggplot(data=Exp1Agg, aes(x=Block, y=RespCorr, group= Condition)) +
  #geom_line(aes(color= Condition)) +
  #geom_point(size=1.75, aes(colour = Condition)) +
  geom_smooth(method='loess', formula= y ~ x, se= TRUE, aes(color = Condition, fill= Condition)) +
 # scale_linetype_manual(values = c("solid", "solid", "solid",
  #                        "longdash", "longdash", "longdash", "dotdash",
  #                        "dotted")) +
  scale_color_manual(values= c("#0066CC", "#CC0033","#33FF00", "#000000")) +
  scale_fill_manual(values= c("#0066CC", "#CC0033","#33FF00", "#000000")) +
  labs(x="Block", y="Proportion of Correct Responses") +
  scale_y_continuous(limits = c(0.45,1), breaks=c(0.5,0.6,0.7,0.8,0.9,1.0)) +
  theme_tufte() +
  ggtitle("Comparison of Conditions of Experiment 1")

That’s purty ugly - lets output that with error bars or confidence intervals

Plotting with CIs

#Calculate some crosstabs of successes for the condition x block interaction

#Crosstabs of number of trials
TrialsTable <- as.data.frame(xtabs(~Condition + Block, data= Exp1Data))

#Crosstables of correct responses
CorrectTable <- as.data.frame(xtabs(~Condition + Block, data= subset(Exp1Data, RespCorr == 1)))

#use summarySE to aggregate data getting mean, standard deviation, standard error, arnd 95% confidence intervals for the data

Exp1Agg2 <- summarySE(Exp1Data, measurevar= "RespCorr", groupvars = c("Condition", "Block"))
  
Exp1Agg2$Block <- factor(Exp1Agg2$Block)


pd <- position_dodge(width = 0.1)

#Plotting with 95% confidence interval
ggplot(data=Exp1Agg2, aes(x=Block, y=RespCorr, group= Condition)) +
  geom_line(aes(color = Condition, linetype= Condition), size = 1.2, position=pd) +
  geom_errorbar(aes(ymin= RespCorr - ci, ymax= RespCorr + ci, color= Condition), width= 0.2, size = 1, position=pd) +
  geom_point(aes(color = Condition, shape = Condition), size = 3, position=pd) +
  labs(x="Block", y="Proportion of Correct Responses") +
  scale_y_continuous(limits = c(0.45,1), breaks=c(0.5,0.6,0.7,0.8,0.9,1.0)) +
  theme_alan() +
  scale_linetype_manual(values = c("solid", "solid", "longdash", "longdash")) +
  scale_color_manual(values= c("#a1dab4", "#41b6c4","#2c7fb8", "#253494")) +
  scale_shape_manual(values= c(15,16,17,18)) +
  theme(legend.position = c(0.85, 0.22)) +
  theme(legend.key=element_blank())

#+
  #ggtitle("Comparison of Conditions of Experiment 1") 

ggsave("Exp1Plot1.png", plot = last_plot(), device = NULL, path = NULL,
  width = 8, height = 4.5, units = c("in", "cm", "mm"),
  dpi = 600)

Heeeeey it’s finally pretty and has the variance plotted. Congratulations to me.

Lets move on to the early trials only

Early Trial Analysis

Exp1Early <- subset(Exp1Data, Trial <=8)

#Afex to replace model comparison

afex.Exp1Early <- mixed(RespCorr ~ Condition + (1|ID),
                         data=Exp1Early,
                         family=binomial,
                         control=glmerControl(optimizer="bobyqa"),
                         method = 'LRT',
                         progress=FALSE)
## Contrasts set to contr.sum for the following variables: Condition, ID
afex.Exp1Early$anova_table
## Mixed Model Anova Table (Type 3 tests, LRT-method)
## 
## Model: RespCorr ~ Condition + (1 | ID)
## Data: Exp1Early
## Df full model: 5
##           Df  Chisq Chi Df Pr(>Chisq)   
## Condition  2 11.719      3    0.00841 **
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
#full model gives coefficient to compare Iconic to all other levels

Exp1EarlyModel <- glmer(RespCorr ~ Condition + (1|ID), data=Exp1Early, family= "binomial", control=glmerControl(optimizer="bobyqa"))
summary(Exp1EarlyModel)
## Generalized linear mixed model fit by maximum likelihood (Laplace
##   Approximation) [glmerMod]
##  Family: binomial  ( logit )
## Formula: RespCorr ~ Condition + (1 | ID)
##    Data: Exp1Early
## Control: glmerControl(optimizer = "bobyqa")
## 
##      AIC      BIC   logLik deviance df.resid 
##    661.8    682.9   -325.9    651.8      499 
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -1.8359 -1.0456  0.5842  0.7977  1.0894 
## 
## Random effects:
##  Groups Name        Variance Std.Dev.
##  ID     (Intercept) 0.176    0.4195  
## Number of obs: 504, groups:  ID, 63
## 
## Fixed effects:
##                              Estimate Std. Error z value Pr(>|z|)    
## (Intercept)                    1.0689     0.2190   4.880 1.06e-06 ***
## ConditionConventional         -0.8846     0.2981  -2.967  0.00301 ** 
## ConditionMixed Systematicity  -0.9483     0.3186  -2.977  0.00292 ** 
## ConditionCounter-Iconic       -0.4605     0.3107  -1.482  0.13834    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) CndtnC CndtMS
## CndtnCnvntn -0.732              
## CndtnMxdSys -0.686  0.502       
## CndtnCntr-I -0.695  0.510  0.477
#use Counter-Motivated as baseline. It's not better than Conventional, it's not worse than Motivated
Exp1Early$ConditionCM <- Exp1Early$Condition
Exp1Early$ConditionCM <- relevel(Exp1Early$ConditionCM,ref="Counter-Iconic")

Exp1EarlyModel2 <- glmer(RespCorr ~ ConditionCM + (1|ID), data=Exp1Early, family= "binomial", control=glmerControl(optimizer="bobyqa"))
summary(Exp1EarlyModel2)
## Generalized linear mixed model fit by maximum likelihood (Laplace
##   Approximation) [glmerMod]
##  Family: binomial  ( logit )
## Formula: RespCorr ~ ConditionCM + (1 | ID)
##    Data: Exp1Early
## Control: glmerControl(optimizer = "bobyqa")
## 
##      AIC      BIC   logLik deviance df.resid 
##    661.8    682.9   -325.9    651.8      499 
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -1.8359 -1.0456  0.5842  0.7977  1.0894 
## 
## Random effects:
##  Groups Name        Variance Std.Dev.
##  ID     (Intercept) 0.176    0.4195  
## Number of obs: 504, groups:  ID, 63
## 
## Fixed effects:
##                                Estimate Std. Error z value Pr(>|z|)   
## (Intercept)                      0.6084     0.2234   2.724  0.00646 **
## ConditionCMIconic                0.4605     0.3107   1.482  0.13835   
## ConditionCMConventional         -0.4241     0.3016  -1.406  0.15966   
## ConditionCMMixed Systematicity  -0.4879     0.3218  -1.516  0.12948   
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) CndCMI CndCMC
## CndtnCMIcnc -0.709              
## CndtnCMCnvn -0.739  0.526       
## CndtnCMMxdS -0.693  0.493  0.513

Now lets plot these earliest trials

Plotting Early Trials

#Summarize with confidence intervals and standarderror
Exp1EarlyAgg <- as.data.frame(summarySE(Exp1Early, measurevar= "RespCorr", groupvars = c("Condition", "ID")))

Exp1EarlyAgg
##              Condition          ID N RespCorr        sd        se
## 1               Iconic          x1 8    0.875 0.3535534 0.1250000
## 2               Iconic         x10 8    0.750 0.4629100 0.1636634
## 3               Iconic          x2 8    0.625 0.5175492 0.1829813
## 4               Iconic         x21 8    0.750 0.4629100 0.1636634
## 5               Iconic         x22 8    0.750 0.4629100 0.1636634
## 6               Iconic         X25 8    0.500 0.5345225 0.1889822
## 7               Iconic          x3 8    0.875 0.3535534 0.1250000
## 8               Iconic          x7 8    0.375 0.5175492 0.1829813
## 9               Iconic          x8 8    0.875 0.3535534 0.1250000
## 10              Iconic          x9 8    1.000 0.0000000 0.0000000
## 11              Iconic         z10 8    1.000 0.0000000 0.0000000
## 12              Iconic          z2 8    0.875 0.3535534 0.1250000
## 13              Iconic          z4 8    0.875 0.3535534 0.1250000
## 14              Iconic          z5 8    0.500 0.5345225 0.1889822
## 15              Iconic          z6 8    0.625 0.5175492 0.1829813
## 16              Iconic          z7 8    0.375 0.5175492 0.1829813
## 17              Iconic          z8 8    0.875 0.3535534 0.1250000
## 18              Iconic          z9 8    0.750 0.4629100 0.1636634
## 19        Conventional         x11 8    0.750 0.4629100 0.1636634
## 20        Conventional         x13 8    0.375 0.5175492 0.1829813
## 21        Conventional         x14 8    0.500 0.5345225 0.1889822
## 22        Conventional         x16 8    0.250 0.4629100 0.1636634
## 23        Conventional         x17 8    0.625 0.5175492 0.1829813
## 24        Conventional         x18 8    0.250 0.4629100 0.1636634
## 25        Conventional         x19 8    0.625 0.5175492 0.1829813
## 26        Conventional         x20 8    0.750 0.4629100 0.1636634
## 27        Conventional         x23 8    0.375 0.5175492 0.1829813
## 28        Conventional          Z1 8    0.625 0.5175492 0.1829813
## 29        Conventional         z11 8    0.625 0.5175492 0.1829813
## 30        Conventional         z12 8    0.500 0.5345225 0.1889822
## 31        Conventional         z13 8    0.750 0.4629100 0.1636634
## 32        Conventional         z14 8    0.375 0.5175492 0.1829813
## 33        Conventional         z15 8    0.375 0.5175492 0.1829813
## 34        Conventional         z16 8    0.875 0.3535534 0.1250000
## 35        Conventional         z17 8    0.625 0.5175492 0.1829813
## 36 Mixed Systematicity           1 8    0.750 0.4629100 0.1636634
## 37 Mixed Systematicity         123 8    0.625 0.5175492 0.1829813
## 38 Mixed Systematicity       45920 8    0.625 0.5175492 0.1829813
## 39 Mixed Systematicity chimichurri 8    0.500 0.5345225 0.1889822
## 40 Mixed Systematicity         Fon 8    0.500 0.5345225 0.1889822
## 41 Mixed Systematicity        fr34 8    0.625 0.5175492 0.1829813
## 42 Mixed Systematicity         g83 8    0.250 0.4629100 0.1636634
## 43 Mixed Systematicity    s1151607 8    0.375 0.5175492 0.1829813
## 44 Mixed Systematicity    s1422738 8    0.750 0.4629100 0.1636634
## 45 Mixed Systematicity    s1444220 8    0.375 0.5175492 0.1829813
## 46 Mixed Systematicity    s1447664 8    0.875 0.3535534 0.1250000
## 47 Mixed Systematicity    s1470295 8    0.250 0.4629100 0.1636634
## 48 Mixed Systematicity        yi79 8    0.375 0.5175492 0.1829813
## 49      Counter-Iconic        C4Q1 8    0.750 0.4629100 0.1636634
## 50      Counter-Iconic       C4Q10 8    0.500 0.5345225 0.1889822
## 51      Counter-Iconic       C4Q11 8    0.875 0.3535534 0.1250000
## 52      Counter-Iconic       C4Q12 8    0.375 0.5175492 0.1829813
## 53      Counter-Iconic       C4Q13 8    0.875 0.3535534 0.1250000
## 54      Counter-Iconic       C4Q14 8    0.750 0.4629100 0.1636634
## 55      Counter-Iconic       c4q15 8    0.500 0.5345225 0.1889822
## 56      Counter-Iconic        C4Q2 8    0.375 0.5175492 0.1829813
## 57      Counter-Iconic        C4Q3 8    0.625 0.5175492 0.1829813
## 58      Counter-Iconic        c4q4 8    0.875 0.3535534 0.1250000
## 59      Counter-Iconic        C4Q5 8    0.750 0.4629100 0.1636634
## 60      Counter-Iconic        C4Q6 8    0.375 0.5175492 0.1829813
## 61      Counter-Iconic        C4Q7 8    0.500 0.5345225 0.1889822
## 62      Counter-Iconic        c4q8 8    1.000 0.0000000 0.0000000
## 63      Counter-Iconic        C4Q9 8    0.500 0.5345225 0.1889822
##           ci
## 1  0.2955780
## 2  0.3870025
## 3  0.4326819
## 4  0.3870025
## 5  0.3870025
## 6  0.4468720
## 7  0.2955780
## 8  0.4326819
## 9  0.2955780
## 10 0.0000000
## 11 0.0000000
## 12 0.2955780
## 13 0.2955780
## 14 0.4468720
## 15 0.4326819
## 16 0.4326819
## 17 0.2955780
## 18 0.3870025
## 19 0.3870025
## 20 0.4326819
## 21 0.4468720
## 22 0.3870025
## 23 0.4326819
## 24 0.3870025
## 25 0.4326819
## 26 0.3870025
## 27 0.4326819
## 28 0.4326819
## 29 0.4326819
## 30 0.4468720
## 31 0.3870025
## 32 0.4326819
## 33 0.4326819
## 34 0.2955780
## 35 0.4326819
## 36 0.3870025
## 37 0.4326819
## 38 0.4326819
## 39 0.4468720
## 40 0.4468720
## 41 0.4326819
## 42 0.3870025
## 43 0.4326819
## 44 0.3870025
## 45 0.4326819
## 46 0.2955780
## 47 0.3870025
## 48 0.4326819
## 49 0.3870025
## 50 0.4468720
## 51 0.2955780
## 52 0.4326819
## 53 0.2955780
## 54 0.3870025
## 55 0.4468720
## 56 0.4326819
## 57 0.4326819
## 58 0.2955780
## 59 0.3870025
## 60 0.4326819
## 61 0.4468720
## 62 0.0000000
## 63 0.4468720
#And Plot (switching to a boxplot with jittered points by participant)
ggplot(data = Exp1EarlyAgg, aes(x= Condition, y= RespCorr)) +
  geom_boxplot(aes(fill= Condition)) +
  geom_jitter(width=0.25, height= 0) +
  labs(x="", y="Proportion of Correct Responses") +
  theme_alan() +
  scale_fill_manual(values= c("#a1dab4", "#41b6c4","#2c7fb8", "#253494")) +
  scale_y_continuous(limits = c(0,1), breaks = c(0,0.25,0.5,0.75,1)) +
  theme(legend.position = c(0.85, 0.18))+
  theme(legend.key=element_blank())

ggsave("Exp1Plot2.png", plot = last_plot(), device = NULL, path = NULL,
  width = 8, height = 4.5, units = c("in", "cm", "mm"),
  dpi = 600)

Definitely nicer than the previous dynamite plot

Experiment 1 Response Times

RT Stats

#log transform RTs
Exp1Data$LogRT <- log(Exp1Data$RT)

#Afex for main effects
afex.Exp1RT <- mixed(LogRT ~ Condition * BlockMinus + (1+BlockMinus|ID),
                    data=Exp1Data, 
                    method = "LRT",
                    control = lmerControl(optCtrl = list(maxfun = 1e6)))
## Contrasts set to contr.sum for the following variables: Condition, ID
## Numerical variables NOT centered on 0: BlockMinus
## If in interactions, interpretation of lower order (e.g., main) effects difficult.
## REML argument to lmer() set to FALSE for method = 'PB' or 'LRT'
## Fitting 4 (g)lmer() models:
## [....]
afex.Exp1RT$anova_table
## Mixed Model Anova Table (Type 3 tests, LRT-method)
## 
## Model: LogRT ~ Condition * BlockMinus + (1 + BlockMinus | ID)
## Data: Exp1Data
## Df full model: 12
##                      Df   Chisq Chi Df Pr(>Chisq)    
## Condition             9 13.1889      3   0.004245 ** 
## BlockMinus           11 76.2918      1  < 2.2e-16 ***
## Condition:BlockMinus  9  4.2578      3   0.234939    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
#Normal model for comparison of levels
Exp1RT <- lmer(LogRT ~ Condition * BlockMinus + (1 +BlockMinus|ID), data=Exp1Data)

summary(Exp1RT)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: LogRT ~ Condition * BlockMinus + (1 + BlockMinus | ID)
##    Data: Exp1Data
## 
## REML criterion at convergence: 5487.2
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -2.8573 -0.6342 -0.1122  0.5263  6.9546 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev. Corr 
##  ID       (Intercept) 0.061753 0.24850       
##           BlockMinus  0.007493 0.08656  -0.48
##  Residual             0.136955 0.37007       
## Number of obs: 6048, groups:  ID, 63
## 
## Fixed effects:
##                                         Estimate Std. Error       df
## (Intercept)                              7.67377    0.06024 58.99997
## ConditionConventional                   -0.06789    0.08644 58.99997
## ConditionMixed Systematicity             0.13381    0.09302 58.99997
## ConditionCounter-Iconic                  0.24008    0.08935 58.99997
## BlockMinus                              -0.18503    0.02313 59.00002
## ConditionConventional:BlockMinus         0.03230    0.03319 59.00002
## ConditionMixed Systematicity:BlockMinus  0.06413    0.03572 59.00002
## ConditionCounter-Iconic:BlockMinus       0.05588    0.03431 59.00002
##                                         t value Pr(>|t|)    
## (Intercept)                             127.387  < 2e-16 ***
## ConditionConventional                    -0.785  0.43536    
## ConditionMixed Systematicity              1.438  0.15559    
## ConditionCounter-Iconic                   2.687  0.00935 ** 
## BlockMinus                               -7.998  5.5e-11 ***
## ConditionConventional:BlockMinus          0.973  0.33447    
## ConditionMixed Systematicity:BlockMinus   1.795  0.07776 .  
## ConditionCounter-Iconic:BlockMinus        1.629  0.10874    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) CndtnC CndtMS CndC-I BlckMn CnC:BM CMS:BM
## CndtnCnvntn -0.697                                          
## CndtnMxdSys -0.648  0.451                                   
## CndtnCntr-I -0.674  0.470  0.437                            
## BlockMinus  -0.496  0.346  0.321  0.334                     
## CndtnCnv:BM  0.346 -0.496 -0.224 -0.233 -0.697              
## CndtnMSy:BM  0.321 -0.224 -0.496 -0.217 -0.648  0.451       
## CndtnC-I:BM  0.334 -0.233 -0.217 -0.496 -0.674  0.470  0.437

Plotting RTs

Exp1RTAgg <- summarySE(Exp1Data, measurevar= "RT", groupvars = c("Condition", "Block"))
  
Exp1RTAgg$Block <- factor(Exp1RTAgg$Block)


pd <- position_dodge(width = 0.1)

#Plotting with 95% confidence interval
ggplot(data=Exp1RTAgg, aes(x=Block, y=RT, group= Condition)) +
  geom_line(aes(color = Condition, linetype= Condition), size = 1.2, position=pd) +
  geom_errorbar(aes(ymin= RT - ci, ymax= RT + ci, color= Condition), width= 0.2, size = 1, position=pd) +
  geom_point(aes(color = Condition, shape = Condition), size = 3, position=pd) +
  labs(x="Block", y="Response Time (ms)") +
  scale_y_continuous(limits = c(1500,3600), breaks=c(1500,2000,2500,3000,3500)) +
  theme_alan() +
  scale_linetype_manual(values = c("solid", "solid", "longdash", "longdash")) +
  scale_color_manual(values= c("#a1dab4", "#41b6c4","#2c7fb8", "#253494")) +
  scale_shape_manual(values= c(15,16,17,18)) +
  theme(legend.position = c(0.85, 0.8)) +
  theme(legend.key=element_blank())

ggsave("Exp1Plot3.png", plot = last_plot(), device = NULL, path = NULL,
  width = 8, height = 4.5, units = c("in", "cm", "mm"),
  dpi = 600)

Plotting the RT-Correctness Tradeoff by Condition

#summarise RTs
Exp1RTAgg2 <- summarySE(Exp1Data, measurevar= "RT", groupvars = c("Condition", "Block", "ID"))

#Summarise correctness
Exp1Agg2 <- summarySE(Exp1Data, measurevar= "RespCorr", groupvars = c("Condition", "Block", "ID"))

#Bind together and rename columns
Exp1Comp <- cbind(Exp1RTAgg2, Exp1Agg2)

colnames(Exp1Comp) <- c("Condition", "Block", "ID", "N", "RT", "sdRT", "seRT", "ciRT", "Condition2", "Block2", "ID2", "N2", "RespCorr", "sdRespCorr", "seRespCorr", "ciRespCorr")

#Plot that
ggplot(data=Exp1Comp, aes(x=RespCorr, y=RT, group= Condition)) +
  geom_smooth(method = lm, se= FALSE, aes(color = Condition, linetype= Condition), size = 1.2) +
  geom_point(aes(color = Condition, shape = Condition), size = 2) +
  labs(x="Proportion of Correct Responses", y="Response Time (ms)") +
  # scale_y_continuous(limits = c(1500,3600), breaks=c(1500,2000,2500,3000,3500)) +
  theme_alan() +
  scale_linetype_manual(values = c("solid", "solid", "longdash", "longdash")) +
  scale_color_manual(values= c("#a1dab4", "#41b6c4","#2c7fb8", "#253494")) +
  scale_shape_manual(values= c(15,16,17,18)) +
  theme(legend.position = c(0.85, 0.8)) +
  theme(legend.key=element_blank()) 

This doesn’t end up showing us a ton and won’t be included, but the slope of the Iconic vs. Counter-Iconic line tells us (broadly) that even participants who are better at the task are slower.

Experiment 2

Loading that fun data

Exp2Data <- read.csv("C:/Users/Alan/Google Drive/Publications/Motivated vs Conventional Systematicity/Exp5.csv")

#convert these to factors
Exp2Data$Condition <- as.factor(Exp2Data$Condition)
Exp2Data$Trial.Type <- as.factor(Exp2Data$Trial.Type)

#Change Condition to a more transparent label - trial type 1 currently has "" as the level of the Relevant.Feature factor
Exp2Data$Condition<-revalue(Exp2Data$Condition, c("1"="Size Iconic - Shape Iconic", "2"="Size Conventional - Shape Conventional","3"="Size Iconic - Shape Conventional","4"="Size Conventional - Shape Iconic"))

#want to relevel these for the plots, to put Conventional-Conventional first
Exp2Data$Condition <- relevel(Exp2Data$Condition,ref="Size Conventional - Shape Conventional")

#More descriptive labels here are useful
Exp2Data$Consonants<-revalue(Exp2Data$Consonants, c("CS"="ConventionalConsonants","SS"="IconicConsonants"))
Exp2Data$Vowels<-revalue(Exp2Data$Vowels, c("CS"="ConventionalVowels","SS"="IconicVowels"))

#want the intercept to be performance on block 0
Exp2Data$BlockMinus <- Exp2Data$Block-1

Exp2Data$Trial.Type<-revalue(Exp2Data$Trial.Type, c("1"="Both Different", "2"="Size Different","3"="Shape Different"))

#log RTs for the RT analysis
Exp2Data$logRT <- log(Exp2Data$RT)

#Need these numeric versions for model comparison - I am setting them here so I know how to interpret the effects 
#I am setting these up so that iconic = 1, i.e. the effects will be showing the effect of iconicity
Exp2Data$Vowels.numeric <- sapply(Exp2Data$Vowels,function(i) ifelse(i=="IconicVowels",1,0))
Exp2Data$Consonants.numeric <- sapply(Exp2Data$Consonants,function(i)  ifelse(i=="IconicConsonants",1,0))

We will start with the by-trial-type analysis

Both Relevant Trials

afex.Exp2Both <- mixed(Correct~Consonants.numeric * Vowels.numeric * BlockMinus + (1 + BlockMinus |ID),
                       data=subset(Exp2Data, Trial.Type== "Both Different"),
                       family=binomial,
                       control=glmerControl(optimizer="bobyqa"),
                       method = 'LRT',
                       progress=FALSE)
## Contrasts set to contr.sum for the following variables: ID
## Numerical variables NOT centered on 0: Consonants.numeric, Vowels.numeric, BlockMinus
## If in interactions, interpretation of lower order (e.g., main) effects difficult.
#Main Effects
afex.Exp2Both$anova_table
## Mixed Model Anova Table (Type 3 tests, LRT-method)
## 
## Model: Correct ~ Consonants.numeric * Vowels.numeric * BlockMinus + 
## Model:     (1 + BlockMinus | ID)
## Data: subset
## Data: Exp2Data
## Data: Trial.Type == "Both Different"
## Df full model: 11
##                                              Df  Chisq Chi Df Pr(>Chisq)
## Consonants.numeric                           10 0.0575      1   0.810436
## Vowels.numeric                               10 1.5464      1   0.213668
## BlockMinus                                   10 8.2996      1   0.003965
## Consonants.numeric:Vowels.numeric            10 1.6051      1   0.205178
## Consonants.numeric:BlockMinus                10 2.2702      1   0.131885
## Vowels.numeric:BlockMinus                    10 0.1005      1   0.751191
## Consonants.numeric:Vowels.numeric:BlockMinus 10 0.0026      1   0.959590
##                                                
## Consonants.numeric                             
## Vowels.numeric                                 
## BlockMinus                                   **
## Consonants.numeric:Vowels.numeric              
## Consonants.numeric:BlockMinus                  
## Vowels.numeric:BlockMinus                      
## Consonants.numeric:Vowels.numeric:BlockMinus   
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
#Comparisons
summary(afex.Exp2Both)
## Generalized linear mixed model fit by maximum likelihood (Laplace
##   Approximation) [glmerMod]
##  Family: binomial  ( logit )
## Formula: Correct ~ Consonants.numeric * Vowels.numeric * BlockMinus +  
##     (1 + BlockMinus | ID)
##    Data: data
## Control: glmerControl(optimizer = "bobyqa")
## 
##      AIC      BIC   logLik deviance df.resid 
##   2488.4   2555.8  -1233.2   2466.4     3373 
## 
## Scaled residuals: 
##      Min       1Q   Median       3Q      Max 
## -10.4349   0.1290   0.2590   0.4448   1.1406 
## 
## Random effects:
##  Groups Name        Variance Std.Dev. Corr
##  ID     (Intercept) 0.7618   0.8728       
##         BlockMinus  0.2370   0.4868   0.52
## Number of obs: 3384, groups:  ID, 47
## 
## Fixed effects:
##                                              Estimate Std. Error z value
## (Intercept)                                   1.53863    0.29395   5.234
## Consonants.numeric                            0.10022    0.41666   0.241
## Vowels.numeric                               -0.55024    0.43775  -1.257
## BlockMinus                                    0.59579    0.20275   2.939
## Consonants.numeric:Vowels.numeric             0.76583    0.59995   1.276
## Consonants.numeric:BlockMinus                 0.45887    0.29977   1.531
## Vowels.numeric:BlockMinus                    -0.09131    0.28812  -0.317
## Consonants.numeric:Vowels.numeric:BlockMinus -0.02337    0.42094  -0.056
##                                              Pr(>|z|)    
## (Intercept)                                  1.66e-07 ***
## Consonants.numeric                             0.8099    
## Vowels.numeric                                 0.2088    
## BlockMinus                                     0.0033 ** 
## Consonants.numeric:Vowels.numeric              0.2018    
## Consonants.numeric:BlockMinus                  0.1258    
## Vowels.numeric:BlockMinus                      0.7513    
## Consonants.numeric:Vowels.numeric:BlockMinus   0.9557    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) Cnsnn. Vwls.n BlckMn Cn.:V. Cn.:BM Vw.:BM
## Cnsnnts.nmr -0.696                                          
## Vowels.nmrc -0.668  0.467                                   
## BlockMinus   0.075 -0.067 -0.055                            
## Cnsnnts.:V.  0.491 -0.693 -0.731  0.036                     
## Cnsnnts.:BM -0.070  0.082  0.045 -0.625 -0.061              
## Vwls.nmr:BM -0.058  0.046  0.133 -0.690 -0.095  0.447       
## Cnsn.:V.:BM  0.034 -0.059 -0.089  0.482  0.096 -0.692 -0.688
#Aggregating and Plotting

BothAgg1 <- summarySE(subset(Exp2Data, Trial.Type== "Both Different"), measurevar= "Correct", groupvars = c("Condition", "Block"))
  
BothAgg1$Block <- factor(BothAgg1$Block)


pd <- position_dodge(width = 0.1)

#Plotting with 95% confidence interval
ggplot(data=BothAgg1, aes(x=Block, y=Correct, group= Condition)) +
  geom_line(aes(color = Condition, linetype= Condition), size = 1.2, position=pd) +
  geom_errorbar(aes(ymin= Correct - ci, ymax= Correct + ci, color= Condition), width= 0.2, size = 1, position=pd) +
  geom_point(aes(color = Condition, shape = Condition), size = 3, position=pd) +
  labs(x="Block", y="Proportion of Correct Responses") +
  scale_y_continuous(limits = c(0.45,1), breaks=c(0.5,0.6,0.7,0.8,0.9,1.0)) +
  theme_alan() +
  scale_linetype_manual(values = c("longdash", "solid", "longdash", "solid")) +
  scale_color_manual(values= c("#a1dab4", "#253494","#253494", "#a1dab4")) +
  scale_shape_manual(values= c(15,16,17,18)) +
  theme(legend.position = c(0.75, 0.22)) +
  theme(legend.key=element_blank())

ggsave("Exp2Both.png", plot = last_plot(), device = NULL, path = NULL,
  width = 8, height = 5, units = c("in", "cm", "mm"),
  dpi = 600)

