library(readr)
rampa <- read_csv("~/SA projects 2019/Rampa/rampa.csv")
## Parsed with column specification:
## cols(
##   .default = col_double()
## )
## See spec(...) for full column specifications.
View(rampa)
attach(rampa)
names(rampa)
##  [1] "ENTCAP1" "ENTCAP2" "ENTCAP3" "ENTCAP4" "ENTCAP5" "ENTCAP6" "ENTCAP7"
##  [8] "AC1"     "AC2"     "AC3"     "CC4"     "CC5"     "CC6"     "NC7"    
## [15] "NC8"     "NC9"     "EC1"     "EC2"     "EC3"     "EC4"     "EC5"    
## [22] "EC6"     "EC7"     "EC8"     "EC9"     "EC10"    "EC11"    "EC12"   
## [29] "EC13"    "EC14"    "EC15"    "EC16"    "EC17"    "EC18"    "BP1"    
## [36] "BP2"     "BP3"     "BP4"     "BP5"     "BP6"     "BP7"     "BP8"
library(factoextra)
## Loading required package: ggplot2
## Welcome! Related Books: `Practical Guide To Cluster Analysis in R` at https://goo.gl/13EFCZ
library(FactoMineR)
library(ggplot2)
library(nFactors)
## Loading required package: MASS
## Loading required package: psych
## 
## Attaching package: 'psych'
## The following objects are masked from 'package:ggplot2':
## 
##     %+%, alpha
## Loading required package: boot
## 
## Attaching package: 'boot'
## The following object is masked from 'package:psych':
## 
##     logit
## Loading required package: lattice
## 
## Attaching package: 'lattice'
## The following object is masked from 'package:boot':
## 
##     melanoma
## 
## Attaching package: 'nFactors'
## The following object is masked from 'package:lattice':
## 
##     parallel
library(psych)

overal

##screen plot , determining the number of factors or components in form of dimensions to be considered
res.pca <- prcomp(rampa, scale = TRUE)
fviz_eig(res.pca)

fviz_pca_var(res.pca,
             col.var = "contrib", # Color by contributions to the PC
             gradient.cols = c("#00AFBB", "#E7B800", "#FC4E07"),
             repel = TRUE     # Avoid text overlapping
             )

fviz_pca_ind(res.pca,
             col.ind = "cos2", # Color by the quality of representation
             gradient.cols = c("#00AFBB", "#E7B800", "#FC4E07"),
             repel = TRUE     # Avoid text overlapping
             )

eig.val <- get_eigenvalue(res.pca)
eig.val
##        eigenvalue variance.percent cumulative.variance.percent
## Dim.1  10.5075399       25.0179522                    25.01795
## Dim.2   4.7586571       11.3301359                    36.34809
## Dim.3   2.3471921        5.5885526                    41.93664
## Dim.4   1.9247603        4.5827626                    46.51940
## Dim.5   1.8088960        4.3068952                    50.82630
## Dim.6   1.5100305        3.5953108                    54.42161
## Dim.7   1.1544225        2.7486249                    57.17023
## Dim.8   1.1035469        2.6274927                    59.79773
## Dim.9   1.0073483        2.3984483                    62.19618
## Dim.10  0.9527419        2.2684331                    64.46461
## Dim.11  0.8789091        2.0926408                    66.55725
## Dim.12  0.8001449        1.9051069                    68.46236
## Dim.13  0.7883770        1.8770882                    70.33944
## Dim.14  0.7707083        1.8350196                    72.17446
## Dim.15  0.7549146        1.7974156                    73.97188
## Dim.16  0.7170489        1.7072592                    75.67914
## Dim.17  0.6814080        1.6224000                    77.30154
## Dim.18  0.6416539        1.5277473                    78.82929
## Dim.19  0.6132215        1.4600511                    80.28934
## Dim.20  0.6097805        1.4518584                    81.74120
## Dim.21  0.5776161        1.3752765                    83.11647
## Dim.22  0.5394145        1.2843203                    84.40079
## Dim.23  0.4967296        1.1826895                    85.58348
## Dim.24  0.4802555        1.1434654                    86.72695
## Dim.25  0.4692729        1.1173165                    87.84426
## Dim.26  0.4364474        1.0391605                    88.88342
## Dim.27  0.4232944        1.0078439                    89.89127
## Dim.28  0.4008760        0.9544667                    90.84573
## Dim.29  0.3906535        0.9301274                    91.77586
## Dim.30  0.3854160        0.9176572                    92.69352
## Dim.31  0.3640172        0.8667076                    93.56023
## Dim.32  0.3434633        0.8177697                    94.37800
## Dim.33  0.3286344        0.7824629                    95.16046
## Dim.34  0.3094295        0.7367369                    95.89720
## Dim.35  0.2938088        0.6995448                    96.59674
## Dim.36  0.2747415        0.6541464                    97.25089
## Dim.37  0.2561308        0.6098353                    97.86072
## Dim.38  0.2114844        0.5035343                    98.36426
## Dim.39  0.2079349        0.4950832                    98.85934
## Dim.40  0.1937186        0.4612349                    99.32058
## Dim.41  0.1577261        0.3755384                    99.69611
## Dim.42  0.1276322        0.3038863                   100.00000

Non graphical solution to screen test

ev<-eigen(cor(rampa))
ap<-parallel(subject=nrow(rampa),var=ncol(rampa),rep=100,cent=.05)
nS<-nScree(x=ev$values,parallel=ap$eigen$qevpea)
plotnScree(nS)

fac<-factanal(rampa,12,rotation="varimax")
print(fac,digits = 2,cutoff=.3,sort=TRUE)
## 
## Call:
## factanal(x = rampa, factors = 12, rotation = "varimax")
## 
## Uniquenesses:
## ENTCAP1 ENTCAP2 ENTCAP3 ENTCAP4 ENTCAP5 ENTCAP6 ENTCAP7     AC1     AC2 
##    0.60    0.34    0.35    0.27    0.64    0.50    0.43    0.17    0.43 
##     AC3     CC4     CC5     CC6     NC7     NC8     NC9     EC1     EC2 
##    0.68    0.23    0.50    0.63    0.80    0.40    0.83    0.70    0.57 
##     EC3     EC4     EC5     EC6     EC7     EC8     EC9    EC10    EC11 
##    0.60    0.42    0.49    0.37    0.60    0.53    0.52    0.16    0.39 
##    EC12    EC13    EC14    EC15    EC16    EC17    EC18     BP1     BP2 
##    0.45    0.50    0.33    0.49    0.38    0.00    0.58    0.45    0.22 
##     BP3     BP4     BP5     BP6     BP7     BP8 
##    0.16    0.13    0.33    0.14    0.38    0.57 
## 
## Loadings:
##         Factor1 Factor2 Factor3 Factor4 Factor5 Factor6 Factor7 Factor8
## EC9      0.51                                                          
## EC10     0.65                                                          
## EC11     0.72                                                          
## EC12     0.64                                                          
## EC13     0.58                                                          
## EC14     0.75                                                          
## EC15     0.61                                                          
## EC16     0.63            0.32                                          
## EC17     0.73                                                          
## EC18     0.52                                                          
## BP1              0.71                                                  
## BP2              0.86                                                  
## BP3              0.90                                                  
## BP4              0.91                                                  
## BP5              0.78                                                  
## BP6              0.73                                                  
## BP7              0.57                                                  
## BP8              0.56                                                  
## EC2                      0.59                                          
## EC3                      0.57                                          
## EC4                      0.68                                          
## EC5      0.35            0.59                                          
## EC6      0.49            0.57                                          
## EC7                      0.53                                          
## ENTCAP3                          0.74                                  
## ENTCAP4                          0.78                                  
## ENTCAP6                          0.61                                  
## ENTCAP7  0.43                    0.51                                  
## AC1                                      0.85                          
## AC2                                      0.65                          
## CC5                                              0.65                  
## CC6                                              0.57                  
## CC4                                                      0.87          
## NC8                                                              0.67  
## ENTCAP2                                                                
## ENTCAP1                                                                
## ENTCAP5                          0.41                                  
## AC3                                                      0.47          
## NC7                                                                    
## NC9                                                              0.33  
## EC1                      0.47                                          
## EC8      0.47            0.45                                          
##         Factor9 Factor10 Factor11 Factor12
## EC9                                       
## EC10                               0.57   
## EC11                                      
## EC12                                      
## EC13                                      
## EC14                                      
## EC15                                      
## EC16                                      
## EC17                      0.61            
## EC18                                      
## BP1                                       
## BP2                                       
## BP3                                       
## BP4                                       
## BP5                                       
## BP6              0.52                     
## BP7              0.48                     
## BP8                                       
## EC2                                       
## EC3                                       
## EC4                                       
## EC5                                       
## EC6                                       
## EC7                                       
## ENTCAP3                                   
## ENTCAP4                                   
## ENTCAP6                                   
## ENTCAP7                                   
## AC1                                       
## AC2                                       
## CC5                                       
## CC6                                       
## CC4                                       
## NC8                                       
## ENTCAP2  0.74                             
## ENTCAP1  0.42                             
## ENTCAP5                                   
## AC3                                       
## NC7                                       
## NC9                                       
## EC1                                       
## EC8                                       
## 
##                Factor1 Factor2 Factor3 Factor4 Factor5 Factor6 Factor7
## SS loadings       5.53    4.85    3.42    2.52    1.49    1.17    1.12
## Proportion Var    0.13    0.12    0.08    0.06    0.04    0.03    0.03
## Cumulative Var    0.13    0.25    0.33    0.39    0.42    0.45    0.48
##                Factor8 Factor9 Factor10 Factor11 Factor12
## SS loadings       0.94    0.93     0.69     0.54     0.53
## Proportion Var    0.02    0.02     0.02     0.01     0.01
## Cumulative Var    0.50    0.52     0.54     0.55     0.57
## 
## Test of the hypothesis that 12 factors are sufficient.
## The chi square statistic is 558.27 on 423 degrees of freedom.
## The p-value is 1.05e-05

Entrepreneurial Capital Variables: Concept Entrepreneurial capital: ENTCAP

ent<-rampa[,1:7]
names(ent)
## [1] "ENTCAP1" "ENTCAP2" "ENTCAP3" "ENTCAP4" "ENTCAP5" "ENTCAP6" "ENTCAP7"
##screen plot , determining the number of factors or components in form of dimensions to be considered
res.pca <- prcomp(ent, scale = TRUE)
fviz_eig(res.pca)

fviz_pca_var(res.pca,
             col.var = "contrib", # Color by contributions to the PC
             gradient.cols = c("#00AFBB", "#E7B800", "#FC4E07"),
             repel = TRUE     # Avoid text overlapping
             )

fviz_pca_ind(res.pca,
             col.ind = "cos2", # Color by the quality of representation
             gradient.cols = c("#00AFBB", "#E7B800", "#FC4E07"),
             repel = TRUE     # Avoid text overlapping
             )

eig.val <- get_eigenvalue(res.pca)
eig.val
##       eigenvalue variance.percent cumulative.variance.percent
## Dim.1  3.3281227        47.544610                    47.54461
## Dim.2  1.0223078        14.604397                    62.14901
## Dim.3  0.6942637         9.918052                    72.06706
## Dim.4  0.6282599         8.975141                    81.04220
## Dim.5  0.5338448         7.626354                    88.66855
## Dim.6  0.4796305         6.851865                    95.52042
## Dim.7  0.3135707         4.479581                   100.00000

Non graphical solution to screen test

ev<-eigen(cor(ent))
ap<-parallel(subject=nrow(ent),var=ncol(ent),rep=100,cent=.05)
nS<-nScree(x=ev$values,parallel=ap$eigen$qevpea)
plotnScree(nS)

fac<-factanal(ent,3,rotation="varimax")
print(fac,digits = 2,cutoff=.3,sort=TRUE)
## 
## Call:
## factanal(x = ent, factors = 3, rotation = "varimax")
## 
## Uniquenesses:
## ENTCAP1 ENTCAP2 ENTCAP3 ENTCAP4 ENTCAP5 ENTCAP6 ENTCAP7 
##    0.78    0.00    0.49    0.04    0.59    0.52    0.49 
## 
## Loadings:
##         Factor1 Factor2 Factor3
## ENTCAP3 0.57    0.40           
## ENTCAP4 0.92                   
## ENTCAP5         0.58           
## ENTCAP6 0.40    0.53           
## ENTCAP7 0.39    0.58           
## ENTCAP2                 0.98   
## ENTCAP1         0.32    0.33   
## 
##                Factor1 Factor2 Factor3
## SS loadings       1.58    1.32    1.18
## Proportion Var    0.23    0.19    0.17
## Cumulative Var    0.23    0.41    0.58
## 
## Test of the hypothesis that 3 factors are sufficient.
## The chi square statistic is 3.67 on 3 degrees of freedom.
## The p-value is 0.3

Entrepreneurial Commitment (Allen & Meyer, 1990)

commit<-rampa[,8:16]
names(commit)
## [1] "AC1" "AC2" "AC3" "CC4" "CC5" "CC6" "NC7" "NC8" "NC9"
##screen plot , determining the number of factors or components in form of dimensions to be considered
res.pca <- prcomp(commit, scale = TRUE)
fviz_eig(res.pca)

fviz_pca_var(res.pca,
             col.var = "contrib", # Color by contributions to the PC
             gradient.cols = c("#00AFBB", "#E7B800", "#FC4E07"),
             repel = TRUE     # Avoid text overlapping
             )

fviz_pca_ind(res.pca,
             col.ind = "cos2", # Color by the quality of representation
             gradient.cols = c("#00AFBB", "#E7B800", "#FC4E07"),
             repel = TRUE     # Avoid text overlapping
             )

eig.val <- get_eigenvalue(res.pca)
eig.val
##       eigenvalue variance.percent cumulative.variance.percent
## Dim.1  2.3102954        25.669949                    25.66995
## Dim.2  1.8095529        20.106144                    45.77609
## Dim.3  1.0795397        11.994886                    57.77098
## Dim.4  0.9452178        10.502420                    68.27340
## Dim.5  0.7687530         8.541700                    76.81510
## Dim.6  0.7365458         8.183842                    84.99894
## Dim.7  0.5392467         5.991630                    90.99057
## Dim.8  0.4900384         5.444871                    96.43544
## Dim.9  0.3208103         3.564559                   100.00000

Non graphical solution to screen test

ev<-eigen(cor(commit))
ap<-parallel(subject=nrow(commit),var=ncol(commit),rep=100,cent=.05)
nS<-nScree(x=ev$values,parallel=ap$eigen$qevpea)
plotnScree(nS)

fac<-factanal(commit,3,rotation="varimax")
print(fac,digits = 2,cutoff=.3,sort=TRUE)
## 
## Call:
## factanal(x = commit, factors = 3, rotation = "varimax")
## 
## Uniquenesses:
##  AC1  AC2  AC3  CC4  CC5  CC6  NC7  NC8  NC9 
## 0.33 0.33 0.76 0.00 0.55 0.67 0.82 0.72 0.90 
## 
## Loadings:
##     Factor1 Factor2 Factor3
## AC1  0.80                  
## AC2  0.80                  
## CC5          0.64          
## CC6          0.55          
## CC4                  1.00  
## AC3                  0.41  
## NC7          0.42          
## NC8          0.47          
## NC9                        
## 
##                Factor1 Factor2 Factor3
## SS loadings       1.39    1.28    1.25
## Proportion Var    0.15    0.14    0.14
## Cumulative Var    0.15    0.30    0.43
## 
## Test of the hypothesis that 3 factors are sufficient.
## The chi square statistic is 30.76 on 12 degrees of freedom.
## The p-value is 0.00214

Entrepreneurial Competence Variables: Opportunity competence, Relationship competence, Conceptual competence, Organising competence , Strategic competence, Commitment competence (Ahmad, 2007; Lans et al., 2011; Man et al., 2002)

comp<-rampa[,17:34]
names(comp)
##  [1] "EC1"  "EC2"  "EC3"  "EC4"  "EC5"  "EC6"  "EC7"  "EC8"  "EC9"  "EC10"
## [11] "EC11" "EC12" "EC13" "EC14" "EC15" "EC16" "EC17" "EC18"
##screen plot , determining the number of factors or components in form of dimensions to be considered
res.pca <- prcomp(comp, scale = TRUE)
fviz_eig(res.pca)

fviz_pca_var(res.pca,
             col.var = "contrib", # Color by contributions to the PC
             gradient.cols = c("#00AFBB", "#E7B800", "#FC4E07"),
             repel = TRUE     # Avoid text overlapping
             )

fviz_pca_ind(res.pca,
             col.ind = "cos2", # Color by the quality of representation
             gradient.cols = c("#00AFBB", "#E7B800", "#FC4E07"),
             repel = TRUE     # Avoid text overlapping
             )

eig.val <- get_eigenvalue(res.pca)
eig.val
##        eigenvalue variance.percent cumulative.variance.percent
## Dim.1   7.9063760        43.924311                    43.92431
## Dim.2   1.6623056         9.235031                    53.15934
## Dim.3   0.8773588         4.874215                    58.03356
## Dim.4   0.8398995         4.666109                    62.69967
## Dim.5   0.7806484         4.336935                    67.03660
## Dim.6   0.6880940         3.822744                    70.85935
## Dim.7   0.6417564         3.565314                    74.42466
## Dim.8   0.5882737         3.268187                    77.69285
## Dim.9   0.5551719         3.084288                    80.77713
## Dim.10  0.5231415         2.906341                    83.68348
## Dim.11  0.4660764         2.589314                    86.27279
## Dim.12  0.4493204         2.496225                    88.76901
## Dim.13  0.4212618         2.340343                    91.10936
## Dim.14  0.4036609         2.242561                    93.35192
## Dim.15  0.3386012         1.881118                    95.23304
## Dim.16  0.3250996         1.806109                    97.03915
## Dim.17  0.2962271         1.645706                    98.68485
## Dim.18  0.2367267         1.315148                   100.00000

Non graphical solution to screen test

ev<-eigen(cor(comp))
ap<-parallel(subject=nrow(comp),var=ncol(comp),rep=100,cent=.05)
nS<-nScree(x=ev$values,parallel=ap$eigen$qevpea)
plotnScree(nS)

fac<-factanal(comp,7,rotation="varimax")
print(fac,digits = 2,cutoff=.3,sort=TRUE)
## 
## Call:
## factanal(x = comp, factors = 7, rotation = "varimax")
## 
## Uniquenesses:
##  EC1  EC2  EC3  EC4  EC5  EC6  EC7  EC8  EC9 EC10 EC11 EC12 EC13 EC14 EC15 
## 0.00 0.56 0.58 0.45 0.45 0.39 0.63 0.00 0.56 0.36 0.37 0.46 0.41 0.33 0.00 
## EC16 EC17 EC18 
## 0.41 0.00 0.58 
## 
## Loadings:
##      Factor1 Factor2 Factor3 Factor4 Factor5 Factor6 Factor7
## EC2   0.58                                                  
## EC3   0.56                                                  
## EC4   0.67                                                  
## EC5   0.67                                                  
## EC6   0.56    0.32    0.33                                  
## EC7   0.51                                                  
## EC9           0.52                                          
## EC10          0.68                                          
## EC11          0.57            0.34                          
## EC14          0.54    0.48                                  
## EC12          0.32    0.51                                  
## EC13                  0.68                                  
## EC17          0.37            0.84                          
## EC15          0.30                    0.87                  
## EC8   0.33    0.30                            0.85          
## EC1   0.31                                            0.94  
## EC16  0.34    0.33    0.33    0.38    0.30                  
## EC18  0.33    0.32    0.33                                  
## 
##                Factor1 Factor2 Factor3 Factor4 Factor5 Factor6 Factor7
## SS loadings       2.95    2.26    1.71    1.35    1.13    1.05    1.01
## Proportion Var    0.16    0.13    0.09    0.07    0.06    0.06    0.06
## Cumulative Var    0.16    0.29    0.38    0.46    0.52    0.58    0.64
## 
## Test of the hypothesis that 7 factors are sufficient.
## The chi square statistic is 59.77 on 48 degrees of freedom.
## The p-value is 0.119

Overall Business Performance (Sales growth vs Competitor) , Level of satisfaction with performance: BP

perf<-rampa[,35:42]

names(perf)
## [1] "BP1" "BP2" "BP3" "BP4" "BP5" "BP6" "BP7" "BP8"
##screen plot , determining the number of factors or components in form of dimensions to be considered
res.pca <- prcomp(perf, scale = TRUE)
fviz_eig(res.pca)

fviz_pca_var(res.pca,
             col.var = "contrib", # Color by contributions to the PC
             gradient.cols = c("#00AFBB", "#E7B800", "#FC4E07"),
             repel = TRUE     # Avoid text overlapping
             )

fviz_pca_ind(res.pca,
             col.ind = "cos2", # Color by the quality of representation
             gradient.cols = c("#00AFBB", "#E7B800", "#FC4E07"),
             repel = TRUE     # Avoid text overlapping
             )

eig.val <- get_eigenvalue(res.pca)
eig.val
##       eigenvalue variance.percent cumulative.variance.percent
## Dim.1  5.0888911        63.611139                    63.61114
## Dim.2  0.8472688        10.590861                    74.20200
## Dim.3  0.6251670         7.814587                    82.01659
## Dim.4  0.4611110         5.763887                    87.78047
## Dim.5  0.3826654         4.783317                    92.56379
## Dim.6  0.2559139         3.198924                    95.76271
## Dim.7  0.1930125         2.412656                    98.17537
## Dim.8  0.1459704         1.824630                   100.00000

Non graphical solution to screen test

ev<-eigen(cor(perf))
ap<-parallel(subject=nrow(perf),var=ncol(perf),rep=100,cent=.05)
nS<-nScree(x=ev$values,parallel=ap$eigen$qevpea)
plotnScree(nS)

fac<-factanal(perf,4,rotation="varimax")
print(fac,digits = 2,cutoff=.3,sort=TRUE)
## 
## Call:
## factanal(x = perf, factors = 4, rotation = "varimax")
## 
## Uniquenesses:
##  BP1  BP2  BP3  BP4  BP5  BP6  BP7  BP8 
## 0.00 0.00 0.20 0.11 0.33 0.11 0.45 0.65 
## 
## Loadings:
##     Factor1 Factor2 Factor3 Factor4
## BP6 0.87                           
## BP7 0.69                           
## BP3 0.38    0.67            0.35   
## BP4 0.33    0.78            0.35   
## BP5 0.53    0.53                   
## BP1                 0.89           
## BP2         0.50            0.77   
## BP8 0.43                           
## 
##                Factor1 Factor2 Factor3 Factor4
## SS loadings       2.10    1.86    1.20    0.98
## Proportion Var    0.26    0.23    0.15    0.12
## Cumulative Var    0.26    0.49    0.64    0.77
## 
## Test of the hypothesis that 4 factors are sufficient.
## The chi square statistic is 2.09 on 2 degrees of freedom.
## The p-value is 0.352