Note that this type of data is called panel, repeated measures, or longitudinal data.
Average accuracy for each PGY:
## Group.1 x
## 1 1 0.9262610
## 2 2 0.8886709
## 3 3 0.8430727
## 4 4 0.8304636
Accuracy vs PGY; OLS without intercept:
ols1 <-lm(Accuracy. ~ PGY.level - 1, data=drh)
summary(ols1)
##
## Call:
## lm(formula = Accuracy. ~ PGY.level - 1, data = drh)
##
## Residuals:
## Min 1Q Median 3Q Max
## -0.6131 -0.1460 0.1412 0.4219 0.7144
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## PGY.level 0.285621 0.007674 37.22 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.3956 on 354 degrees of freedom
## Multiple R-squared: 0.7965, Adjusted R-squared: 0.7959
## F-statistic: 1385 on 1 and 354 DF, p-value: < 2.2e-16
Accuracy vs PGY; OLS with intercept:
ols2 <-lm(Accuracy. ~ PGY.level, data=drh)
summary(ols2)
##
## Call:
## lm(formula = Accuracy. ~ PGY.level, data = drh)
##
## Residuals:
## Min 1Q Median 3Q Max
## -0.292700 -0.034981 0.009571 0.046318 0.177888
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.955364 0.008900 107.34 <2e-16 ***
## PGY.level -0.033313 0.003253 -10.24 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.0683 on 353 degrees of freedom
## Multiple R-squared: 0.229, Adjusted R-squared: 0.2268
## F-statistic: 104.9 on 1 and 353 DF, p-value: < 2.2e-16
The procedures used here on March 20, 2019 were guided by: https://www.princeton.edu/~otorres/Panel101R.pdf.
Accuracy vs PGY with individual fixed effect:
fixed2 <-lm(Accuracy. ~ PGY.level + factor(Study.No) - 1, data=drh)
summary(fixed2)
##
## Call:
## lm(formula = Accuracy. ~ PGY.level + factor(Study.No) - 1, data = drh)
##
## Residuals:
## Min 1Q Median 3Q Max
## -0.17850 -0.02459 0.00000 0.02604 0.16348
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## PGY.level -0.031765 0.003631 -8.747 6.27e-16 ***
## factor(Study.No)1 0.979597 0.044709 21.910 < 2e-16 ***
## factor(Study.No)2 0.975778 0.044709 21.825 < 2e-16 ***
## factor(Study.No)3 0.934820 0.044709 20.909 < 2e-16 ***
## factor(Study.No)4 0.874404 0.044709 19.557 < 2e-16 ***
## factor(Study.No)5 0.971809 0.044709 21.736 < 2e-16 ***
## factor(Study.No)6 0.865297 0.044709 19.354 < 2e-16 ***
## factor(Study.No)7 1.008757 0.044709 22.562 < 2e-16 ***
## factor(Study.No)8 0.931007 0.044709 20.823 < 2e-16 ***
## factor(Study.No)9 0.943599 0.044709 21.105 < 2e-16 ***
## factor(Study.No)10 0.817549 0.044709 18.286 < 2e-16 ***
## factor(Study.No)11 0.970498 0.044709 21.707 < 2e-16 ***
## factor(Study.No)12 0.944320 0.031640 29.845 < 2e-16 ***
## factor(Study.No)13 0.977299 0.031640 30.888 < 2e-16 ***
## factor(Study.No)14 0.960143 0.031640 30.345 < 2e-16 ***
## factor(Study.No)15 0.981843 0.031640 31.031 < 2e-16 ***
## factor(Study.No)16 0.994779 0.031640 31.440 < 2e-16 ***
## factor(Study.No)17 0.987659 0.031640 31.215 < 2e-16 ***
## factor(Study.No)18 0.999508 0.031640 31.590 < 2e-16 ***
## factor(Study.No)19 0.862595 0.031640 27.262 < 2e-16 ***
## factor(Study.No)20 0.949843 0.031640 30.020 < 2e-16 ***
## factor(Study.No)21 0.951040 0.031640 30.058 < 2e-16 ***
## factor(Study.No)22 0.994018 0.031640 31.416 < 2e-16 ***
## factor(Study.No)23 1.003543 0.031640 31.717 < 2e-16 ***
## factor(Study.No)24 0.955257 0.035332 27.036 < 2e-16 ***
## factor(Study.No)25 0.917176 0.036655 25.022 < 2e-16 ***
## factor(Study.No)26 0.987149 0.036655 26.931 < 2e-16 ***
## factor(Study.No)27 0.932729 0.036655 25.446 < 2e-16 ***
## factor(Study.No)28 0.858707 0.036655 23.427 < 2e-16 ***
## factor(Study.No)29 0.859442 0.036655 23.447 < 2e-16 ***
## factor(Study.No)30 0.995020 0.036655 27.145 < 2e-16 ***
## factor(Study.No)31 1.017516 0.036655 27.759 < 2e-16 ***
## factor(Study.No)32 0.915948 0.036655 24.988 < 2e-16 ***
## factor(Study.No)33 0.974962 0.036655 26.598 < 2e-16 ***
## factor(Study.No)34 1.019053 0.036655 27.801 < 2e-16 ***
## factor(Study.No)35 0.991256 0.036655 27.043 < 2e-16 ***
## factor(Study.No)36 0.915634 0.036655 24.980 < 2e-16 ***
## factor(Study.No)37 1.003495 0.036655 27.377 < 2e-16 ***
## factor(Study.No)38 0.990974 0.036655 27.035 < 2e-16 ***
## factor(Study.No)39 1.004534 0.036655 27.405 < 2e-16 ***
## factor(Study.No)40 1.021547 0.036655 27.869 < 2e-16 ***
## factor(Study.No)41 1.050386 0.036655 28.656 < 2e-16 ***
## factor(Study.No)42 0.953162 0.031640 30.125 < 2e-16 ***
## factor(Study.No)43 0.924465 0.031640 29.218 < 2e-16 ***
## factor(Study.No)44 0.976293 0.031640 30.856 < 2e-16 ***
## factor(Study.No)45 0.918311 0.031640 29.023 < 2e-16 ***
## factor(Study.No)46 0.980018 0.031640 30.974 < 2e-16 ***
## factor(Study.No)47 0.965469 0.031640 30.514 < 2e-16 ***
## factor(Study.No)48 1.002507 0.031640 31.684 < 2e-16 ***
## factor(Study.No)49 0.923691 0.031640 29.193 < 2e-16 ***
## factor(Study.No)50 0.942006 0.031640 29.772 < 2e-16 ***
## factor(Study.No)51 0.994619 0.031640 31.435 < 2e-16 ***
## factor(Study.No)52 0.945342 0.031640 29.878 < 2e-16 ***
## factor(Study.No)53 1.008687 0.031640 31.880 < 2e-16 ***
## factor(Study.No)54 0.975300 0.031640 30.824 < 2e-16 ***
## factor(Study.No)55 0.922575 0.031640 29.158 < 2e-16 ***
## factor(Study.No)56 0.934751 0.062336 14.995 < 2e-16 ***
## factor(Study.No)57 0.851197 0.062336 13.655 < 2e-16 ***
## factor(Study.No)58 0.888963 0.062336 14.261 < 2e-16 ***
## factor(Study.No)59 0.912773 0.062336 14.643 < 2e-16 ***
## factor(Study.No)60 0.822711 0.062336 13.198 < 2e-16 ***
## factor(Study.No)61 0.656470 0.062336 10.531 < 2e-16 ***
## factor(Study.No)62 0.907547 0.062336 14.559 < 2e-16 ***
## factor(Study.No)63 0.870648 0.062336 13.967 < 2e-16 ***
## factor(Study.No)64 1.012773 0.062336 16.247 < 2e-16 ***
## factor(Study.No)65 0.993725 0.062336 15.941 < 2e-16 ***
## factor(Study.No)66 1.127059 0.062336 18.080 < 2e-16 ***
## factor(Study.No)67 0.854331 0.062336 13.705 < 2e-16 ***
## factor(Study.No)68 0.927059 0.062336 14.872 < 2e-16 ***
## factor(Study.No)69 0.903529 0.062336 14.494 < 2e-16 ***
## factor(Study.No)70 0.862353 0.062336 13.834 < 2e-16 ***
## factor(Study.No)71 0.979598 0.031640 30.960 < 2e-16 ***
## factor(Study.No)72 1.012805 0.031640 32.010 < 2e-16 ***
## factor(Study.No)73 0.954081 0.031640 30.154 < 2e-16 ***
## factor(Study.No)74 0.956311 0.031640 30.224 < 2e-16 ***
## factor(Study.No)75 0.929836 0.031640 29.388 < 2e-16 ***
## factor(Study.No)76 0.963468 0.031640 30.451 < 2e-16 ***
## factor(Study.No)77 1.014856 0.031640 32.075 < 2e-16 ***
## factor(Study.No)78 0.966582 0.031640 30.549 < 2e-16 ***
## factor(Study.No)79 0.954435 0.031640 30.165 < 2e-16 ***
## factor(Study.No)80 0.930560 0.043210 21.536 < 2e-16 ***
## factor(Study.No)81 0.781765 0.060729 12.873 < 2e-16 ***
## factor(Study.No)82 0.975161 0.060729 16.058 < 2e-16 ***
## factor(Study.No)83 0.951282 0.031640 30.065 < 2e-16 ***
## factor(Study.No)84 0.895109 0.031640 28.290 < 2e-16 ***
## factor(Study.No)85 0.850515 0.060729 14.005 < 2e-16 ***
## factor(Study.No)86 0.902732 0.060729 14.865 < 2e-16 ***
## factor(Study.No)87 0.940856 0.060729 15.493 < 2e-16 ***
## factor(Study.No)88 0.984890 0.060729 16.218 < 2e-16 ***
## factor(Study.No)89 0.986749 0.060729 16.248 < 2e-16 ***
## factor(Study.No)90 0.986567 0.060729 16.245 < 2e-16 ***
## factor(Study.No)91 0.927991 0.060729 15.281 < 2e-16 ***
## factor(Study.No)92 0.965098 0.060729 15.892 < 2e-16 ***
## factor(Study.No)93 0.965775 0.060729 15.903 < 2e-16 ***
## factor(Study.No)94 0.937868 0.060729 15.444 < 2e-16 ***
## factor(Study.No)95 0.919824 0.060729 15.146 < 2e-16 ***
## factor(Study.No)96 1.003694 0.060729 16.528 < 2e-16 ***
## factor(Study.No)97 0.935719 0.060729 15.408 < 2e-16 ***
## factor(Study.No)98 0.985611 0.060729 16.230 < 2e-16 ***
## factor(Study.No)99 0.994879 0.060729 16.382 < 2e-16 ***
## factor(Study.No)100 0.970361 0.060729 15.979 < 2e-16 ***
## factor(Study.No)101 0.968234 0.043210 22.408 < 2e-16 ***
## factor(Study.No)102 0.982069 0.043210 22.728 < 2e-16 ***
## factor(Study.No)103 0.932593 0.043210 21.583 < 2e-16 ***
## factor(Study.No)104 0.913758 0.043210 21.147 < 2e-16 ***
## factor(Study.No)105 0.970264 0.043210 