Shape Relevant Trials

afex.Exp2Shape <- mixed(Correct~Consonants.numeric * Vowels.numeric * BlockMinus + (1 + BlockMinus |ID),
                       data=subset(Exp2Data, Trial.Type== "Shape Different"),
                       family=binomial,
                       control=glmerControl(optimizer="bobyqa"),
                       method = 'LRT',
                       progress=FALSE)
## Contrasts set to contr.sum for the following variables: ID
## Numerical variables NOT centered on 0: Consonants.numeric, Vowels.numeric, BlockMinus
## If in interactions, interpretation of lower order (e.g., main) effects difficult.
#Main Effects
afex.Exp2Shape$anova_table
## Mixed Model Anova Table (Type 3 tests, LRT-method)
## 
## Model: Correct ~ Consonants.numeric * Vowels.numeric * BlockMinus + 
## Model:     (1 + BlockMinus | ID)
## Data: subset
## Data: Exp2Data
## Data: Trial.Type == "Shape Different"
## Df full model: 11
##                                              Df   Chisq Chi Df Pr(>Chisq)
## Consonants.numeric                           10  0.3813      1  0.5368825
## Vowels.numeric                               10  0.0910      1  0.7628962
## BlockMinus                                   10 15.1305      1  0.0001003
## Consonants.numeric:Vowels.numeric            10  0.3206      1  0.5712445
## Consonants.numeric:BlockMinus                10  0.2713      1  0.6024626
## Vowels.numeric:BlockMinus                    10  3.5867      1  0.0582437
## Consonants.numeric:Vowels.numeric:BlockMinus 10  0.6120      1  0.4340197
##                                                 
## Consonants.numeric                              
## Vowels.numeric                                  
## BlockMinus                                   ***
## Consonants.numeric:Vowels.numeric               
## Consonants.numeric:BlockMinus                   
## Vowels.numeric:BlockMinus                    .  
## Consonants.numeric:Vowels.numeric:BlockMinus    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
#Comparisons
summary(afex.Exp2Shape)
## Generalized linear mixed model fit by maximum likelihood (Laplace
##   Approximation) [glmerMod]
##  Family: binomial  ( logit )
## Formula: Correct ~ Consonants.numeric * Vowels.numeric * BlockMinus +  
##     (1 + BlockMinus | ID)
##    Data: data
## Control: glmerControl(optimizer = "bobyqa")
## 
##      AIC      BIC   logLik deviance df.resid 
##   2135.3   2200.7  -1056.7   2113.3     2809 
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -9.5395  0.1147  0.2664  0.4350  1.1331 
## 
## Random effects:
##  Groups Name        Variance Std.Dev. Corr
##  ID     (Intercept) 0.8569   0.9257       
##         BlockMinus  0.2345   0.4843   0.72
## Number of obs: 2820, groups:  ID, 47
## 
## Fixed effects:
##                                              Estimate Std. Error z value
## (Intercept)                                    1.3018     0.3122   4.169
## Consonants.numeric                             0.2753     0.4422   0.623
## Vowels.numeric                                -0.1417     0.4680  -0.303
## BlockMinus                                     0.8905     0.2211   4.028
## Consonants.numeric:Vowels.numeric              0.3631     0.6397   0.568
## Consonants.numeric:BlockMinus                  0.1638     0.3116   0.526
## Vowels.numeric:BlockMinus                     -0.5847     0.3031  -1.929
## Consonants.numeric:Vowels.numeric:BlockMinus   0.3429     0.4330   0.792
##                                              Pr(>|z|)    
## (Intercept)                                  3.06e-05 ***
## Consonants.numeric                             0.5335    
## Vowels.numeric                                 0.7621    
## BlockMinus                                   5.63e-05 ***
## Consonants.numeric:Vowels.numeric              0.5703    
## Consonants.numeric:BlockMinus                  0.5991    
## Vowels.numeric:BlockMinus                      0.0537 .  
## Consonants.numeric:Vowels.numeric:BlockMinus   0.4284    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) Cnsnn. Vwls.n BlckMn Cn.:V. Cn.:BM Vw.:BM
## Cnsnnts.nmr -0.697                                          
## Vowels.nmrc -0.661  0.464                                   
## BlockMinus   0.169 -0.135 -0.124                            
## Cnsnnts.:V.  0.489 -0.691 -0.733  0.082                     
## Cnsnnts.:BM -0.139  0.188  0.095 -0.641 -0.131              
## Vwls.nmr:BM -0.132  0.100  0.235 -0.705 -0.168  0.469       
## Cnsn.:V.:BM  0.088 -0.133 -0.164  0.506  0.199 -0.712 -0.705
#Aggregating and Plotting

ShapeAgg1 <- summarySE(subset(Exp2Data, Trial.Type== "Shape Different"), measurevar= "Correct", groupvars = c("Condition", "Block"))
  
ShapeAgg1$Block <- factor(ShapeAgg1$Block)


pd <- position_dodge(width = 0.1)

#Plotting with 95% confidence interval
ggplot(data=ShapeAgg1, aes(x=Block, y=Correct, group= Condition)) +
  geom_line(aes(color = Condition, linetype= Condition), size = 1.2, position=pd) +
  geom_errorbar(aes(ymin= Correct - ci, ymax= Correct + ci, color= Condition), width= 0.2, size = 1, position=pd) +
  geom_point(aes(color = Condition, shape = Condition), size = 3, position=pd) +
  labs(x="Block", y="Proportion of Correct Responses") +
  scale_y_continuous(limits = c(0.45,1), breaks=c(0.5,0.6,0.7,0.8,0.9,1.0)) +
  theme_alan() +
  scale_linetype_manual(values = c("longdash", "solid", "longdash", "solid")) +
  scale_color_manual(values= c("#a1dab4", "#253494","#253494", "#a1dab4")) +
  scale_shape_manual(values= c(15,16,17,18)) +
  theme(legend.position = c(0.75, 0.22)) +
  theme(legend.key=element_blank())

ggsave("Exp2Shape.png", plot = last_plot(), device = NULL, path = NULL,
  width = 8, height = 5, units = c("in", "cm", "mm"),
  dpi = 600)

Size Relevant Trials

afex.Exp2Size <- mixed(Correct~Consonants.numeric * Vowels.numeric * BlockMinus + (1 + BlockMinus |ID),
                       data=subset(Exp2Data, Trial.Type== "Size Different"),
                       family=binomial,
                       control=glmerControl(optimizer="bobyqa"),
                       method = 'LRT',
                       progress=FALSE)
## Contrasts set to contr.sum for the following variables: ID
## Numerical variables NOT centered on 0: Consonants.numeric, Vowels.numeric, BlockMinus
## If in interactions, interpretation of lower order (e.g., main) effects difficult.
#Main Effects
afex.Exp2Size$anova_table
## Mixed Model Anova Table (Type 3 tests, LRT-method)
## 
## Model: Correct ~ Consonants.numeric * Vowels.numeric * BlockMinus + 
## Model:     (1 + BlockMinus | ID)
## Data: subset
## Data: Exp2Data
## Data: Trial.Type == "Size Different"
## Df full model: 11
##                                              Df   Chisq Chi Df Pr(>Chisq)
## Consonants.numeric                           10  0.5582      1  0.4549752
## Vowels.numeric                               10  2.0290      1  0.1543217
## BlockMinus                                   10 13.2894      1  0.0002669
## Consonants.numeric:Vowels.numeric            10  0.0506      1  0.8220840
## Consonants.numeric:BlockMinus                10  6.4275      1  0.0112368
## Vowels.numeric:BlockMinus                    10  1.1209      1  0.2897230
## Consonants.numeric:Vowels.numeric:BlockMinus 10  7.8745      1  0.0050137
##                                                 
## Consonants.numeric                              
## Vowels.numeric                                  
## BlockMinus                                   ***
## Consonants.numeric:Vowels.numeric               
## Consonants.numeric:BlockMinus                *  
## Vowels.numeric:BlockMinus                       
## Consonants.numeric:Vowels.numeric:BlockMinus ** 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
#Comparisons
summary(afex.Exp2Size)
## Generalized linear mixed model fit by maximum likelihood (Laplace
##   Approximation) [glmerMod]
##  Family: binomial  ( logit )
## Formula: Correct ~ Consonants.numeric * Vowels.numeric * BlockMinus +  
##     (1 + BlockMinus | ID)
##    Data: data
## Control: glmerControl(optimizer = "bobyqa")
## 
##      AIC      BIC   logLik deviance df.resid 
##   3460.0   3525.4  -1719.0   3438.0     2809 
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -4.5451 -1.0060  0.4450  0.8014  1.3036 
## 
## Random effects:
##  Groups Name        Variance Std.Dev. Corr
##  ID     (Intercept) 0.36285  0.6024       
##         BlockMinus  0.04502  0.2122   0.55
## Number of obs: 2820, groups:  ID, 47
## 
## Fixed effects:
##                                              Estimate Std. Error z value
## (Intercept)                                   0.02707    0.21249   0.127
## Consonants.numeric                            0.22524    0.30023   0.750
## Vowels.numeric                                0.47006    0.32787   1.434
## BlockMinus                                    0.45841    0.11735   3.906
## Consonants.numeric:Vowels.numeric            -0.09893    0.43964  -0.225
## Consonants.numeric:BlockMinus                -0.42981    0.16278  -2.640
## Vowels.numeric:BlockMinus                    -0.19421    0.18132  -1.071
## Consonants.numeric:Vowels.numeric:BlockMinus  0.71827    0.24579   2.922
##                                              Pr(>|z|)    
## (Intercept)                                   0.89862    
## Consonants.numeric                            0.45311    
## Vowels.numeric                                0.15166    
## BlockMinus                                   9.38e-05 ***
## Consonants.numeric:Vowels.numeric             0.82197    
## Consonants.numeric:BlockMinus                 0.00828 ** 
## Vowels.numeric:BlockMinus                     0.28413    
## Consonants.numeric:Vowels.numeric:BlockMinus  0.00347 ** 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) Cnsnn. Vwls.n BlckMn Cn.:V. Cn.:BM Vw.:BM
## Cnsnnts.nmr -0.708                                          
## Vowels.nmrc -0.647  0.459                                   
## BlockMinus  -0.128  0.090  0.081                            
## Cnsnnts.:V.  0.483 -0.683 -0.744 -0.062                     
## Cnsnnts.:BM  0.092 -0.126 -0.059 -0.719  0.086              
## Vwls.nmr:BM  0.081 -0.058 -0.137 -0.638  0.100  0.461       
## Cnsn.:V.:BM -0.062  0.083  0.099  0.480 -0.140 -0.664 -0.731
#Aggregating and Plotting

SizeAgg1 <- summarySE(subset(Exp2Data, Trial.Type== "Size Different"), measurevar= "Correct", groupvars = c("Condition", "Block"))
  
SizeAgg1$Block <- factor(SizeAgg1$Block)


pd <- position_dodge(width = 0.1)

#Plotting with 95% confidence interval
ggplot(data=SizeAgg1, aes(x=Block, y=Correct, group= Condition)) +
  geom_line(aes(color = Condition, linetype= Condition), size = 1.2, position=pd) +
  geom_errorbar(aes(ymin= Correct - ci, ymax= Correct + ci, color= Condition), width= 0.2, size = 1, position=pd) +
  geom_point(aes(color = Condition, shape = Condition), size = 3, position=pd) +
  labs(x="Block", y="Proportion of Correct Responses") +
  scale_y_continuous(limits = c(0.4,1.04), breaks=c(0.4, 0.5,0.6,0.7,0.8,0.9,1.0)) +
  theme_alan() +
  scale_linetype_manual(values = c("longdash", "solid", "longdash", "solid")) +
  scale_color_manual(values= c("#a1dab4", "#253494","#253494", "#a1dab4")) +
  scale_shape_manual(values= c(15,16,17,18)) +
  theme(legend.position = c(0.75, 0.82)) +
  theme(legend.key=element_blank())

ggsave("Exp2Size.png", plot = last_plot(), device = NULL, path = NULL,
  width = 8, height = 5, units = c("in", "cm", "mm"),
  dpi = 600)

The above analyses and graphs are found in the appendix - for the main body of the experiment we conduct an omnibus analysis where the data is collapsed to allow us to explore the interference effect

Omnibus Analysis

#Recoding
#1 if the relevant feature is encoded iconically, 0 if not
classify.relevant.feature <- function(trial.type,consonants,vowels) {
  if (trial.type=="Both Different") {
    if (consonants=="IconicConsonants" | vowels=="IconicVowels") {
      1}
    else {0}}
  else if (trial.type=="Shape Different") {
    if (consonants=="IconicConsonants") {
      1
    }
    else {0}
  }
  else if (trial.type=="Size Different") {
    if (vowels=="IconicVowels") {
      1
    }
    else {0}
  }
}

#1 if the relevant feature is encoded iconically, 0 if not, and NA if there are no irrelevant features
classify.irrelevant.feature <- function(trial.type,consonants,vowels) {
  if (trial.type=="Both Different") {
    NA
  }
  else if (trial.type=="Shape Different") {
    if (vowels=="IconicVowels") {
      1
    }
    else {0}
  }
  else if (trial.type=="Size Different") {
    if (consonants=="IconicConsonants") {
      1
    }
    else {0}
  }
}

Exp2Data$RelevantFeatureIsIconic <- mapply(function(trial.type,consonants,vowels) classify.relevant.feature(trial.type,consonants,vowels),Exp2Data$Trial.Type,Exp2Data$Consonants,Exp2Data$Vowels)
Exp2Data$IrrelevantFeatureIsIconic <- mapply(function(trial.type,consonants,vowels) classify.irrelevant.feature(trial.type,consonants,vowels),Exp2Data$Trial.Type,Exp2Data$Consonants,Exp2Data$Vowels)



#Omnibus Model
afex.Exp2Omnibus <- mixed(Correct ~ RelevantFeatureIsIconic * IrrelevantFeatureIsIconic * BlockMinus + 
                          (1 + BlockMinus * RelevantFeatureIsIconic * IrrelevantFeatureIsIconic |ID),
                          data=subset(Exp2Data,!is.na(IrrelevantFeatureIsIconic)),
                          family=binomial,
                          control=glmerControl(optimizer="bobyqa",optCtrl=list(maxfun=20000)), 
                          method = 'LRT')
## Contrasts set to contr.sum for the following variables: ID
## Numerical variables NOT centered on 0: RelevantFeatureIsIconic, IrrelevantFeatureIsIconic, BlockMinus
## If in interactions, interpretation of lower order (e.g., main) effects difficult.
## Fitting 8 (g)lmer() models:
## [
## Warning in checkConv(attr(opt, "derivs"), opt$par, ctrl = control
## $checkConv, : unable to evaluate scaled gradient
## Warning in checkConv(attr(opt, "derivs"), opt$par, ctrl = control
## $checkConv, : Model failed to converge: degenerate Hessian with 2 negative
## eigenvalues
## .
## Warning in checkConv(attr(opt, "derivs"), opt$par, ctrl = control
## $checkConv, : unable to evaluate scaled gradient

## Warning in checkConv(attr(opt, "derivs"), opt$par, ctrl = control
## $checkConv, : Model failed to converge: degenerate Hessian with 2 negative
## eigenvalues
## ...
## Warning in checkConv(attr(opt, "derivs"), opt$par, ctrl = control
## $checkConv, : unable to evaluate scaled gradient
## Warning in checkConv(attr(opt, "derivs"), opt$par, ctrl = control
## $checkConv, : Model failed to converge: degenerate Hessian with 3 negative
## eigenvalues
## .
## Warning in checkConv(attr(opt, "derivs"), opt$par, ctrl = control
## $checkConv, : unable to evaluate scaled gradient
## Warning in checkConv(attr(opt, "derivs"), opt$par, ctrl = control
## $checkConv, : Model failed to converge: degenerate Hessian with 2 negative
## eigenvalues
## .
## Warning in checkConv(attr(opt, "derivs"), opt$par, ctrl = control
## $checkConv, : unable to evaluate scaled gradient

## Warning in checkConv(attr(opt, "derivs"), opt$par, ctrl = control
## $checkConv, : Model failed to converge: degenerate Hessian with 2 negative
## eigenvalues
## .
## Warning in checkConv(attr(opt, "derivs"), opt$par, ctrl = control
## $checkConv, : unable to evaluate scaled gradient

## Warning in checkConv(attr(opt, "derivs"), opt$par, ctrl = control
## $checkConv, : Model failed to converge: degenerate Hessian with 2 negative
## eigenvalues
## .]
afex.Exp2Omnibus$anova_table
## Mixed Model Anova Table (Type 3 tests, LRT-method)
## 
## Model: Correct ~ RelevantFeatureIsIconic * IrrelevantFeatureIsIconic * 
## Model:     BlockMinus + (1 + BlockMinus * RelevantFeatureIsIconic * 
## Model:     IrrelevantFeatureIsIconic | ID)
## Data: subset
## Data: Exp2Data
## Data: !is.na(IrrelevantFeatureIsIconic)
## Df full model: 44
##                                                              Df   Chisq
## RelevantFeatureIsIconic                                      43  3.4530
## IrrelevantFeatureIsIconic                                    43  0.0803
## BlockMinus                                                   43 14.8178
## RelevantFeatureIsIconic:IrrelevantFeatureIsIconic            43  0.0818
## RelevantFeatureIsIconic:BlockMinus                           43  1.5610
## IrrelevantFeatureIsIconic:BlockMinus                         43  7.7555
## RelevantFeatureIsIconic:IrrelevantFeatureIsIconic:BlockMinus 43  0.3490
##                                                              Chi Df
## RelevantFeatureIsIconic                                           1
## IrrelevantFeatureIsIconic                                         1
## BlockMinus                                                        1
## RelevantFeatureIsIconic:IrrelevantFeatureIsIconic                 1
## RelevantFeatureIsIconic:BlockMinus                                1
## IrrelevantFeatureIsIconic:BlockMinus                              1
## RelevantFeatureIsIconic:IrrelevantFeatureIsIconic:BlockMinus      1
##                                                              Pr(>Chisq)
## RelevantFeatureIsIconic                                       0.0631367
## IrrelevantFeatureIsIconic                                     0.7768718
## BlockMinus                                                    0.0001184
## RelevantFeatureIsIconic:IrrelevantFeatureIsIconic             0.7749016
## RelevantFeatureIsIconic:BlockMinus                            0.2115209
## IrrelevantFeatureIsIconic:BlockMinus                          0.0053549
## RelevantFeatureIsIconic:IrrelevantFeatureIsIconic:BlockMinus  0.5546806
##                                                                 
## RelevantFeatureIsIconic                                      .  
## IrrelevantFeatureIsIconic                                       
## BlockMinus                                                   ***
## RelevantFeatureIsIconic:IrrelevantFeatureIsIconic               
## RelevantFeatureIsIconic:BlockMinus                              
## IrrelevantFeatureIsIconic:BlockMinus                         ** 
## RelevantFeatureIsIconic:IrrelevantFeatureIsIconic:BlockMinus    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
summary(afex.Exp2Omnibus)
## Generalized linear mixed model fit by maximum likelihood (Laplace
##   Approximation) [glmerMod]
##  Family: binomial  ( logit )
## Formula: Correct ~ RelevantFeatureIsIconic * IrrelevantFeatureIsIconic *  
##     BlockMinus + (1 + BlockMinus * RelevantFeatureIsIconic *  
##     IrrelevantFeatureIsIconic | ID)
##    Data: data
## Control: 
## glmerControl(optimizer = "bobyqa", optCtrl = list(maxfun = 20000))
## 
##      AIC      BIC   logLik deviance df.resid 
##   5914.4   6206.5  -2913.2   5826.4     5596 
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -6.3313 -0.9035  0.3905  0.6310  1.2634 
## 
## Random effects:
##  Groups Name                                                        
##  ID     (Intercept)                                                 
##         BlockMinus                                                  
##         RelevantFeatureIsIconic                                     
##         IrrelevantFeatureIsIconic                                   
##         BlockMinus:RelevantFeatureIsIconic                          
##         BlockMinus:IrrelevantFeatureIsIconic                        
##         RelevantFeatureIsIconic:IrrelevantFeatureIsIconic           
##         BlockMinus:RelevantFeatureIsIconic:IrrelevantFeatureIsIconic
##  Variance Std.Dev. Corr                                     
##  0.24256  0.4925                                            
##  0.03705  0.1925    1.00                                    
##  0.67340  0.8206   -0.04 -0.04                              
##  0.45324  0.6732   -0.44 -0.44 -0.42                        
##  0.22948  0.4790    0.21  0.21  0.96 -0.43                  
##  0.05319  0.2306   -0.76 -0.76 -0.41  0.90 -0.54            
##  0.47707  0.6907   -0.04 -0.04 -0.32 -0.23 -0.37 -0.06      
##  0.11772  0.3431   -0.21 -0.21 -0.73  0.20 -0.80  0.36  0.84
## Number of obs: 5640, groups:  ID, 47
## 
## Fixed effects:
##                                                              Estimate
## (Intercept)                                                   0.55931
## RelevantFeatureIsIconic                                       0.54719
## IrrelevantFeatureIsIconic                                     0.06819
## BlockMinus                                                    0.48975
## RelevantFeatureIsIconic:IrrelevantFeatureIsIconic            -0.10806
## RelevantFeatureIsIconic:BlockMinus                            0.25639
## IrrelevantFeatureIsIconic:BlockMinus                         -0.37764
## RelevantFeatureIsIconic:IrrelevantFeatureIsIconic:BlockMinus  0.15715
##                                                              Std. Error
## (Intercept)                                                     0.16884
## RelevantFeatureIsIconic                                         0.29149
## IrrelevantFeatureIsIconic                                       0.24025
## BlockMinus                                                      0.09840
## RelevantFeatureIsIconic:IrrelevantFeatureIsIconic               0.37661
## RelevantFeatureIsIconic:BlockMinus                              0.21463
## IrrelevantFeatureIsIconic:BlockMinus                            0.13129
## RelevantFeatureIsIconic:IrrelevantFeatureIsIconic:BlockMinus    0.25041
##                                                              z value
## (Intercept)                                                    3.313
## RelevantFeatureIsIconic                                        1.877
## IrrelevantFeatureIsIconic                                      0.284
## BlockMinus                                                     4.977
## RelevantFeatureIsIconic:IrrelevantFeatureIsIconic             -0.287
## RelevantFeatureIsIconic:BlockMinus                             1.195
## IrrelevantFeatureIsIconic:BlockMinus                          -2.876
## RelevantFeatureIsIconic:IrrelevantFeatureIsIconic:BlockMinus   0.628
##                                                              Pr(>|z|)    
## (Intercept)                                                  0.000924 ***
## RelevantFeatureIsIconic                                      0.060485 .  
## IrrelevantFeatureIsIconic                                    0.776534    
## BlockMinus                                                   6.46e-07 ***
## RelevantFeatureIsIconic:IrrelevantFeatureIsIconic            0.774164    
## RelevantFeatureIsIconic:BlockMinus                           0.232247    
## IrrelevantFeatureIsIconic:BlockMinus                         0.004023 ** 
## RelevantFeatureIsIconic:IrrelevantFeatureIsIconic:BlockMinus 0.530286    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) RlvFII IrrFII BlckMn RlFII:IFII RFII:B IFII:B
## RlvntFtrIsI -0.579                                              
## IrrlvntFtII -0.703  0.304                                       
## BlockMinus   0.162 -0.093 -0.114                                
## RlvFII:IFII  0.448 -0.708 -0.558  0.072                         
## RlvntFII:BM -0.074  0.289  0.005 -0.458 -0.194                  
## IrrlvFII:BM -0.121 -0.025  0.033 -0.749  0.052      0.282       
## RFII:IFII:B  0.063 -0.198  0.023  0.393  0.168     -0.825 -0.471
## convergence code: 0
## unable to evaluate scaled gradient
## Model failed to converge: degenerate  Hessian with 2 negative eigenvalues
#Omnibus Model (Simplified random effects structure- Now Converges)

