Average accuracy for each PGY:
## Group.1 x
## 1 1 0.9262610
## 2 2 0.8886709
## 3 3 0.8430727
## 4 4 0.8304636
Average TLS rate for each PGY:
## Group.1 x
## 1 1 0.05584216
## 2 2 0.08635816
## 3 3 0.12799056
## 4 4 0.14164259
Accuracy vs PGY; OLS without intercept:
ols1 <-lm(Accuracy. ~ PGY.level - 1, data=drh)
summary(ols1)
##
## Call:
## lm(formula = Accuracy. ~ PGY.level - 1, data = drh)
##
## Residuals:
## Min 1Q Median 3Q Max
## -0.6131 -0.1460 0.1412 0.4219 0.7144
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## PGY.level 0.285621 0.007674 37.22 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.3956 on 354 degrees of freedom
## Multiple R-squared: 0.7965, Adjusted R-squared: 0.7959
## F-statistic: 1385 on 1 and 354 DF, p-value: < 2.2e-16
Accuracy vs PGY; OLS with intercept:
ols2 <-lm(Accuracy. ~ PGY.level, data=drh)
summary(ols2)
##
## Call:
## lm(formula = Accuracy. ~ PGY.level, data = drh)
##
## Residuals:
## Min 1Q Median 3Q Max
## -0.292700 -0.034981 0.009571 0.046318 0.177888
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.955364 0.008900 107.34 <2e-16 ***
## PGY.level -0.033313 0.003253 -10.24 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.0683 on 353 degrees of freedom
## Multiple R-squared: 0.229, Adjusted R-squared: 0.2268
## F-statistic: 104.9 on 1 and 353 DF, p-value: < 2.2e-16
The procedures used here on March 20, 2019 were guided by: https://www.princeton.edu/~otorres/Panel101R.pdf.
Accuracy vs PGY with individual fixed effect:
fixed2 <-lm(Accuracy. ~ PGY.level + factor(Study.No) - 1, data=drh)
summary(fixed2)
##
## Call:
## lm(formula = Accuracy. ~ PGY.level + factor(Study.No) - 1, data = drh)
##
## Residuals:
## Min 1Q Median 3Q Max
## -0.17850 -0.02459 0.00000 0.02604 0.16348
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## PGY.level -0.031765 0.003631 -8.747 6.27e-16 ***
## factor(Study.No)1 0.979597 0.044709 21.910 < 2e-16 ***
## factor(Study.No)2 0.975778 0.044709 21.825 < 2e-16 ***
## factor(Study.No)3 0.934820 0.044709 20.909 < 2e-16 ***
## factor(Study.No)4 0.874404 0.044709 19.557 < 2e-16 ***
## factor(Study.No)5 0.971809 0.044709 21.736 < 2e-16 ***
## factor(Study.No)6 0.865297 0.044709 19.354 < 2e-16 ***
## factor(Study.No)7 1.008757 0.044709 22.562 < 2e-16 ***
## factor(Study.No)8 0.931007 0.044709 20.823 < 2e-16 ***
## factor(Study.No)9 0.943599 0.044709 21.105 < 2e-16 ***
## factor(Study.No)10 0.817549 0.044709 18.286 < 2e-16 ***
## factor(Study.No)11 0.970498 0.044709 21.707 < 2e-16 ***
## factor(Study.No)12 0.944320 0.031640 29.845 < 2e-16 ***
## factor(Study.No)13 0.977299 0.031640 30.888 < 2e-16 ***
## factor(Study.No)14 0.960143 0.031640 30.345 < 2e-16 ***
## factor(Study.No)15 0.981843 0.031640 31.031 < 2e-16 ***
## factor(Study.No)16 0.994779 0.031640 31.440 < 2e-16 ***
## factor(Study.No)17 0.987659 0.031640 31.215 < 2e-16 ***
## factor(Study.No)18 0.999508 0.031640 31.590 < 2e-16 ***
## factor(Study.No)19 0.862595 0.031640 27.262 < 2e-16 ***
## factor(Study.No)20 0.949843 0.031640 30.020 < 2e-16 ***
## factor(Study.No)21 0.951040 0.031640 30.058 < 2e-16 ***
## factor(Study.No)22 0.994018 0.031640 31.416 < 2e-16 ***
## factor(Study.No)23 1.003543 0.031640 31.717 < 2e-16 ***
## factor(Study.No)24 0.955257 0.035332 27.036 < 2e-16 ***
## factor(Study.No)25 