MSF. Ademir Pérez
descarga los datos del ejemplo
library(dplyr)
library(readr)
ejemplo_regresion <- read_csv("E:/ejemplo_regresion.csv")
head(ejemplo_regresion,n = 6)## # A tibble: 6 x 3
## X1 X2 Y
## <dbl> <dbl> <dbl>
## 1 3.92 7298 0.75
## 2 3.61 6855 0.71
## 3 3.32 6636 0.66
## 4 3.07 6506 0.61
## 5 3.06 6450 0.7
## 6 3.11 6402 0.72
library(stargazer)
options(scipen = 9999)
modelo_lineal<-lm(formula = Y~X1+X2,data = ejemplo_regresion)
summary(modelo_lineal)##
## Call:
## lm(formula = Y ~ X1 + X2, data = ejemplo_regresion)
##
## Residuals:
## Min 1Q Median 3Q Max
## -0.085090 -0.039102 -0.003341 0.030236 0.105692
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 1.56449677 0.07939598 19.705 0.00000000000000182 ***
## X1 0.23719747 0.05555937 4.269 0.000313 ***
## X2 -0.00024908 0.00003205 -7.772 0.00000009508790794 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.0533 on 22 degrees of freedom
## Multiple R-squared: 0.8653, Adjusted R-squared: 0.8531
## F-statistic: 70.66 on 2 and 22 DF, p-value: 0.000000000265
stargazer(modelo_lineal,title = "Ejemplo de Regresión Multiple",type = "text",digits = 8)##
## Ejemplo de Regresión Multiple
## ===============================================
## Dependent variable:
## ---------------------------
## Y
## -----------------------------------------------
## X1 0.23719750***
## (0.05555937)
##
## X2 -0.00024908***
## (0.00003205)
##
## Constant 1.56449700***
## (0.07939598)
##
## -----------------------------------------------
## Observations 25
## R2 0.86529610
## Adjusted R2 0.85305030
## Residual Std. Error 0.05330222 (df = 22)
## F Statistic 70.66057000*** (df = 2; 22)
## ===============================================
## Note: *p<0.1; **p<0.05; ***p<0.01
Vector de Coeficientes estimados \(\widehat{\beta}\):
options(scipen = 999)
modelo_lineal$coefficients## (Intercept) X1 X2
## 1.5644967711 0.2371974748 -0.0002490793
Matriz de Varianza - Covarianza de los parametros \(V[\beta]\)
var_covar<-vcov(modelo_lineal)
print(var_covar)## (Intercept) X1 X2
## (Intercept) 0.0063037218732 0.000240996434 -0.000000982806321
## X1 0.0002409964344 0.003086843196 -0.000001675537651
## X2 -0.0000009828063 -0.000001675538 0.000000001027106
confint(object = modelo_lineal,level = .95)## 2.5 % 97.5 %
## (Intercept) 1.3998395835 1.7291539588
## X1 0.1219744012 0.3524205485
## X2 -0.0003155438 -0.0001826148
plot(modelo_lineal$fitted.values,main = "Valores Ajustados",ylab = "Y",xlab = "casos")modelo_lineal$fitted.values %>% as.matrix()## [,1]
## 1 0.6765303
## 2 0.7133412
## 3 0.6991023
## 4 0.6721832
## 5 0.6837597
## 6 0.7075753
## 7 0.7397638
## 8 0.7585979
## 9 0.7943078
## 10 0.7935605
## 11 0.7984347
## 12 0.8272778
## 13 0.8021665
## 14 0.7992462
## 15 0.7544349
## 16 0.7339716
## 17 0.7048866
## 18 0.6930338
## 19 0.6350898
## 20 0.6127185
## 21 0.5701215
## 22 0.4796371
## 23 0.4374811
## 24 0.3953981
## 25 0.3773799
plot(modelo_lineal$residuals,main = "Residuos",ylab = "Residuos",xlab = "casos")modelo_lineal$residuals %>% matrix()## [,1]
## [1,] 0.073469743
## [2,] -0.003341163
## [3,] -0.039102258
## [4,] -0.062183196
## [5,] 0.016240338
## [6,] 0.012424659
## [7,] 0.030236216
## [8,] -0.018597878
## [9,] 0.105692240
## [10,] 0.026439478
## [11,] -0.048434733
## [12,] -0.057277771
## [13,] -0.022166535
## [14,] 0.040753758
## [15,] 0.035565142
## [16,] -0.033971640
## [17,] -0.024886579
## [18,] 0.026966239
## [19,] -0.085089833
## [20,] 0.017281530
## [21,] -0.010121525
## [22,] -0.069637086
## [23,] 0.072518915
## [24,] 0.074601871
## [25,] -0.057379932
1 Reproduce todas las salidas de la presentación, con los mismos datos proporcionados al inicio, para tu comodidad se vuelve a incluir el link aquí: descarga los datos del ejemplo
2 Reproduce todas las salidas de la presentación con los datos del siguiente ejercicio: