library(readr)
Darlington <- read_csv("~/SA projects 2019/Christopher Darlington/Darlington.csv")
## Parsed with column specification:
## cols(
##   .default = col_double()
## )
## See spec(...) for full column specifications.
View(Darlington)
attach(Darlington)
library(factoextra)
## Loading required package: ggplot2
## Welcome! Related Books: `Practical Guide To Cluster Analysis in R` at https://goo.gl/13EFCZ
library(FactoMineR)
library(ggplot2)
library(nFactors)
## Loading required package: MASS
## Loading required package: psych
## 
## Attaching package: 'psych'
## The following objects are masked from 'package:ggplot2':
## 
##     %+%, alpha
## Loading required package: boot
## 
## Attaching package: 'boot'
## The following object is masked from 'package:psych':
## 
##     logit
## Loading required package: lattice
## 
## Attaching package: 'lattice'
## The following object is masked from 'package:boot':
## 
##     melanoma
## 
## Attaching package: 'nFactors'
## The following object is masked from 'package:lattice':
## 
##     parallel
library(psych)
##screen plot , determining the number of factors or components in form of dimensions to be considered
res.pca <- prcomp(Darlington, scale = TRUE)
fviz_eig(res.pca)

fviz_pca_var(res.pca,
             col.var = "contrib", # Color by contributions to the PC
             gradient.cols = c("#00AFBB", "#E7B800", "#FC4E07"),
             repel = TRUE     # Avoid text overlapping
             )

fviz_pca_ind(res.pca,
             col.ind = "cos2", # Color by the quality of representation
             gradient.cols = c("#00AFBB", "#E7B800", "#FC4E07"),
             repel = TRUE     # Avoid text overlapping
             )

eig.val <- get_eigenvalue(res.pca)
eig.val
##        eigenvalue variance.percent cumulative.variance.percent
## Dim.1  12.4846760       41.6155868                    41.61559
## Dim.2   2.2782194        7.5940646                    49.20965
## Dim.3   1.6924597        5.6415322                    54.85118
## Dim.4   1.4085301        4.6951003                    59.54628
## Dim.5   1.0788981        3.5963270                    63.14261
## Dim.6   1.0175697        3.3918991                    66.53451
## Dim.7   0.9158606        3.0528686                    69.58738
## Dim.8   0.8839461        2.9464871                    72.53387
## Dim.9   0.7257424        2.4191412                    74.95301
## Dim.10  0.7119263        2.3730876                    77.32609
## Dim.11  0.5930774        1.9769247                    79.30302
## Dim.12  0.5663349        1.8877831                    81.19080
## Dim.13  0.5352396        1.7841321                    82.97493
## Dim.14  0.5094441        1.6981471                    84.67308
## Dim.15  0.4828362        1.6094540                    86.28254
## Dim.16  0.4212901        1.4043004                    87.68684
## Dim.17  0.4185037        1.3950122                    89.08185
## Dim.18  0.3643340        1.2144467                    90.29629
## Dim.19  0.3520885        1.1736283                    91.46992
## Dim.20  0.3344316        1.1147721                    92.58470
## Dim.21  0.3128334        1.0427781                    93.62747
## Dim.22  0.2990096        0.9966987                    94.62417
## Dim.23  0.2702602        0.9008674                    95.52504
## Dim.24  0.2463364        0.8211214                    96.34616
## Dim.25  0.2242207        0.7474024                    97.09356
## Dim.26  0.2166219        0.7220729                    97.81564
## Dim.27  0.1874375        0.6247916                    98.44043
## Dim.28  0.1714858        0.5716194                    99.01205
## Dim.29  0.1592605        0.5308683                    99.54292
## Dim.30  0.1371253        0.4570845                   100.00000

Non graphical solution to screen test

ev<-eigen(cor(Darlington))
ap<-parallel(subject=nrow(Darlington),var=ncol(Darlington),rep=100,cent=.05)
nS<-nScree(x=ev$values,parallel=ap$eigen$qevpea)
plotnScree(nS)

fac<-factanal(Darlington,3,rotation="promax")
print(fac,digits = 2,cutoff=.3,sort=TRUE)
## 
## Call:
## factanal(x = Darlington, factors = 3, rotation = "promax")
## 
## Uniquenesses:
##  EOCA1  EOCA2  EOCA3  EOPR1  EOPR2  EOPR3  EOPR4  EORT1  EORT2  EORT3 
##   0.81   0.87   0.71   0.61   0.54   0.52   0.38   0.22   0.34   0.59 
##  EOAU1  EOAU2  EOAU3  EOAU4  EOIN1  EOIN2  EOIN3  EOIN4  EOIN5 TOITC1 
##   0.70   0.61   0.74   0.65   0.45   0.43   0.37   0.46   0.31   0.37 
## TOITC2 TOITC3 TOITC4 TOITC5 TOITC6  BPGR1  BPGR2  BPGR3  BPGR4  BPGR5 
##   0.52   0.51   0.45   0.41   0.75   0.26   0.21   0.26   0.32   0.50 
## 
## Loadings:
##        Factor1 Factor2 Factor3
## EOCA3   0.58                  
## EOPR1   0.58                  
## EOPR3   0.78                  
## EOPR4   0.89                  
## EOAU1   0.54                  
## EOIN1   0.56                  
## EOIN2   0.68                  
## EOIN3   0.81                  
## EOIN4   0.85                  
## EOIN5   1.00                  
## TOITC1  0.97                  
## TOITC2  0.70                  
## TOITC3  0.52                  
## TOITC4  0.69                  
## TOITC5  0.55                  
## BPGR1           0.99          
## BPGR2           1.07          
## BPGR3           0.79          
## BPGR4           0.75          
## EORT1                   1.08  
## EORT2                   0.95  
## EOCA1                   0.37  
## EOCA2                   0.45  
## EOPR2   0.48                  
## EORT3   0.35            0.34  
## EOAU2   0.47                  
## EOAU3                   0.42  
## EOAU4   0.46                  
## TOITC6                        
## BPGR5           0.42          
## 
##                Factor1 Factor2 Factor3
## SS loadings       9.06    3.76    3.27
## Proportion Var    0.30    0.13    0.11
## Cumulative Var    0.30    0.43    0.54
## 
## Factor Correlations:
##         Factor1 Factor2 Factor3
## Factor1    1.00   -0.66    0.70
## Factor2   -0.66    1.00   -0.65
## Factor3    0.70   -0.65    1.00
## 
## Test of the hypothesis that 3 factors are sufficient.
## The chi square statistic is 1043.71 on 348 degrees of freedom.
## The p-value is 1.27e-70