22.455 < 2e-16 ***
## factor(Study.No)106 0.981959 0.043210 22.726 < 2e-16 ***
## factor(Study.No)107 0.890596 0.043210 20.611 < 2e-16 ***
## factor(Study.No)108 1.004860 0.043210 23.256 < 2e-16 ***
## factor(Study.No)109 0.922381 0.043210 21.347 < 2e-16 ***
## factor(Study.No)110 0.963564 0.043210 22.300 < 2e-16 ***
## factor(Study.No)111 0.901375 0.043210 20.861 < 2e-16 ***
## factor(Study.No)112 0.958891 0.043210 22.192 < 2e-16 ***
## factor(Study.No)113 0.938104 0.043210 21.711 < 2e-16 ***
## factor(Study.No)114 0.940350 0.035745 26.307 < 2e-16 ***
## factor(Study.No)115 0.940479 0.035745 26.311 < 2e-16 ***
## factor(Study.No)116 0.934124 0.035745 26.133 < 2e-16 ***
## factor(Study.No)117 0.917253 0.043816 20.934 < 2e-16 ***
## factor(Study.No)118 1.006004 0.060729 16.566 < 2e-16 ***
## factor(Study.No)119 0.975109 0.043816 22.255 < 2e-16 ***
## factor(Study.No)120 0.970014 0.035745 27.137 < 2e-16 ***
## factor(Study.No)121 0.961191 0.035745 26.891 < 2e-16 ***
## factor(Study.No)122 0.945694 0.035745 26.457 < 2e-16 ***
## factor(Study.No)123 0.864994 0.035745 24.199 < 2e-16 ***
## factor(Study.No)124 0.933818 0.035745 26.125 < 2e-16 ***
## factor(Study.No)125 0.913158 0.035745 25.547 < 2e-16 ***
## factor(Study.No)126 0.954559 0.035745 26.705 < 2e-16 ***
## factor(Study.No)127 0.936451 0.035745 26.198 < 2e-16 ***
## factor(Study.No)128 0.893006 0.035745 24.983 < 2e-16 ***
## factor(Study.No)129 0.898595 0.035745 25.139 < 2e-16 ***
## factor(Study.No)130 0.977348 0.035745 27.343 < 2e-16 ***
## factor(Study.No)131 0.968730 0.036655 26.428 < 2e-16 ***
## factor(Study.No)132 0.862032 0.036655 23.517 < 2e-16 ***
## factor(Study.No)133 0.974313 0.036655 26.580 < 2e-16 ***
## factor(Study.No)134 0.789681 0.044709 17.662 < 2e-16 ***
## factor(Study.No)135 0.976863 0.044709 21.849 < 2e-16 ***
## factor(Study.No)136 1.036694 0.044709 23.187 < 2e-16 ***
## factor(Study.No)137 0.935585 0.031640 29.569 < 2e-16 ***
## factor(Study.No)138 0.931558 0.031640 29.442 < 2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.06062 on 216 degrees of freedom
## Multiple R-squared: 0.9971, Adjusted R-squared: 0.9952
## F-statistic: 531.2 on 139 and 216 DF, p-value: < 2.2e-16
Including year as panel marker:
# fixed3 <- plm(Accuracy. ~ PGY.level, data=drh, index=c("Study.No", "PGY.level"), model="within")
# summary(fixed3)
Without year as panel marker:
fixed4 <- plm(Accuracy. ~ PGY.level, data=drh, index=c("Study.No"), model="within")
summary(fixed4)
## Oneway (individual) effect Within Model
##
## Call:
## plm(formula = Accuracy. ~ PGY.level, data = drh, model = "within",
## index = c("Study.No"))
##
## Unbalanced Panel: n = 138, T = 1-4, N = 355
##
## Residuals:
## Min. 1st Qu. Median 3rd Qu. Max.
## -0.178502 -0.024591 0.000000 0.026042 0.163475
##
## Coefficients:
## Estimate Std. Error t-value Pr(>|t|)
## PGY.level -0.0317647 0.0036314 -8.7472 6.268e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Total Sum of Squares: 1.0749
## Residual Sum of Squares: 0.79375
## R-Squared: 0.26157
## Adj. R-Squared: -0.2102
## F-statistic: 76.5141 on 1 and 216 DF, p-value: 6.2678e-16
(It’s unclear if this is random slopes or random intercepts)
random1 <- plm(Accuracy. ~ PGY.level, data=drh, index=c("Study.No"), model="within")
summary(random1)
## Oneway (individual) effect Within Model
##
## Call:
## plm(formula = Accuracy. ~ PGY.level, data = drh, model = "within",
## index = c("Study.No"))
##
## Unbalanced Panel: n = 138, T = 1-4, N = 355
##
## Residuals:
## Min. 1st Qu. Median 3rd Qu. Max.
## -0.178502 -0.024591 0.000000 0.026042 0.163475
##
## Coefficients:
## Estimate Std. Error t-value Pr(>|t|)
## PGY.level -0.0317647 0.0036314 -8.7472 6.268e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Total Sum of Squares: 1.0749
## Residual Sum of Squares: 0.79375
## R-Squared: 0.26157
## Adj. R-Squared: -0.2102
## F-statistic: 76.5141 on 1 and 216 DF, p-value: 6.2678e-16
random2 <- lmer(Accuracy. ~ 1 + PGY.level + (1 | Study.No), data=drh)
summary(random2)
## Linear mixed model fit by REML ['lmerMod']
## Formula: Accuracy. ~ 1 + PGY.level + (1 | Study.No)
## Data: drh
##
## REML criterion at convergence: -888.6
##
## Scaled residuals:
## Min 1Q Median 3Q Max
## -3.8597 -0.4664 0.0637 0.6021 2.4075
##
## Random effects:
## Groups Name Variance Std.Dev.
## Study.No (Intercept) 0.0008144 0.02854
## Residual 0.0038832 0.06231
## Number of obs: 355, groups: Study.No, 138
##
## Fixed effects:
## Estimate Std. Error t value
## (Intercept) 0.954187 0.008836 107.99
## PGY.level -0.033454 0.003118 -10.73
##
## Correlation of Fixed Effects:
## (Intr)
## PGY.level -0.880
icc(random2)
##
## Intraclass Correlation Coefficient for Linear mixed model
##
## Family : gaussian (identity)
## Formula: Accuracy. ~ 1 + PGY.level + (1 | Study.No)
##
## ICC (Study.No): 0.1734
tab_model(random2, title="Random intercepts with lme4 package, nicer table")
## Computing p-values via Wald-statistics approximation (treating t as Wald z).
| Accuracy | |||
|---|---|---|---|
| Predictors | Estimates | CI | p |
| (Intercept) | 0.95 | 0.94 – 0.97 | <0.001 |
| PGY level | -0.03 | -0.04 – -0.03 | <0.001 |
| Random Effects | |||
| σ2 | 0.00 | ||
| τ00 Study.No | 0.00 | ||
| ICC Study.No | 0.17 | ||
| Observations | 355 | ||
| Marginal R2 / Conditional R2 | 0.229 / 0.362 | ||
AccRandom3 <- lmer(Accuracy. ~ 1 + PGY.level + (1 + PGY.level | Study.No), data=drh)
## singular fit
summary(AccRandom3)
## Linear mixed model fit by REML ['lmerMod']
## Formula: Accuracy. ~ 1 + PGY.level + (1 + PGY.level | Study.No)
## Data: drh
##
## REML criterion at convergence: -903.7
##
## Scaled residuals:
## Min 1Q Median 3Q Max
## -4.1435 -0.4775 0.1319 0.6255 2.4060
##
## Random effects:
## Groups Name Variance Std.Dev. Corr
## Study.No (Intercept) 0.0001218 0.01104
## PGY.level 0.0002726 0.01651 -1.00
## Residual 0.0034623 0.05884
## Number of obs: 355, groups: Study.No, 138
##
## Fixed effects:
## Estimate Std. Error t value
## (Intercept) 0.956272 0.007935 120.52
## PGY.level -0.034562 0.003333 -10.37
##
## Correlation of Fixed Effects:
## (Intr)
## PGY.level -0.865
## convergence code: 0
## singular fit
icc(AccRandom3)
## Caution! ICC for random-slope-intercept models usually not meaningful. Use `adjusted = TRUE` to use the mean random effect variance to calculate the ICC. See 'Note' in `?icc`.
##
## Intraclass Correlation Coefficient for Linear mixed model
##
## Family : gaussian (identity)
## Formula: Accuracy. ~ 1 + PGY.level + (1 + PGY.level | Study.No)
##
## ICC (Study.No): 0.0340
tab_model(AccRandom3, title="Random slopes with lme4 package, nicer table")
## Computing p-values via Wald-statistics approximation (treating t as Wald z).
## Caution! ICC for random-slope-intercept models usually not meaningful. Use `adjusted = TRUE` to use the mean random effect variance to calculate the ICC. See 'Note' in `?icc`.
| Accuracy | |||
|---|---|---|---|
| Predictors | Estimates | CI | p |
| (Intercept) | 0.96 | 0.94 – 0.97 | <0.001 |
| PGY level | -0.03 | -0.04 – -0.03 | <0.001 |
| Random Effects | |||
| σ2 | 0.00 | ||
| τ00 Study.No | 0.00 | ||
| τ11 Study.No.PGY.level | 0.00 | ||
| ρ01 Study.No | -1.00 | ||
| ICC Study.No | 0.03 | ||
| Observations | 355 | ||
Average TLS rate for each PGY:
## Group.1 x
## 1 1 0.05584216
## 2 2 0.08635816
## 3 3 0.12799056
## 4 4 0.14164259
TLS rate vs PGY; OLS without intercept:
ols1 <-lm(TLS_rate ~ PGY.level - 1, data=drh)
summary(ols1)
##
## Call:
## lm(formula = TLS_rate ~ PGY.level - 1, data = drh)
##
## Residuals:
## Min 1Q Median 3Q Max
## -0.157306 -0.032457 -0.001784 0.036379 0.272265
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## PGY.level 0.03933 0.00122 32.24 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.06287 on 354 degrees of freedom
## Multiple R-squared: 0.746, Adjusted R-squared: 0.7452
## F-statistic: 1039 on 1 and 354 DF, p-value: < 2.2e-16
TLS rate vs PGY; OLS with intercept:
ols2 <-lm(TLS_rate ~ PGY.level, data=drh)
summary(ols2)
##
## Call:
## lm(formula = TLS_rate ~ PGY.level, data = drh)
##
## Residuals:
## Min 1Q Median 3Q Max
## -0.14785 -0.03673 -0.01087 0.02814 0.27231
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.028181 0.008067 3.494 0.000537 ***
## PGY.level 0.029919 0.002949 10.147 < 2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.0619 on 353 degrees of freedom
## Multiple R-squared: 0.2258, Adjusted R-squared: 0.2236
## F-statistic: 103 on 1 and 353 DF, p-value: < 2.2e-16
The procedures used here on March 20, 2019 were guided by: https://www.princeton.edu/~otorres/Panel101R.pdf.
TLS rate vs PGY with individual fixed effect:
fixed2 <-lm(TLS_rate ~ PGY.level + factor(Study.No) - 1, data=drh)
summary(fixed2)
##
## Call:
## lm(formula = TLS_rate ~ PGY.level + factor(Study.No) - 1, data = drh)
##
## Residuals:
## Min 1Q Median 3Q Max
## -0.14821 -0.02300 0.00000 0.02003 0.14075
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## PGY.level 0.0277621 0.0032366 8.578 1.89e-15 ***
## factor(Study.No)1 0.0344115 0.0398488 0.864 0.388792
## factor(Study.No)2 -0.0061940 0.0398488 -0.155 0.876622
## factor(Study.No)3 0.0791892 0.0398488 1.987 0.048159 *
## factor(Study.No)4 0.1306765 0.0398488 3.279 0.001213 **
## factor(Study.No)5 0.0378144 0.0398488 0.949 0.343708
## factor(Study.No)6 0.1053280 0.0398488 2.643 0.008815 **
## factor(Study.No)7 -0.0330993 0.0398488 -0.831 0.407104
## factor(Study.No)8 0.0679642 0.0398488 1.706 0.089529 .
## factor(Study.No)9 0.0450757 0.0398488 1.131 0.259239
## factor(Study.No)10 0.1570105 0.0398488 3.940 0.000110 ***
## factor(Study.No)11 0.0207210 0.0398488 0.520 0.603603
## factor(Study.No)12 0.0263683 0.0282006 0.935 0.350819
## factor(Study.No)13 0.0109752 0.0282006 0.389 0.697523
## factor(Study.No)14 0.0125342 0.0282006 0.444 0.657152
## factor(Study.No)15 0.0077900 0.0282006 0.276 0.782632
## factor(Study.No)16 -0.0301946 0.0282006 -1.071 0.285496
## factor(Study.No)17 -0.0003719 0.0282006 -0.013 0.989491
## factor(Study.No)18 -0.0081873 0.0282006 -0.290 0.771847
## factor(Study.No)19 0.1287876 0.0282006 4.567 8.32e-06 ***
## factor(Study.No)20 0.0244195 0.0282006 0.866 0.387495
## factor(Study.No)21 0.0129495 0.0282006 0.459 0.646558
## factor(Study.No)22 0.0003676 0.0282006 0.013 0.989612
## factor(Study.No)23 0.0007812 0.0282006 0.028 0.977926
## factor(Study.No)24 0.0292169 0.0314911 0.928 0.354557
## factor(Study.No)25 0.0670580 0.0326703 2.053 0.041320 *
## factor(Study.No)26 0.0065934 0.0326703 0.202 0.840250
## factor(Study.No)27 0.0535380 0.0326703 1.639 0.102724
## factor(Study.No)28 0.1208173 0.0326703 3.698 0.000276 ***
## factor(Study.No)29 0.1173769 0.0326703 3.593 0.000405 ***
## factor(Study.No)30 0.0084668 0.0326703 0.259 0.795759
## factor(Study.No)31 -0.0277975 0.0326703 -0.851 0.395795
## factor(Study.No)32 0.0608482 0.0326703 1.862 0.063891 .
## factor(Study.No)33 0.0076362 0.0326703 0.234 0.815413
## factor(Study.No)34 -0.0220138 0.0326703 -0.674 0.501148
## factor(Study.No)35 0.0066675 0.0326703 0.204 0.838479
## factor(Study.No)36 0.0738073 0.0326703 2.259 0.024872 *
## factor(Study.No)37 -0.0131680 0.0326703 -0.403 0.687305
## factor(Study.No)38 0.0057973 0.0326703 0.177 0.859321
## factor(Study.No)39 -0.0045602 0.0326703 -0.140 0.889120
## factor(Study.No)40 -0.0245286 0.0326703 -0.751 0.453594
## factor(Study.No)41 -0.0493730 0.0326703 -1.511 0.132186
## factor(Study.No)42 0.0472780 0.0282006 1.676 0.095089 .
## factor(Study.No)43 0.0530222 0.0282006 1.880 0.061429 .
## factor(Study.No)44 0.0217954 0.0282006 0.773 0.440443
## factor(Study.No)45 0.0543311 0.0282006 1.927 0.055343 .
## factor(Study.No)46 0.0035405 0.0282006 0.126 0.900207
## factor(Study.No)47 0.0164414 0.0282006 0.583 0.560490
## factor(Study.No)48 -0.0091705 0.0282006 -0.325 0.745354
## factor(Study.No)49 0.0604781 0.0282006 2.145 0.033104 *
## factor(Study.No)50 0.0331901 0.0282006 1.177 0.240519
## factor(Study.No)51 0.0006362 0.0282006 0.023 0.982021
## factor(Study.No)52 0.0207029 0.0282006 0.734 0.463665
## factor(Study.No)53 -0.0294200 0.0282006 -1.043 0.298003
## factor(Study.No)54 0.0216749 0.0282006 0.769 0.442971
## factor(Study.No)55 0.0721605 0.0282006 2.559 0.011186 *
## factor(Study.No)56 0.0427977 0.0555591 0.770 0.441958
## factor(Study.No)57 0.1303308 0.0555591 2.346 0.019892 *
## factor(Study.No)58 0.1032372 0.0555591 1.858 0.064508 .
## factor(Study.No)59 0.0318087 0.0555591 0.573 0.567566
## factor(Study.No)60 0.1063428 0.0555591 1.914 0.056936 .
## factor(Study.No)61 0.3007162 0.0555591 5.413 1.65e-07 ***
## factor(Study.No)62 0.1084637 0.0555591 1.952 0.052204 .
## factor(Study.No)63 0.0684387 0.0555591 1.232 0.219356
## factor(Study.No)64 -0.0110485 0.0555591 -0.199 0.842559
## factor(Study.No)65 0.0222849 0.0555591 0.401 0.688742
## factor(Study.No)66 -0.1110485 0.0555591 -1.999 0.046890 *
## factor(Study.No)67 0.1616788 0.0555591 2.910 0.003992 **
## factor(Study.No)68 -0.0443818 0.0555591 -0.799 0.425271
## factor(Study.No)69 0.0536574 0.0555591 0.966 0.335239
## factor(Study.No)70 0.1536574 0.0555591 2.766 0.006173 **
## factor(Study.No)71 0.0065014 0.0282006 0.231 0.817890
## factor(Study.No)72 -0.0193757 0.0282006 -0.687 0.492777
## factor(Study.No)73 0.0272970 0.0282006 0.968 0.334148
## factor(Study.No)74 0.0345886 0.0282006 1.227 0.221339
## factor(Study.No)75 0.0176216 0.0282006 0.625 0.532718
## factor(Study.No)76 0.0200157 0.0282006 0.710 0.478618
## factor(Study.No)77 -0.0134207 0.0282006 -0.476 0.634625
## factor(Study.No)78 0.0317146 0.0282006 1.125 0.262004
## factor(Study.No)79 0.0250385 0.0282006 0.888 0.375599
## factor(Study.No)80 0.0524390 0.0385120 1.362 0.174734
## factor(Study.No)81 0.1222379 0.0541265 2.258 0.024921 *
## factor(Study.No)82 0.0288417 0.0541265 0.533 0.594681
## factor(Study.No)83 0.0389038 0.0282006 1.380 0.169155
## factor(Study.No)84 0.0910921 0.0282006 3.230 0.001430 **
## factor(Study.No)85 0.1034879 0.0541265 1.912 0.057204 .
## factor(Study.No)86 0.0797648 0.0541265 1.474 0.142026
## factor(Study.No)87 0.0411084 0.0541265 0.759 0.448389
## factor(Study.No)88 0.0086962 0.0541265 0.161 0.872508
## factor(Study.No)89 -0.0020386 0.0541265 -0.038 0.969990
## factor(Study.No)90 0.0061362 0.0541265 0.113 0.909845
## factor(Study.No)91 0.0571435 0.0541265 1.056 0.292266
## factor(Study.No)92 0.0389045 0.0541265 0.719 0.473059
## factor(Study.No)93 0.0229993 0.0541265 0.425 0.671320
## factor(Study.No)94 0.0426604 0.0541265 0.788 0.431467
## factor(Study.No)95 0.0841782 0.0541265 1.555 0.121360
## factor(Study.No)96 -0.0032007 0.0541265 -0.059 0.952900
## factor(Study.No)97 0.0626334 0.0541265 1.157 0.248483
## factor(Study.No)98 0.0081353 0.0541265 0.150 0.880667
## factor(Study.No)99 0.0009264 0.0541265 0.017 0.986360
## factor(Study.No)100 0.0248695 0.0541265 0.459 0.646359
## factor(Study.No)101 0.0089283 0.0385120 0.232 0.816888
## factor(Study.No)102 0.0127567 0.0385120 0.331 0.740785
## factor(Study.No)103 0.0284535 0.0385120 0.739 0.460818
## factor(Study.No)104 0.0745984 0.0385120 1.937 0.054047 .
## factor(Study.No)105 0.0136669 0.0385120 0.355 0.723030
## factor(Study.No)106 0.0130160 0.0385120 0.338 0.735712
## factor(Study.No)107 0.0641261 0.0385120 1.665 0.097344 .
## factor(Study.No)108 -0.0067618 0.0385120 -0.176 0.860792
## factor(Study.No)109 0.0709423 0.0385120 1.842 0.066834 .
## factor(Study.No)110 0.0297817 0.0385120 0.773 0.440185
## factor(Study.No)111 0.0622155 0.0385120 1.615 0.107666
## factor(Study.No)112 0.0255817 0.0385120 0.664 0.507237
## factor(Study.No)113 0.0396740 0.0385120 1.030 0.304081
## factor(Study.No)114 0.0497759 0.0318586 1.562 0.119657
## factor(Study.No)115 0.0456783 0.0318586 1.434 0.153080
## factor(Study.No)116 0.0575494 0.0318586 1.806 0.072248 .
## factor(Study.No)117 0.0745763 0.0390522 1.910 0.057502 .
## factor(Study.No)118 -0.0066848 0.0541265 -0.124 0.901823
## factor(Study.No)119 -0.0080640 0.0390522 -0.206 0.836600
## factor(Study.No)120 0.0152688 0.0318586 0.479 0.632233
## factor(Study.No)121 0.0287920 0.0318586 0.904 0.367138
## factor(Study.No)122 0.0294335 0.0318586 0.924 0.356580
## factor(Study.No)123 0.1206545 0.0318586 3.787 0.000197 ***
## factor(Study.No)124 0.0497974 0.0318586 1.563 0.119499
## factor(Study.No)125 0.0522598 0.0318586 1.640 0.102384
## factor(Study.No)126 0.0060695 0.0318586 0.191 0.849086
## factor(Study.No)127 0.0392122 0.0318586 1.231 0.219729
## factor(Study.No)128 0.0775215 0.0318586 2.433 0.015775 *
## factor(Study.No)129 0.0855111 0.0318586 2.684 0.007837 **
## factor(Study.No)130 0.0014657 0.0318586 0.046 0.963347
## factor(Study.No)131 0.0260689 0.0326703 0.798 0.425782
## factor(Study.No)132 0.1154947 0.0326703 3.535 0.000499 ***
## factor(Study.No)133 0.0136485 0.0326703 0.418 0.676535
## factor(Study.No)134 0.1913611 0.0398488 4.802 2.93e-06 ***
## factor(Study.No)135 0.0274054 0.0398488 0.688 0.492358
## factor(Study.No)136 -0.0599260 0.0398488 -1.504 0.134085
## factor(Study.No)137 0.0624666 0.0282006 2.215 0.027799 *
## factor(Study.No)138 0.0447329 0.0282006 1.586 0.114148
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.05403 on 216 degrees of freedom
## Multiple R-squared: 0.8855, Adjusted R-squared: 0.8119
## F-statistic: 12.02 on 139 and 216 DF, p-value: < 2.2e-16
Including year as panel marker:
# fixed3 <- plm(TLS_rate. ~ PGY.level, data=drh, index=c("Study.No", "PGY.level"), model="within")
# summary(fixed3)
Without year as panel marker:
fixed4 <- plm(TLS_rate ~ PGY.level, data=drh, index=c("Study.No"), model="within")
summary(fixed4)
## Oneway (individual) effect Within Model
##
## Call:
## plm(formula = TLS_rate ~ PGY.level, data = drh, model = "within",
## index = c("Study.No"))
##
## Unbalanced Panel: n = 138, T = 1-4, N = 355
##
## Residuals:
## Min. 1st Qu. Median 3rd Qu. Max.
## -0.148205 -0.022999 0.000000 0.020030 0.140748
##
## Coefficients:
## Estimate Std. Error t-value Pr(>|t|)
## PGY.level 0.0277621 0.0032366 8.5775 1.892e-15 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Total Sum of Squares: 0.84533
## Residual Sum of Squares: 0.63055
## R-Squared: 0.25408
## Adj. R-Squared: -0.22248
## F-statistic: 73.5742 on 1 and 216 DF, p-value: 1.8923e-15
(It’s unclear if this is random slopes or random intercepts).
random1 <- plm(TLS_rate ~ PGY.level, data=drh, index=c("Study.No"), model="within")
summary(random1)
## Oneway (individual) effect Within Model
##
## Call:
## plm(formula = TLS_rate ~ PGY.level, data = drh, model = "within",
## index = c("Study.No"))
##
## Unbalanced Panel: n = 138, T = 1-4, N = 355
##
## Residuals:
## Min. 1st Qu. Median 3rd Qu. Max.
## -0.148205 -0.022999 0.000000 0.020030 0.140748
##
## Coefficients:
## Estimate Std. Error t-value Pr(>|t|)
## PGY.level 0.0277621 0.0032366 8.5775 1.892e-15 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Total Sum of Squares: 0.84533
## Residual Sum of Squares: 0.63055
## R-Squared: 0.25408
## Adj. R-Squared: -0.22248
## F-statistic: 73.5742 on 1 and 216 DF, p-value: 1.8923e-15
random2 <- lmer(TLS_rate ~ 1 + PGY.level + (1 | Study.No), data=drh)
summary(random2)
## Linear mixed model fit by REML ['lmerMod']
## Formula: TLS_rate ~ 1 + PGY.level + (1 | Study.No)
## Data: drh
##
## REML criterion at convergence: -961.5
##
## Scaled residuals:
## Min 1Q Median 3Q Max
## -2.5360 -0.5508 -0.1165 0.4332 3.9300
##
## Random effects:
## Groups Name Variance Std.Dev.
## Study.No (Intercept) 0.0008102 0.02846
## Residual 0.0030571 0.05529
## Number of obs: 355, groups: Study.No, 138
##
## Fixed effects:
## Estimate Std. Error t value
## (Intercept) 0.030332 0.007978 3.802
## PGY.level 0.029745 0.002792 10.654
##
## Correlation of Fixed Effects:
## (Intr)
## PGY.level -0.872
icc(random2)
##
## Intraclass Correlation Coefficient for Linear mixed model
##
## Family : gaussian (identity)
## Formula: TLS_rate ~ 1 + PGY.level + (1 | Study.No)
##
## ICC (Study.No): 0.2095
tab_model(random2, title="Random effects with lme4 package, nicer table")
## Computing p-values via Wald-statistics approximation (treating t as Wald z).
| TLS rate | |||
|---|---|---|---|
| Predictors | Estimates | CI | p |
| (Intercept) | 0.03 | 0.01 – 0.05 | <0.001 |
| PGY level | 0.03 | 0.02 – 0.04 | <0.001 |
| Random Effects | |||
| σ2 | 0.00 | ||
| τ00 Study.No | 0.00 | ||
| ICC Study.No | 0.21 | ||
| Observations | 355 | ||
| Marginal R2 / Conditional R2 | 0.222 / 0.385 | ||
# TLSRandom3 <- lmer(TLS_rate ~ 1 + PGY.level + (1 + PGY.level | Study.No), data=drh)
TLSRandom3 <- lmer(TLS_rate ~ 1 + PGY.level + (1 | Study.No), data=drh) # REML = FALSE makes it like stata apparently
summary(TLSRandom3)
## Linear mixed model fit by REML ['lmerMod']
## Formula: TLS_rate ~ 1 + PGY.level + (1 | Study.No)
## Data: drh
##
## REML criterion at convergence: -961.5
##
## Scaled residuals:
## Min 1Q Median 3Q Max
## -2.5360 -0.5508 -0.1165 0.4332 3.9300
##
## Random effects:
## Groups Name Variance Std.Dev.
## Study.No (Intercept) 0.0008102 0.02846
## Residual 0.0030571 0.05529
## Number of obs: 355, groups: Study.No, 138
##
## Fixed effects:
## Estimate Std. Error t value
## (Intercept) 0.030332 0.007978 3.802
## PGY.level 0.029745 0.002792 10.654
##
## Correlation of Fixed Effects:
## (Intr)
## PGY.level -0.872
icc(TLSRandom3)
##
## Intraclass Correlation Coefficient for Linear mixed model
##
## Family : gaussian (identity)
## Formula: TLS_rate ~ 1 + PGY.level + (1 | Study.No)
##
## ICC (Study.No): 0.2095
tab_model(TLSRandom3, title="Random slopes with lme4 package, nicer table")
## Computing p-values via Wald-statistics approximation (treating t as Wald z).
| TLS rate | |||
|---|---|---|---|
| Predictors | Estimates | CI | p |
| (Intercept) | 0.03 | 0.01 – 0.05 | <0.001 |
| PGY level | 0.03 | 0.02 – 0.04 | <0.001 |
| Random Effects | |||
| σ2 | 0.00 | ||
| τ00 Study.No | 0.00 | ||
| ICC Study.No | 0.21 | ||
| Observations | 355 | ||
| Marginal R2 / Conditional R2 | 0.222 / 0.385 | ||
| TLS rate | |||
|---|---|---|---|
| Predictors | Estimates | CI | p |
| (Intercept) | 0.03 | 0.01 – 0.05 | <0.001 |
| PGY level | 0.03 | 0.02 – 0.04 | <0.001 |
| Random Effects | |||
| σ2 | 0.00 | ||
| τ00 Study.No | 0.00 | ||
| ICC Study.No | 0.21 | ||
| Observations | 355 | ||
| Marginal R2 / Conditional R2 | 0.222 / 0.385 | ||
| TLS rate | |||
|---|---|---|---|
| Predictors | Estimates | CI | p |
| (Intercept) | 0.01 | -0.03 – 0.04 | 0.699 |
| PGY level | 0.05 | 0.02 – 0.08 | <0.001 |
| PGY level squared | -0.00 | -0.01 – 0.00 | 0.107 |
| Random Effects | |||
| σ2 | 0.00 | ||
| τ00 Study.No | 0.00 | ||
| ICC Study.No | 0.22 | ||
| Observations | 355 | ||
| Marginal R2 / Conditional R2 | 0.226 / 0.396 | ||
| TLS rate | |||
|---|---|---|---|
| Predictors | Estimates | CI | p |
| (Intercept) | 2.09 | -5.94 – 10.13 | 0.610 |
| PGY level | 0.03 | 0.02 – 0.04 | <0.001 |
| academic year start | -0.00 | -0.01 – 0.00 | 0.615 |
| Random Effects | |||
| σ2 | 0.00 | ||
| τ00 Study.No | 0.00 | ||
| ICC Study.No | 0.21 | ||
| Observations | 355 | ||
| Marginal R2 / Conditional R2 | 0.224 / 0.391 | ||
The regressions below suggest that there may be a leveling off in the relationship between TLS_rate and PGY.level as PGY.level increases. According to these results, there is no statistically significant difference (at the p = 0.05 level) in TLS_rate when PGY.level = 3 and when PGY.level = 4.
| TLS rate | |||
|---|---|---|---|
| Predictors | Estimates | CI | p |
| (Intercept) | 0.06 | 0.04 – 0.07 | <0.001 |
| as factor(PGY level)2 | 0.03 | 0.02 – 0.05 | <0.001 |
| as factor(PGY level)3 | 0.07 | 0.06 – 0.09 | <0.001 |
| as factor(PGY level)4 | 0.09 | 0.07 – 0.10 | <0.001 |
| Random Effects | |||
| σ2 | 0.00 | ||
| τ00 Study.No | 0.00 | ||
| ICC Study.No | 0.22 | ||
| Observations | 355 | ||
| Marginal R2 / Conditional R2 | 0.229 / 0.398 | ||
| TLS rate | |||
|---|---|---|---|
| Predictors | Estimates | CI | p |
| (Intercept) | 0.09 | 0.08 – 0.10 | <0.001 |
|
factor(as factor(PGY level),levels=c(“2”,“1”,“3”,“4”))1 |
-0.03 | -0.05 – -0.02 | <0.001 |
|
factor(as factor(PGY level),levels=c(“2”,“1”,“3”,“4”))3 |
0.04 | 0.02 – 0.06 | <0.001 |
|
factor(as factor(PGY level),levels=c(“2”,“1”,“3”,“4”))4 |
0.05 | 0.04 – 0.07 | <0.001 |
| Random Effects | |||
| σ2 | 0.00 | ||
| τ00 Study.No | 0.00 | ||
| ICC Study.No | 0.22 | ||
| Observations | 355 | ||
| Marginal R2 / Conditional R2 | 0.229 / 0.398 | ||
| TLS rate | |||
|---|---|---|---|
| Predictors | Estimates | CI | p |
| (Intercept) | 0.13 | 0.12 – 0.14 | <0.001 |
|
factor(as factor(PGY level),levels=c(“3”,“1”,“2”,“4”))1 |
-0.07 | -0.09 – -0.06 | <0.001 |
|
factor(as factor(PGY level),levels=c(“3”,“1”,“2”,“4”))2 |
-0.04 | -0.06 – -0.02 | <0.001 |
|
factor(as factor(PGY level),levels=c(“3”,“1”,“2”,“4”))4 |
0.01 | -0.00 – 0.03 | 0.128 |
| Random Effects | |||
| σ2 | 0.00 | ||
| τ00 Study.No | 0.00 | ||
| ICC Study.No | 0.22 | ||
| Observations | 355 | ||
| Marginal R2 / Conditional R2 | 0.229 / 0.398 | ||
| TLS rate | |||
|---|---|---|---|
| Predictors | Estimates | CI | p |
| (Intercept) | 0.14 | 0.13 – 0.16 | <0.001 |
|
factor(as factor(PGY level),levels=c(“4”,“1”,“2”,“3”))1 |
-0.09 | -0.10 – -0.07 | <0.001 |
|
factor(as factor(PGY level),levels=c(“4”,“1”,“2”,“3”))2 |
-0.05 | -0.07 – -0.04 | <0.001 |
|
factor(as factor(PGY level),levels=c(“4”,“1”,“2”,“3”))3 |
-0.01 | -0.03 – 0.00 | 0.128 |
| Random Effects | |||
| σ2 | 0.00 | ||
| τ00 Study.No | 0.00 | ||
| ICC Study.No | 0.22 | ||
| Observations | 355 | ||
| Marginal R2 / Conditional R2 | 0.229 / 0.398 | ||