library(readr)
conso <- read_csv("~/Dr Nyagumbo/conso.csv")
## Parsed with column specification:
## cols(
## country = col_character(),
## site = col_character(),
## agroecoregion = col_character(),
## farmer = col_character(),
## treatment = col_character(),
## cropping_system = col_character(),
## tillage_practice = col_character(),
## season = col_character(),
## season_since = col_double(),
## rainfall = col_double(),
## textural_class = col_character(),
## Revised_class = col_character(),
## sand_0_20_cm = col_double(),
## silt_0_20_cm = col_double(),
## `Clay 0_20_cm` = col_double(),
## drainage_class = col_character(),
## drainage_scale = col_double(),
## `Mean slope%` = col_double(),
## maize_grain = col_double()
## )
View(conso)
attach(conso)
defining string variables
country=as.factor(country)
site=as.factor(site)
agroecoregion=as.factor(agroecoregion)
treatment=as.factor(treatment)
Revised_class=as.factor(Revised_class)
cropping_system=c(cropping_system)
cropping_systems=factor(cropping_system,levels = c("Conv_sole","CA_sole","CA_intercrop","CA_rotation"),ordered = TRUE)
drainage_class=c(drainage_class)
drainage_clas=factor(drainage_class,levels = c("Well drained",
"Moderately well drained","Somewhat poorly drained","Poorly drained"),ordered=TRUE)
tillage_practice=as.factor(tillage_practice)
textural_class=as.factor(textural_class)
#sand_0_20_cm = col_double(),
#silt_0_20_cm = col_double(),
#`Clay 0_20_cm` = col_double(),
#drainage_class = col_character(),
#drainage_scale = col_double(),
#maize_grain = col_double()
Loading the required packages
library(ggplot2)
library(maps)
library(ggalt)
library(extrafontdb)
library(MASS)
library(pscl)
## Classes and Methods for R developed in the
## Political Science Computational Laboratory
## Department of Political Science
## Stanford University
## Simon Jackman
## hurdle and zeroinfl functions by Achim Zeileis
library(psych)
##
## Attaching package: 'psych'
## The following objects are masked from 'package:ggplot2':
##
## %+%, alpha
library(gridExtra)
library(repr) ### adjusting the length and width of your plot
library(beanplot)
library("devtools")
library("yarrr")
## Loading required package: jpeg
## Loading required package: BayesFactor
## Loading required package: coda
## Loading required package: Matrix
## ************
## Welcome to BayesFactor 0.9.12-4.2. If you have questions, please contact Richard Morey (richarddmorey@gmail.com).
##
## Type BFManual() to open the manual.
## ************
## Loading required package: circlize
## ========================================
## circlize version 0.4.5
## CRAN page: https://cran.r-project.org/package=circlize
## Github page: https://github.com/jokergoo/circlize
## Documentation: http://jokergoo.github.io/circlize_book/book/
##
## If you use it in published research, please cite:
## Gu, Z. circlize implements and enhances circular visualization
## in R. Bioinformatics 2014.
## ========================================
## yarrr v0.1.5. Citation info at citation('yarrr'). Package guide at yarrr.guide()
## Email me at Nathaniel.D.Phillips.is@gmail.com
##
## Attaching package: 'yarrr'
## The following object is masked from 'package:ggplot2':
##
## diamonds
library(agricolae)
library(easynls)
library(MVN)
## sROC 0.1-2 loaded
library(lme4)
Performing the regression analysis : Combined analysis
full<-lm(maize_grain~agroecoregion+cropping_systems+drainage_class+rainfall+Revised_class+site+country,data = conso)
anova(full)
## Analysis of Variance Table
##
## Response: maize_grain
## Df Sum Sq Mean Sq F value Pr(>F)
## agroecoregion 1 976563658 976563658 440.8854 < 2.2e-16 ***
## cropping_systems 3 63071719 21023906 9.4916 3.138e-06 ***
## drainage_class 3 153338655 51112885 23.0757 1.038e-14 ***
## rainfall 1 297394288 297394288 134.2635 < 2.2e-16 ***
## Revised_class 4 35399292 8849823 3.9954 0.003112 **
## site 9 1118270234 124252248 56.0957 < 2.2e-16 ***
## Residuals 2248 4979332339 2215005
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
summary(full)
##
## Call:
## lm(formula = maize_grain ~ agroecoregion + cropping_systems +
## drainage_class + rainfall + Revised_class + site + country,
## data = conso)
##
## Residuals:
## Min 1Q Median 3Q Max
## -4903.8 -943.6 -144.9 733.9 6836.3
##
## Coefficients: (2 not defined because of singularities)
## Estimate Std. Error t value
## (Intercept) 4886.6609 408.8256 11.953
## agroecoregionLowland -2157.6575 238.2118 -9.058
## cropping_systems.L 272.5631 67.3746 4.045
## cropping_systems.Q 1.3929 65.3313 0.021
## cropping_systems.C 77.2160 64.8169 1.191
## drainage_classPoorly drained -1962.2688 252.8911 -7.759
## drainage_classSomewhat poorly drained -264.3601 98.3056 -2.689
## drainage_classWell drained 27.8028 114.7489 0.242
## rainfall -0.6454 0.2791 -2.312
## Revised_classClay Loam -267.3666 316.2716 -0.845
## Revised_classLoamy Sand -189.3863 318.0836 -0.595
## Revised_classSand -431.6701 336.4233 -1.283
## Revised_classSandy Loam -81.6148 300.5202 -0.272
## siteCabango -124.9340 207.4306 -0.602
## siteChipole -259.2159 208.1397 -1.245
## siteGorongosa -67.8990 183.1426 -0.371
## siteKasungu 188.2829 206.1454 0.913
## siteManica 213.3218 224.1811 0.952
## siteMchinji -1652.5231 228.9433 -7.218
## siteMitundu NA NA NA
## siteNtcheu 2890.7018 210.2231 13.751
## siteSalima 1561.9971 204.8154 7.626
## siteSussundenga 5.2997 206.5678 0.026
## countryMozambique NA NA NA
## Pr(>|t|)
## (Intercept) < 2e-16 ***
## agroecoregionLowland < 2e-16 ***
## cropping_systems.L 5.40e-05 ***
## cropping_systems.Q 0.98299
## cropping_systems.C 0.23366
## drainage_classPoorly drained 1.29e-14 ***
## drainage_classSomewhat poorly drained 0.00722 **
## drainage_classWell drained 0.80858
## rainfall 0.02085 *
## Revised_classClay Loam 0.39799
## Revised_classLoamy Sand 0.55164
## Revised_classSand 0.19958
## Revised_classSandy Loam 0.78597
## siteCabango 0.54704
## siteChipole 0.21312
## siteGorongosa 0.71086
## siteKasungu 0.36116
## siteManica 0.34142
## siteMchinji 7.18e-13 ***
## siteMitundu NA
## siteNtcheu < 2e-16 ***
## siteSalima 3.54e-14 ***
## siteSussundenga 0.97953
## countryMozambique NA
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1488 on 2248 degrees of freedom
## Multiple R-squared: 0.3468, Adjusted R-squared: 0.3407
## F-statistic: 56.84 on 21 and 2248 DF, p-value: < 2.2e-16
mod<-aov(maize_grain~agroecoregion+cropping_systems+drainage_class+rainfall+Revised_class,data = conso)
y<-HSD.test(mod,"drainage_class",group = TRUE)
y
## $statistics
## MSerror Df Mean CV
## 2701640 2257 3019.922 54.42745
##
## $parameters
## test name.t ntr StudentizedRange alpha
## Tukey drainage_class 4 3.635867 0.05
##
## $means
## maize_grain std r Min Max
## Moderately well drained 3128.197 1971.2584 971 273.0000 10923.00
## Poorly drained 2055.385 675.0205 44 1192.0800 3875.78
## Somewhat poorly drained 3028.129 1653.2203 529 225.3206 8773.00
## Well drained 2927.586 1793.8029 726 131.7970 11870.00
## Q25 Q50 Q75
## Moderately well drained 1671.670 2659.704 4095.298
## Poorly drained 1547.532 1923.218 2354.411
## Somewhat poorly drained 1675.254 2856.000 4013.047
## Well drained 1731.861 2583.231 3774.895
##
## $comparison
## NULL
##
## $groups
## maize_grain groups
## Moderately well drained 3128.197 a
## Somewhat poorly drained 3028.129 a
## Well drained 2927.586 a
## Poorly drained 2055.385 b
##
## attr(,"class")
## [1] "group"
Model with interactions
ful<-lm(maize_grain~agroecoregion+cropping_systems+drainage_class+rainfall+Revised_class+agroecoregion*cropping_systems+agroecoregion*drainage_class+agroecoregion*rainfall+agroecoregion*Revised_class+cropping_systems*drainage_class+cropping_systems*rainfall+cropping_systems*Revised_class+drainage_class*rainfall+drainage_class*Revised_class+rainfall*Revised_class+site*cropping_systems+site*drainage_class+site*rainfall+site*Revised_class ,data = conso)
anova(ful)
## Analysis of Variance Table
##
## Response: maize_grain
## Df Sum Sq Mean Sq F value
## agroecoregion 1 976563658 976563658 456.8820
## cropping_systems 3 63071719 21023906 9.8360
## drainage_class 3 153338655 51112885 23.9130
## rainfall 1 297394288 297394288 139.1349
## Revised_class 4 35399292 8849823 4.1404
## site 9 1118270234 124252248 58.1310
## agroecoregion:cropping_systems 3 3271710 1090570 0.5102
## agroecoregion:drainage_class 2 2187082 1093541 0.5116
## agroecoregion:rainfall 1 135348 135348 0.0633
## agroecoregion:Revised_class 4 20432986 5108247 2.3899
## cropping_systems:drainage_class 9 15769099 1752122 0.8197
## cropping_systems:rainfall 3 1223537 407846 0.1908
## cropping_systems:Revised_class 12 9007325 750610 0.3512
## drainage_class:rainfall 3 35500445 11833482 5.5363
## drainage_class:Revised_class 6 15407260 2567877 1.2014
## rainfall:Revised_class 3 25438065 8479355 3.9670
## cropping_systems:site 24 82184580 3424357 1.6021
## drainage_class:site 7 64226225 9175175 4.2926
## rainfall:site 9 78472076 8719120 4.0792
## Revised_class:site 13 32690866 2514682 1.1765
## Residuals 2149 4593385733 2137453
## Pr(>F)
## agroecoregion < 2.2e-16 ***
## cropping_systems 1.924e-06 ***
## drainage_class 3.200e-15 ***
## rainfall < 2.2e-16 ***
## Revised_class 0.0024106 **
## site < 2.2e-16 ***
## agroecoregion:cropping_systems 0.6752560
## agroecoregion:drainage_class 0.5996028
## agroecoregion:rainfall 0.8013442
## agroecoregion:Revised_class 0.0488764 *
## cropping_systems:drainage_class 0.5979442
## cropping_systems:rainfall 0.9027014
## cropping_systems:Revised_class 0.9791374
## drainage_class:rainfall 0.0008750 ***
## drainage_class:Revised_class 0.3024932
## rainfall:Revised_class 0.0078382 **
## cropping_systems:site 0.0322620 *
## drainage_class:site 0.0001001 ***
## rainfall:site 3.282e-05 ***
## Revised_class:site 0.2902545
## Residuals
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
agroecoregioncropping_systems agroecoregiondrainage_class agroecoregionrainfall agroecoregiontextural_class cropping_systemsdrainage_class cropping_systemsrainfall cropping_systemstextural_class drainage_classrainfall drainage_classtextural_class rainfalltextural_class
Gneralized mixed effect model
fm2 <- lm(maize_grain~agroecoregion+cropping_systems+drainage_class+Revised_class+site+rainfall,data =conso)
summary(fm2)
##
## Call:
## lm(formula = maize_grain ~ agroecoregion + cropping_systems +
## drainage_class + Revised_class + site + rainfall, data = conso)
##
## Residuals:
## Min 1Q Median 3Q Max
## -4903.8 -943.6 -144.9 733.9 6836.3
##
## Coefficients: (1 not defined because of singularities)
## Estimate Std. Error t value
## (Intercept) 4886.6609 408.8256 11.953
## agroecoregionLowland -2157.6575 238.2118 -9.058
## cropping_systems.L 272.5631 67.3746 4.045
## cropping_systems.Q 1.3929 65.3313 0.021
## cropping_systems.C 77.2160 64.8169 1.191
## drainage_classPoorly drained -1962.2688 252.8911 -7.759
## drainage_classSomewhat poorly drained -264.3601 98.3056 -2.689
## drainage_classWell drained 27.8028 114.7489 0.242
## Revised_classClay Loam -267.3666 316.2716 -0.845
## Revised_classLoamy Sand -189.3863 318.0836 -0.595
## Revised_classSand -431.6701 336.4233 -1.283
## Revised_classSandy Loam -81.6148 300.5202 -0.272
## siteCabango -124.9340 207.4306 -0.602
## siteChipole -259.2159 208.1397 -1.245
## siteGorongosa -67.8990 183.1426 -0.371
## siteKasungu 188.2829 206.1454 0.913
## siteManica 213.3218 224.1811 0.952
## siteMchinji -1652.5231 228.9433 -7.218
## siteMitundu NA NA NA
## siteNtcheu 2890.7018 210.2231 13.751
## siteSalima 1561.9971 204.8154 7.626
## siteSussundenga 5.2997 206.5678 0.026
## rainfall -0.6454 0.2791 -2.312
## Pr(>|t|)
## (Intercept) < 2e-16 ***
## agroecoregionLowland < 2e-16 ***
## cropping_systems.L 5.40e-05 ***
## cropping_systems.Q 0.98299
## cropping_systems.C 0.23366
## drainage_classPoorly drained 1.29e-14 ***
## drainage_classSomewhat poorly drained 0.00722 **
## drainage_classWell drained 0.80858
## Revised_classClay Loam 0.39799
## Revised_classLoamy Sand 0.55164
## Revised_classSand 0.19958
## Revised_classSandy Loam 0.78597
## siteCabango 0.54704
## siteChipole 0.21312
## siteGorongosa 0.71086
## siteKasungu 0.36116
## siteManica 0.34142
## siteMchinji 7.18e-13 ***
## siteMitundu NA
## siteNtcheu < 2e-16 ***
## siteSalima 3.54e-14 ***
## siteSussundenga 0.97953
## rainfall 0.02085 *
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1488 on 2248 degrees of freedom
## Multiple R-squared: 0.3468, Adjusted R-squared: 0.3407
## F-statistic: 56.84 on 21 and 2248 DF, p-value: < 2.2e-16
##vcov(fm2)
print(fm2)
##
## Call:
## lm(formula = maize_grain ~ agroecoregion + cropping_systems +
## drainage_class + Revised_class + site + rainfall, data = conso)
##
## Coefficients:
## (Intercept)
## 4886.6609
## agroecoregionLowland
## -2157.6575
## cropping_systems.L
## 272.5631
## cropping_systems.Q
## 1.3929
## cropping_systems.C
## 77.2160
## drainage_classPoorly drained
## -1962.2688
## drainage_classSomewhat poorly drained
## -264.3601
## drainage_classWell drained
## 27.8028
## Revised_classClay Loam
## -267.3666
## Revised_classLoamy Sand
## -189.3863
## Revised_classSand
## -431.6701
## Revised_classSandy Loam
## -81.6148
## siteCabango
## -124.9340
## siteChipole
## -259.2159
## siteGorongosa
## -67.8990
## siteKasungu
## 188.2829
## siteManica
## 213.3218
## siteMchinji
## -1652.5231
## siteMitundu
## NA
## siteNtcheu
## 2890.7018
## siteSalima
## 1561.9971
## siteSussundenga
## 5.2997
## rainfall
## -0.6454
Graphics
##############################################################################
#interaction.plot(maize_grain, rainfall, cropping_systems, fixed = TRUE)
theme_set(theme_gray(base_size =9))
ggplot(conso, aes(x = cropping_systems, y = maize_grain, colour = agroecoregion)) +
geom_boxplot(size=1.2,varwidth = TRUE) +
geom_point(data = conso, aes(y = mean(maize_grain))) +
geom_line(data = conso, aes(y =mean(maize_grain), group = agroecoregion))+ylab("Maize Grain yield [kg/ha]") +
xlab("Cropping Systems")+theme(legend.position = c(0.2, 0.85))
############################################################################
theme_set(theme_gray(base_size =8))
ggplot(conso, aes(x = cropping_systems, y = maize_grain, colour = agroecoregion)) + geom_boxplot(size=1.2,varwidth = TRUE) + geom_point(data = conso, aes(y = mean(maize_grain))) +geom_line(data = conso, aes(y =mean(maize_grain), group = agroecoregion)) +ylab("Maize Grain yield [kg/ha]") + xlab("Cropping Systems")+facet_wrap(.~ drainage_class)+theme(legend.position = c(0.85, 0.85))
##############################################################################
theme_set(theme_gray(base_size =9))
ggplot(conso, aes(x = drainage_clas, y = maize_grain, colour = agroecoregion)) +
geom_boxplot(size=1.2,varwidth = TRUE) +
geom_point(data = conso, aes(y = mean(maize_grain))) +
geom_line(data = conso, aes(y =mean(maize_grain), group = agroecoregion))+ylab("Maize Grain yield [kg/ha]") +
xlab("Drainage Class") +theme(legend.position = c(0.85, 0.85))
############################################################################
theme_set(theme_gray(base_size =7))
y<-ggplot(conso, aes(x = drainage_clas, y = maize_grain, colour = agroecoregion)) +
geom_boxplot(size=1.4,varwidth = TRUE) +
geom_point(data = conso, aes(y = mean(maize_grain))) +
geom_line(data = conso, aes(y =mean(maize_grain), group = agroecoregion))+ylab("Maize Grain yield [kg/ha]") +
xlab("Drainage Class")+facet_wrap(.~ country)+theme(legend.position = c(0.85, 0.85))
y+theme_set(theme_gray(base_size =6))+theme(legend.position = c(0.85, 0.85))
######################################################################
######################################################################
###drainage class
theme_set(theme_gray(base_size = 10)) ###This sets the font sizes of anything writt
m<-ggplot(conso, aes(x = drainage_clas, y = maize_grain))+ geom_boxplot(size=1.5,varwidth = TRUE,outlier.colour = "red",outlier.shape = 1, shape=6,fill=c("grey","grey","grey","grey")) + geom_smooth(method=lm)+ ylab("Maize Grain yield [kg/ha]") + xlab("Drainage Class")
m
###### By country##################
theme_set(theme_gray(base_size =6)) ###This sets the font sizes of anything writt
m<-ggplot(conso, aes(x = drainage_clas, y = maize_grain))+ geom_boxplot(size=1.2,varwidth = TRUE,outlier.colour = "red",outlier.shape = 1, shape=6) + geom_smooth(method=lm)+ ylab("Maize Grain yield [kg/ha]") + xlab("Drainage Class")+facet_wrap(.~country)
m
##### wrapping by country and region
theme_set(theme_gray(base_size =6)) ###This sets the font sizes of anything writt
m<-ggplot(conso, aes(x = drainage_clas, y = maize_grain))+ geom_boxplot(size=1.2,varwidth = TRUE,outlier.colour = "red",outlier.shape = 1, shape=6) + geom_smooth(method=lm)+ ylab("Maize Grain yield [kg/ha]") + xlab("Drainage Class")+facet_wrap(country~agroecoregion)
m
############################### country and cropping system
theme_set(theme_gray(base_size =4))
m<-ggplot(conso, aes(x = drainage_clas, y = maize_grain))+ geom_boxplot(size=1,varwidth = TRUE,outlier.colour = "red",outlier.shape = 1, shape=6) + geom_smooth(method=lm)+ ylab("Maize Grain yield [kg/ha]") + xlab("Drainage Class")+facet_wrap(country~cropping_system)
m
########################## agroecology and cropping system
theme_set(theme_gray(base_size =4))
m<-ggplot(conso, aes(x = drainage_clas, y = maize_grain))+ geom_boxplot(size=1,varwidth = TRUE,outlier.colour = "red",outlier.shape = 1, shape=6) + geom_smooth(method=lm)+ ylab("Maize Grain yield [kg/ha]") + xlab("Drainage Class")+facet_wrap(agroecoregion~cropping_system)
m
##################### country by site
theme_set(theme_gray(base_size =4))
m<-ggplot(conso, aes(x = drainage_clas, y = maize_grain))+ geom_boxplot(size=1,varwidth = TRUE,outlier.colour = "red",outlier.shape = 1, shape=6) + geom_smooth(method=lm)+ ylab("Maize Grain yield [kg/ha]") + xlab("Drainage Class")+facet_wrap(country~site)
m
################### site by cropping system
theme_set(theme_gray(base_size =4))
m<-ggplot(conso, aes(x = drainage_clas, y = maize_grain))+ geom_boxplot(size=1,varwidth = TRUE,outlier.colour = "red",outlier.shape = 1, shape=6) + geom_smooth(method=lm)+ ylab("Maize Grain yield [kg/ha]") + xlab("Drainage Class")+facet_wrap(site~cropping_system)
m
Violin plots embeded with box plots
## violin plots of Country maize grain yields
theme_set(theme_gray(base_size =10))
m <- ggplot(data=conso,aes(x=drainage_clas, y=maize_grain))
m + geom_violin(size=1.3,shape=8) + geom_boxplot(width=.3, outlier.size=0,fill=c("red","yellow","grey","green"))+ylab("Maize Grain yield [kg/ha]") + xlab("Drainage Class")
## Warning: Ignoring unknown parameters: shape
########################################################################
theme_set(theme_gray(base_size =10))
m <- ggplot(data=conso,aes(x=Revised_class, y=maize_grain))
m + geom_violin(size=1.1,shape=8) + geom_boxplot(width=.3, outlier.size=0,fill=c("red","yellow","grey","green","black"))+ylab("Maize Grain yield [kg/ha]") + xlab("Textural Class")
## Warning: Ignoring unknown parameters: shape
#########################################################################
### by country
theme_set(theme_gray(base_size =10))
m <- ggplot(data=conso,aes(x=Revised_class, y=maize_grain))
m + geom_violin(size=1,shape=8) + geom_boxplot(width=.2, outlier.size=0,fill=c("red","yellow","grey","green","black","red","yellow","grey","green"))+ylab("Maize Grain yield [kg/ha]") + xlab("Textural Class")+facet_wrap(.~country)
## Warning: Ignoring unknown parameters: shape
### by agro ecology
theme_set(theme_gray(base_size =10))
m <- ggplot(data=conso,aes(x=Revised_class, y=maize_grain))
m + geom_violin(size=1,shape=8) + geom_boxplot(width=.2, outlier.size=0,fill=c("red","yellow","grey","green","black","red","yellow","grey","green","black"))+ylab("Maize Grain yield [kg/ha]") + xlab("Textural Class")+facet_wrap(.~agroecoregion)
## Warning: Ignoring unknown parameters: shape
#### by agroecology and country
theme_set(theme_gray(base_size =10))
m <- ggplot(data=conso,aes(x=Revised_class, y=maize_grain))
m + geom_violin(size=1,shape=8) + geom_boxplot(width=.2, outlier.size=0,fill=c("red","yellow","grey","green","black","red","yellow","grey","green","black","red","yellow","grey","green","black","red","yellow","grey"))+ylab("Maize Grain yield [kg/ha]") + xlab("Textural Class")+facet_wrap(country~agroecoregion)
## Warning: Ignoring unknown parameters: shape
#### country and site
theme_set(theme_gray(base_size =6))
m <- ggplot(data=conso,aes(x=Revised_class, y=maize_grain))
m + geom_violin(size=1,shape=8) + geom_boxplot(width=.2, outlier.size=0)+ylab("Maize Grain yield [kg/ha]") + xlab("Textural Class")+facet_wrap(country~site)
## Warning: Ignoring unknown parameters: shape
rainfall and maize grain yield by drainage classes
#rainfall and maize grain yield by drainage classes
ggplot(conso, aes(x = rainfall , y = maize_grain, color = drainage_clas)) +
geom_point(size=3, aes(shape=drainage_clas)) +
geom_smooth(method=lm, position = "jitter", aes(fill=drainage_clas), level = 0.95)+ylab("Maize grain yield [kg/ha]") +
xlab("Total seasonal rainfall[mm]")+
ylim(0,12000) + xlim(0,1400)+
geom_abline(xintercept = 0, linetype=2, color = "red", size=1)+theme(legend.position = c(0.85, 0.85))
## Warning: Ignoring unknown parameters: xintercept
## Warning: Using shapes for an ordinal variable is not advised
## Warning: Removed 14 rows containing non-finite values (stat_smooth).
## Warning: Removed 14 rows containing missing values (geom_point).
##############################################################################
one to one plots
######################################################################
######################################################################
##grain yield and drainage_scale
theme_set(theme_gray(base_size =12))
ggplot(conso, aes(x =drainage_scale, y =maize_grain ))+ geom_smooth(method=lm, position = "jitter", level = 0.95)+ylab("Maize grain yield [kg/ha]")+ xlab("Drainage Scale")+geom_abline(xintercept = 0, linetype=2, color = "black", size=1)
## Warning: Ignoring unknown parameters: xintercept
#######################################
## faceting by country and agroecology
theme_set(theme_gray(base_size =12))
ggplot(conso, aes(x =drainage_scale, y =maize_grain ))+ geom_smooth(method=lm, position = "jitter", level = 0.95)+ylab("Maize grain yield [kg/ha]")+ xlab("Drainage Scale")+geom_abline(xintercept = 0, linetype=2, color = "black", size=1)+facet_wrap(country~agroecoregion)
## Warning: Ignoring unknown parameters: xintercept
######################################
## facetting by country and cropping systems
theme_set(theme_gray(base_size =12))
ggplot(conso, aes(x =drainage_scale, y =maize_grain ))+ geom_smooth(method=lm, position = "jitter", level = 0.95)+ylab("Maize grain yield [kg/ha]")+ xlab("Drainage Scale")+geom_abline(xintercept = 0, linetype=2, color = "black", size=1)+theme(legend.position =c(0.45,0.85)) +facet_wrap(country~cropping_system)
## Warning: Ignoring unknown parameters: xintercept
############################################################################
############################################################################
##maize grain yield and sand_0_20_cm
theme_set(theme_gray(base_size =12))
ggplot(conso, aes(x =sand_0_20_cm, y =maize_grain )) + geom_smooth(method=lm, position = "jitter", level = 0.95)+ylab("Maize grain yield [kg/ha]")+ xlab("Sand %")+geom_abline(xintercept = 0, linetype=2, color = "black", size=1)
## Warning: Ignoring unknown parameters: xintercept
##################################
theme_set(theme_gray(base_size =12))
ggplot(conso, aes(x =sand_0_20_cm, y =maize_grain )) + geom_smooth(method=lm, position = "jitter", level = 0.95)+ylab("Maize grain yield [kg/ha]")+ xlab("Sand %")+geom_abline(xintercept = 0, linetype=2, color = "black", size=1)+facet_wrap(country~agroecoregion)
## Warning: Ignoring unknown parameters: xintercept
####################################
theme_set(theme_gray(base_size =12))
ggplot(conso, aes(x =sand_0_20_cm, y =maize_grain )) + geom_smooth(method=lm, position = "jitter", level = 0.95)+ylab("Maize grain yield [kg/ha]")+ xlab("Sand %")+geom_abline(xintercept = 0, linetype=2, color = "black", size=1)+facet_wrap(country~cropping_system)
## Warning: Ignoring unknown parameters: xintercept
##########################################################################
##########################################################################
### silt and maize grain yield
theme_set(theme_gray(base_size =12))
ggplot(conso, aes(x =silt_0_20_cm, y =maize_grain )) + geom_smooth(method=lm, position = "jitter", level = 0.95)+ylab("Maize grain yield [kg/ha]")+ xlab("Silt %")+geom_abline(xintercept = 0, linetype=2, color = "black", size=1)
## Warning: Ignoring unknown parameters: xintercept
##########################################
theme_set(theme_gray(base_size =12))
ggplot(conso, aes(x =silt_0_20_cm, y =maize_grain )) + geom_smooth(method=lm, position = "jitter", level = 0.95)+ylab("Maize grain yield [kg/ha]")+ xlab("Silt %")+geom_abline(xintercept = 0, linetype=2, color = "black", size=1)+facet_wrap(country~agroecoregion)
## Warning: Ignoring unknown parameters: xintercept
############################################
theme_set(theme_gray(base_size =12))
ggplot(conso, aes(x =silt_0_20_cm, y =maize_grain )) + geom_smooth(method=lm, position = "jitter", level = 0.95)+ylab("Maize grain yield [kg/ha]")+ xlab("Silt %")+geom_abline(xintercept = 0, linetype=2, color = "black", size=1)+facet_wrap(country~cropping_system)
## Warning: Ignoring unknown parameters: xintercept
#########################################################################
#########################################################################
## clay and grain yield accross countries
theme_set(theme_gray(base_size =12))
ggplot(conso, aes(x =`Clay 0_20_cm`, y =maize_grain )) + geom_smooth(method=lm, position = "jitter", level = 0.95)+ylab("Maize grain yield [kg/ha]")+ xlab("Clay %")+geom_abline(xintercept = 0, linetype=2, color = "black", size=1)
## Warning: Ignoring unknown parameters: xintercept
##############################
theme_set(theme_gray(base_size =12))
ggplot(conso, aes(x =`Clay 0_20_cm`, y =maize_grain )) + geom_smooth(method=lm, position = "jitter", level = 0.95)+ylab("Maize grain yield [kg/ha]")+ xlab("Clay %")+geom_abline(xintercept = 0, linetype=2, color = "black", size=1)+facet_wrap(country~agroecoregion)
## Warning: Ignoring unknown parameters: xintercept
###############################
theme_set(theme_gray(base_size =12))
ggplot(conso, aes(x =`Clay 0_20_cm`, y =maize_grain )) + geom_smooth(method=lm, position = "jitter", level = 0.95)+ylab("Maize grain yield [kg/ha]")+ xlab("Clay %")+geom_abline(xintercept = 0, linetype=2, color = "black", size=1)+facet_wrap(country~cropping_system)
## Warning: Ignoring unknown parameters: xintercept
data1=data.frame(rainfall, maize_grain)
nlsfit(data1, model=1)
## $Model
## [1] "y~a+b*x"
##
## $Parameters
## maize_grain
## coefficient a 4436.31232
## coefficient b -1.75137
## p-value t.test for a 0.00000
## p-value t.test for b 0.00000
## r-squared 0.02080
## adjusted r-squared 0.02030
## AIC 40511.55303
## BIC 40528.73563
nlsplot(data1, model=1)
nlsfit(data1, model=4)
## $Model
## [1] "y ~ (a + b * x + c * I(x^2)) * (x <= -0.5 * b/c) + (a + I(-b^2/(4 * c))) * (x > -0.5 * b/c)"
##
## $Parameters
## maize_grain
## coefficient a 7.718575e+03
## coefficient b -1.012523e+01
## coefficient c 5.185710e-03
## p-value t.test for a 0.000000e+00
## p-value t.test for b 6.683400e-04
## p-value t.test for c 1.119106e-02
## r-squared 3.300000e-02
## adjusted r-squared 3.210000e-02
## AIC 4.048498e+04
## BIC 4.050789e+04
## maximum or minimum value for y 2.776136e+03
## critical point in x 9.762619e+02
nlsplot(data1, model=4)
nlsfit(data1, model=2)
## $Model
## [1] "y~a+b*x+c*x^2"
##
## $Parameters
## maize_grain
## coefficient a 6.506163e+03
## coefficient b -6.809407e+00
## coefficient c 2.985870e-03
## p-value t.test for a 0.000000e+00
## p-value t.test for b 2.000000e-08
## p-value t.test for c 1.918000e-05
## r-squared 2.860000e-02
## adjusted r-squared 2.780000e-02
## AIC 4.049526e+04
## BIC 4.051817e+04
## maximum or minimum value for y 2.623882e+03
## critical point in x 1.140270e+03
nlsplot(data1, model=2)
ggplot(conso, aes(x = rainfall , y = maize_grain, color = agroecoregion)) +
geom_point(size=3, aes(shape=agroecoregion)) +
geom_smooth(method=lm, position = "jitter", aes(fill=agroecoregion), level = 0.95)+ylab("Maize grain yield [kg/ha]") +
xlab("Total seasonal rainfall[mm]")+
geom_abline(xintercept = 0, linetype=2, color = "red", size=1)+theme(legend.position = c(0.85, 0.85))+facet_wrap(.~drainage_class)
## Warning: Ignoring unknown parameters: xintercept
Multivariate Gaussan Distribution
set <- data.frame(rainfall, maize_grain)
result <- mvn(set, mvnTest = "hz", multivariatePlot = "persp")
result <- mvn(set, mvnTest = "hz", multivariatePlot = "contour")
result <- mvn(set,multivariatePlot = "persp")
bvn<-gibbs(10000,0.98) par(mfrow=c(3,2)) plot(bvn,col=1:10000,main=“bivariate normal distribution”,xlab=“X”,ylab=“Y”) plot(bvn,type=“l”,main=“bivariate normal distribution”,xlab=“X”,ylab=“Y”)
hist(bvn[,1],40,main=“bivariate normal distribution”,xlab=“X”,ylab=“”) hist(bvn[,2],40,main=“bivariate normal distribution”,xlab=“Y”,ylab=“”) par(mfrow=c(1,1))`
Maize grain yied and Rainfall
###
theme_set(theme_gray(base_size =12))
ggplot(conso, aes(x =rainfall, y =maize_grain))+ geom_smooth()+ylab("Maize grain yield [kg/ha]")+ xlab("Total Seasonal Rainfall [mm]")+xlim(400,1600)
## `geom_smooth()` using method = 'gam' and formula 'y ~ s(x, bs = "cs")'
## Warning: Removed 4 rows containing non-finite values (stat_smooth).
#######Maize grain yied and Rainfall by cropping system
theme_set(theme_gray(base_size =12))
ggplot(conso, aes(x =rainfall, y =maize_grain,color=cropping_systems))+ geom_smooth()+ylab("Maize grain yield [kg/ha]")+ xlab("Total Seasonal Rainfall [mm]")+xlim(400,1600)+theme(legend.position = c(0.85, 0.85))
## `geom_smooth()` using method = 'loess' and formula 'y ~ x'
## Warning: Removed 4 rows containing non-finite values (stat_smooth).
#####
theme_set(theme_gray(base_size =12))
ggplot(conso, aes(x =rainfall, y =maize_grain,color=drainage_clas))+ geom_smooth()+ylab("Maize grain yield [kg/ha]")+ xlab("Total Seasonal Rainfall [mm]")+xlim(400,1600)+theme(legend.position = c(0.70, 0.85))
## `geom_smooth()` using method = 'loess' and formula 'y ~ x'
## Warning: Removed 4 rows containing non-finite values (stat_smooth).
## Warning in simpleLoess(y, x, w, span, degree = degree, parametric =
## parametric, : pseudoinverse used at 699.62
## Warning in simpleLoess(y, x, w, span, degree = degree, parametric =
## parametric, : neighborhood radius 159.38
## Warning in simpleLoess(y, x, w, span, degree = degree, parametric =
## parametric, : reciprocal condition number 0
## Warning in simpleLoess(y, x, w, span, degree = degree, parametric =
## parametric, : There are other near singularities as well. 77498
## Warning in predLoess(object$y, object$x, newx = if
## (is.null(newdata)) object$x else if (is.data.frame(newdata))
## as.matrix(model.frame(delete.response(terms(object)), : pseudoinverse used
## at 699.62
## Warning in predLoess(object$y, object$x, newx = if
## (is.null(newdata)) object$x else if (is.data.frame(newdata))
## as.matrix(model.frame(delete.response(terms(object)), : neighborhood radius
## 159.38
## Warning in predLoess(object$y, object$x, newx = if
## (is.null(newdata)) object$x else if (is.data.frame(newdata))
## as.matrix(model.frame(delete.response(terms(object)), : reciprocal
## condition number 0
## Warning in predLoess(object$y, object$x, newx = if
## (is.null(newdata)) object$x else if (is.data.frame(newdata))
## as.matrix(model.frame(delete.response(terms(object)), : There are other
## near singularities as well. 77498
ggplot(conso, aes(x =season_since,y = maize_grain, color = cropping_system))+ geom_smooth(method=lm, position = "jitter",aes(fill=cropping_system), level = 0.95)+ ylim(0,10000) + xlim(0,6)+ylab("Grain yield [kg/ha]") +
xlab("Season")+theme(legend.position = c(0.2,0.85))+facet_wrap(.~agroecoregion)
## Warning: Removed 7 rows containing non-finite values (stat_smooth).
## Warning: Removed 3 rows containing missing values (geom_smooth).
ggplot(conso, aes(season_since, maize_grain, color=cropping_system, shape=cropping_system)) + geom_point(data = conso, size=1.5, aes(color=cropping_system, shape=cropping_system), position = "jitter") + geom_smooth(method="lm", level = 0.85,)+ ylim(0,7000) +
xlim(0,6)+ylab("Maize grain yield [kg/ha]") + xlab("Season Since")+theme(legend.position = c(0.5,0.85))+facet_wrap(.~agroecoregion)
## Warning: Removed 88 rows containing non-finite values (stat_smooth).
## Warning: Removed 291 rows containing missing values (geom_point).