afex.Exp2Omnibus2 <- mixed(Correct ~ RelevantFeatureIsIconic * IrrelevantFeatureIsIconic * BlockMinus + 
                          (1 + BlockMinus |ID),
                          data=subset(Exp2Data,!is.na(IrrelevantFeatureIsIconic)),
                          family=binomial,
                          control=glmerControl(optimizer="bobyqa",optCtrl=list(maxfun=20000)), 
                          method = 'LRT')
## Contrasts set to contr.sum for the following variables: ID
## Numerical variables NOT centered on 0: RelevantFeatureIsIconic, IrrelevantFeatureIsIconic, BlockMinus
## If in interactions, interpretation of lower order (e.g., main) effects difficult.
## Fitting 8 (g)lmer() models:
## [........]
afex.Exp2Omnibus2$anova_table
## Mixed Model Anova Table (Type 3 tests, LRT-method)
## 
## Model: Correct ~ RelevantFeatureIsIconic * IrrelevantFeatureIsIconic * 
## Model:     BlockMinus + (1 + BlockMinus | ID)
## Data: subset
## Data: Exp2Data
## Data: !is.na(IrrelevantFeatureIsIconic)
## Df full model: 11
##                                                              Df   Chisq
## RelevantFeatureIsIconic                                      10  2.9875
## IrrelevantFeatureIsIconic                                    10  0.0255
## BlockMinus                                                   10 23.1787
## RelevantFeatureIsIconic:IrrelevantFeatureIsIconic            10  0.0130
## RelevantFeatureIsIconic:BlockMinus                           10  0.4965
## IrrelevantFeatureIsIconic:BlockMinus                         10  8.7783
## RelevantFeatureIsIconic:IrrelevantFeatureIsIconic:BlockMinus 10  6.5975
##                                                              Chi Df
## RelevantFeatureIsIconic                                           1
## IrrelevantFeatureIsIconic                                         1
## BlockMinus                                                        1
## RelevantFeatureIsIconic:IrrelevantFeatureIsIconic                 1
## RelevantFeatureIsIconic:BlockMinus                                1
## IrrelevantFeatureIsIconic:BlockMinus                              1
## RelevantFeatureIsIconic:IrrelevantFeatureIsIconic:BlockMinus      1
##                                                              Pr(>Chisq)
## RelevantFeatureIsIconic                                        0.083911
## IrrelevantFeatureIsIconic                                      0.873056
## BlockMinus                                                    1.476e-06
## RelevantFeatureIsIconic:IrrelevantFeatureIsIconic              0.909351
## RelevantFeatureIsIconic:BlockMinus                             0.481063
## IrrelevantFeatureIsIconic:BlockMinus                           0.003048
## RelevantFeatureIsIconic:IrrelevantFeatureIsIconic:BlockMinus   0.010212
##                                                                 
## RelevantFeatureIsIconic                                      .  
## IrrelevantFeatureIsIconic                                       
## BlockMinus                                                   ***
## RelevantFeatureIsIconic:IrrelevantFeatureIsIconic               
## RelevantFeatureIsIconic:BlockMinus                              
## IrrelevantFeatureIsIconic:BlockMinus                         ** 
## RelevantFeatureIsIconic:IrrelevantFeatureIsIconic:BlockMinus *  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
summary(afex.Exp2Omnibus2)
## Generalized linear mixed model fit by maximum likelihood (Laplace
##   Approximation) [glmerMod]
##  Family: binomial  ( logit )
## Formula: Correct ~ RelevantFeatureIsIconic * IrrelevantFeatureIsIconic *  
##     BlockMinus + (1 + BlockMinus | ID)
##    Data: data
## Control: 
## glmerControl(optimizer = "bobyqa", optCtrl = list(maxfun = 20000))
## 
##      AIC      BIC   logLik deviance df.resid 
##   6058.4   6131.4  -3018.2   6036.4     5629 
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -5.8084 -0.9172  0.4410  0.6401  1.1339 
## 
## Random effects:
##  Groups Name        Variance Std.Dev. Corr
##  ID     (Intercept) 0.2870   0.5358       
##         BlockMinus  0.0325   0.1803   1.00
## Number of obs: 5640, groups:  ID, 47
## 
## Fixed effects:
##                                                              Estimate
## (Intercept)                                                   0.56320
## RelevantFeatureIsIconic                                       0.41563
## IrrelevantFeatureIsIconic                                     0.03743
## BlockMinus                                                    0.48566
## RelevantFeatureIsIconic:IrrelevantFeatureIsIconic             0.04196
## RelevantFeatureIsIconic:BlockMinus                           -0.09394
## IrrelevantFeatureIsIconic:BlockMinus                         -0.38276
## RelevantFeatureIsIconic:IrrelevantFeatureIsIconic:BlockMinus  0.50046
##                                                              Std. Error
## (Intercept)                                                     0.17920
## RelevantFeatureIsIconic                                         0.23699
## IrrelevantFeatureIsIconic                                       0.23387
## BlockMinus                                                      0.09406
## RelevantFeatureIsIconic:IrrelevantFeatureIsIconic               0.36790
## RelevantFeatureIsIconic:BlockMinus                              0.13289
## IrrelevantFeatureIsIconic:BlockMinus                            0.12586
## RelevantFeatureIsIconic:IrrelevantFeatureIsIconic:BlockMinus    0.19310
##                                                              z value
## (Intercept)                                                    3.143
## RelevantFeatureIsIconic                                        1.754
## IrrelevantFeatureIsIconic                                      0.160
## BlockMinus                                                     5.163
## RelevantFeatureIsIconic:IrrelevantFeatureIsIconic              0.114
## RelevantFeatureIsIconic:BlockMinus                            -0.707
## IrrelevantFeatureIsIconic:BlockMinus                          -3.041
## RelevantFeatureIsIconic:IrrelevantFeatureIsIconic:BlockMinus   2.592
##                                                              Pr(>|z|)    
## (Intercept)                                                   0.00167 ** 
## RelevantFeatureIsIconic                                       0.07947 .  
## IrrelevantFeatureIsIconic                                     0.87285    
## BlockMinus                                                   2.42e-07 ***
## RelevantFeatureIsIconic:IrrelevantFeatureIsIconic             0.90920    
## RelevantFeatureIsIconic:BlockMinus                            0.47964    
## IrrelevantFeatureIsIconic:BlockMinus                          0.00236 ** 
## RelevantFeatureIsIconic:IrrelevantFeatureIsIconic:BlockMinus  0.00955 ** 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) RlvFII IrrFII BlckMn RlFII:IFII RFII:B IFII:B
## RlvntFtrIsI -0.754                                              
## IrrlvntFtII -0.765  0.825                                       
## BlockMinus   0.179 -0.140 -0.140                                
## RlvFII:IFII  0.486 -0.801 -0.795  0.086                         
## RlvntFII:BM -0.130  0.042  0.249 -0.695 -0.122                  
## IrrlvFII:BM -0.136  0.260  0.079 -0.737 -0.150      0.614       
## RFII:IFII:B  0.086 -0.131 -0.154  0.491  0.164     -0.751 -0.720