0.917176 0.036655 25.022 < 2e-16 ***
## factor(Study.No)26 0.987149 0.036655 26.931 < 2e-16 ***
## factor(Study.No)27 0.932729 0.036655 25.446 < 2e-16 ***
## factor(Study.No)28 0.858707 0.036655 23.427 < 2e-16 ***
## factor(Study.No)29 0.859442 0.036655 23.447 < 2e-16 ***
## factor(Study.No)30 0.995020 0.036655 27.145 < 2e-16 ***
## factor(Study.No)31 1.017516 0.036655 27.759 < 2e-16 ***
## factor(Study.No)32 0.915948 0.036655 24.988 < 2e-16 ***
## factor(Study.No)33 0.974962 0.036655 26.598 < 2e-16 ***
## factor(Study.No)34 1.019053 0.036655 27.801 < 2e-16 ***
## factor(Study.No)35 0.991256 0.036655 27.043 < 2e-16 ***
## factor(Study.No)36 0.915634 0.036655 24.980 < 2e-16 ***
## factor(Study.No)37 1.003495 0.036655 27.377 < 2e-16 ***
## factor(Study.No)38 0.990974 0.036655 27.035 < 2e-16 ***
## factor(Study.No)39 1.004534 0.036655 27.405 < 2e-16 ***
## factor(Study.No)40 1.021547 0.036655 27.869 < 2e-16 ***
## factor(Study.No)41 1.050386 0.036655 28.656 < 2e-16 ***
## factor(Study.No)42 0.953162 0.031640 30.125 < 2e-16 ***
## factor(Study.No)43 0.924465 0.031640 29.218 < 2e-16 ***
## factor(Study.No)44 0.976293 0.031640 30.856 < 2e-16 ***
## factor(Study.No)45 0.918311 0.031640 29.023 < 2e-16 ***
## factor(Study.No)46 0.980018 0.031640 30.974 < 2e-16 ***
## factor(Study.No)47 0.965469 0.031640 30.514 < 2e-16 ***
## factor(Study.No)48 1.002507 0.031640 31.684 < 2e-16 ***
## factor(Study.No)49 0.923691 0.031640 29.193 < 2e-16 ***
## factor(Study.No)50 0.942006 0.031640 29.772 < 2e-16 ***
## factor(Study.No)51 0.994619 0.031640 31.435 < 2e-16 ***
## factor(Study.No)52 0.945342 0.031640 29.878 < 2e-16 ***
## factor(Study.No)53 1.008687 0.031640 31.880 < 2e-16 ***
## factor(Study.No)54 0.975300 0.031640 30.824 < 2e-16 ***
## factor(Study.No)55 0.922575 0.031640 29.158 < 2e-16 ***
## factor(Study.No)56 0.934751 0.062336 14.995 < 2e-16 ***
## factor(Study.No)57 0.851197 0.062336 13.655 < 2e-16 ***
## factor(Study.No)58 0.888963 0.062336 14.261 < 2e-16 ***
## factor(Study.No)59 0.912773 0.062336 14.643 < 2e-16 ***
## factor(Study.No)60 0.822711 0.062336 13.198 < 2e-16 ***
## factor(Study.No)61 0.656470 0.062336 10.531 < 2e-16 ***
## factor(Study.No)62 0.907547 0.062336 14.559 < 2e-16 ***
## factor(Study.No)63 0.870648 0.062336 13.967 < 2e-16 ***
## factor(Study.No)64 1.012773 0.062336 16.247 < 2e-16 ***
## factor(Study.No)65 0.993725 0.062336 15.941 < 2e-16 ***
## factor(Study.No)66 1.127059 0.062336 18.080 < 2e-16 ***
## factor(Study.No)67 0.854331 0.062336 13.705 < 2e-16 ***
## factor(Study.No)68 0.927059 0.062336 14.872 < 2e-16 ***
## factor(Study.No)69 0.903529 0.062336 14.494 < 2e-16 ***
## factor(Study.No)70 0.862353 0.062336 13.834 < 2e-16 ***
## factor(Study.No)71 0.979598 0.031640 30.960 < 2e-16 ***
## factor(Study.No)72 1.012805 0.031640 32.010 < 2e-16 ***
## factor(Study.No)73 0.954081 0.031640 30.154 < 2e-16 ***
## factor(Study.No)74 0.956311 0.031640 30.224 < 2e-16 ***
## factor(Study.No)75 0.929836 0.031640 29.388 < 2e-16 ***
## factor(Study.No)76 0.963468 0.031640 30.451 < 2e-16 ***
## factor(Study.No)77 1.014856 0.031640 32.075 < 2e-16 ***
## factor(Study.No)78 0.966582 0.031640 30.549 < 2e-16 ***
## factor(Study.No)79 0.954435 0.031640 30.165 < 2e-16 ***
## factor(Study.No)80 0.930560 0.043210 21.536 < 2e-16 ***
## factor(Study.No)81 0.781765 0.060729 12.873 < 2e-16 ***
## factor(Study.No)82 0.975161 0.060729 16.058 < 2e-16 ***
## factor(Study.No)83 0.951282 0.031640 30.065 < 2e-16 ***
## factor(Study.No)84 0.895109 0.031640 28.290 < 2e-16 ***
## factor(Study.No)85 0.850515 0.060729 14.005 < 2e-16 ***
## factor(Study.No)86 0.902732 0.060729 14.865 < 2e-16 ***
## factor(Study.No)87 0.940856 0.060729 15.493 < 2e-16 ***
## factor(Study.No)88 0.984890 0.060729 16.218 < 2e-16 ***
## factor(Study.No)89 0.986749 0.060729 16.248 < 2e-16 ***
## factor(Study.No)90 0.986567 0.060729 16.245 < 2e-16 ***
## factor(Study.No)91 0.927991 0.060729 15.281 < 2e-16 ***
## factor(Study.No)92 0.965098 0.060729 15.892 < 2e-16 ***
## factor(Study.No)93 0.965775 0.060729 15.903 < 2e-16 ***
## factor(Study.No)94 0.937868 0.060729 15.444 < 2e-16 ***
## factor(Study.No)95 0.919824 0.060729 15.146 < 2e-16 ***
## factor(Study.No)96 1.003694 0.060729 16.528 < 2e-16 ***
## factor(Study.No)97 0.935719 0.060729 15.408 < 2e-16 ***
## factor(Study.No)98 0.985611 0.060729 16.230 < 2e-16 ***
## factor(Study.No)99 0.994879 0.060729 16.382 < 2e-16 ***
## factor(Study.No)100 0.970361 0.060729 15.979 < 2e-16 ***
## factor(Study.No)101 0.968234 0.043210 22.408 < 2e-16 ***
## factor(Study.No)102 0.982069 0.043210 22.728 < 2e-16 ***
## factor(Study.No)103 0.932593 0.043210 21.583 < 2e-16 ***
## factor(Study.No)104 0.913758 0.043210 21.147 < 2e-16 ***
## factor(Study.No)105 0.970264 0.043210 22.455 < 2e-16 ***
## factor(Study.No)106 0.981959 0.043210 22.726 < 2e-16 ***
## factor(Study.No)107 0.890596 0.043210 20.611 < 2e-16 ***
## factor(Study.No)108 1.004860 0.043210 23.256 < 2e-16 ***
## factor(Study.No)109 0.922381 0.043210 21.347 < 2e-16 ***
## factor(Study.No)110 0.963564 0.043210 22.300 < 2e-16 ***
## factor(Study.No)111 0.901375 0.043210 20.861 < 2e-16 ***
## factor(Study.No)112 0.958891 0.043210 22.192 < 2e-16 ***
## factor(Study.No)113 0.938104 0.043210 21.711 < 2e-16 ***
## factor(Study.No)114 0.940350 0.035745 26.307 < 2e-16 ***
## factor(Study.No)115 0.940479 0.035745 26.311 < 2e-16 ***
## factor(Study.No)116 0.934124 0.035745 26.133 < 2e-16 ***
## factor(Study.No)117 0.917253 0.043816 20.934 < 2e-16 ***
## factor(Study.No)118 1.006004 0.060729 16.566 < 2e-16 ***
## factor(Study.No)119 0.975109 0.043816 22.255 < 2e-16 ***
## factor(Study.No)120 0.970014 0.035745 27.137 < 2e-16 ***
## factor(Study.No)121 0.961191 0.035745 26.891 < 2e-16 ***
## factor(Study.No)122 0.945694 0.035745 26.457 < 2e-16 ***
## factor(Study.No)123 0.864994 0.035745 24.199 < 2e-16 ***
## factor(Study.No)124 0.933818 0.035745 26.125 < 2e-16 ***
## factor(Study.No)125 0.913158 0.035745 25.547 < 2e-16 ***
## factor(Study.No)126 0.954559 0.035745 26.705 < 2e-16 ***
## factor(Study.No)127 0.936451 0.035745 26.198 < 2e-16 ***
## factor(Study.No)128 0.893006 0.035745 24.983 < 2e-16 ***
## factor(Study.No)129 0.898595 0.035745 25.139 < 2e-16 ***
## factor(Study.No)130 0.977348 0.035745 27.343 < 2e-16 ***
## factor(Study.No)131 0.968730 0.036655 26.428 < 2e-16 ***
## factor(Study.No)132 0.862032 0.036655 23.517 < 2e-16 ***
## factor(Study.No)133 0.974313 0.036655 26.580 < 2e-16 ***
## factor(Study.No)134 0.789681 0.044709 17.662 < 2e-16 ***
## factor(Study.No)135 0.976863 0.044709 21.849 < 2e-16 ***
## factor(Study.No)136 1.036694 0.044709 23.187 < 2e-16 ***
## factor(Study.No)137 0.935585 0.031640 29.569 < 2e-16 ***
## factor(Study.No)138 0.931558 0.031640 29.442 < 2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.06062 on 216 degrees of freedom
## Multiple R-squared: 0.9971, Adjusted R-squared: 0.9952
## F-statistic: 531.2 on 139 and 216 DF, p-value: < 2.2e-16
Including year as panel marker:
# fixed3 <- plm(Accuracy. ~ PGY.level, data=drh, index=c("Study.No", "PGY.level"), model="within")
# summary(fixed3)
Without year as panel marker:
fixed4 <- plm(Accuracy. ~ PGY.level, data=drh, index=c("Study.No"), model="within")
summary(fixed4)
## Oneway (individual) effect Within Model
##
## Call:
## plm(formula = Accuracy. ~ PGY.level, data = drh, model = "within",
## index = c("Study.No"))
##
## Unbalanced Panel: n = 138, T = 1-4, N = 355
##
## Residuals:
## Min. 1st Qu. Median 3rd Qu. Max.
## -0.178502 -0.024591 0.000000 0.026042 0.163475
##
## Coefficients:
## Estimate Std. Error t-value Pr(>|t|)
## PGY.level -0.0317647 0.0036314 -8.7472 6.268e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Total Sum of Squares: 1.0749
## Residual Sum of Squares: 0.79375
## R-Squared: 0.26157
## Adj. R-Squared: -0.2102
## F-statistic: 76.5141 on 1 and 216 DF, p-value: 6.2678e-16
random1 <- plm(Accuracy. ~ PGY.level, data=drh, index=c("Study.No"), model="within")
summary(random1)
## Oneway (individual) effect Within Model
##
## Call:
## plm(formula = Accuracy. ~ PGY.level, data = drh, model = "within",
## index = c("Study.No"))
##
## Unbalanced Panel: n = 138, T = 1-4, N = 355
##
## Residuals:
## Min. 1st Qu. Median 3rd Qu. Max.
## -0.178502 -0.024591 0.000000 0.026042 0.163475
##
## Coefficients:
## Estimate Std. Error t-value Pr(>|t|)
## PGY.level -0.0317647 0.0036314 -8.7472 6.268e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Total Sum of Squares: 1.0749
## Residual Sum of Squares: 0.79375
## R-Squared: 0.26157
## Adj. R-Squared: -0.2102
## F-statistic: 76.5141 on 1 and 216 DF, p-value: 6.2678e-16
random2 <- lmer(Accuracy. ~ 1 + PGY.level + (1 | Study.No), data=drh)
summary(random2)
## Linear mixed model fit by REML ['lmerMod']
## Formula: Accuracy. ~ 1 + PGY.level + (1 | Study.No)
## Data: drh
##
## REML criterion at convergence: -888.6
##
## Scaled residuals:
## Min 1Q Median 3Q Max
## -3.8597 -0.4664 0.0637 0.6021 2.4075
##
## Random effects:
## Groups Name Variance Std.Dev.
## Study.No (Intercept) 0.0008144 0.02854
## Residual 0.0038832 0.06231
## Number of obs: 355, groups: Study.No, 138
##
## Fixed effects:
## Estimate Std. Error t value
## (Intercept) 0.954187 0.008836 107.99
## PGY.level -0.033454 0.003118 -10.73
##
## Correlation of Fixed Effects:
## (Intr)
## PGY.level -0.880
icc(random2)
##
## Intraclass Correlation Coefficient for Linear mixed model
##
## Family : gaussian (identity)
## Formula: Accuracy. ~ 1 + PGY.level + (1 | Study.No)
##
## ICC (Study.No): 0.1734
tab_model(random2, title="Random effects with lme4 package, nicer table")
## Computing p-values via Wald-statistics approximation (treating t as Wald z).
| Accuracy | |||
|---|---|---|---|
| Predictors | Estimates | CI | p |
| (Intercept) | 0.95 | 0.94 – 0.97 | <0.001 |
| PGY level | -0.03 | -0.04 – -0.03 | <0.001 |
| Random Effects | |||
| σ2 | 0.00 | ||
| τ00 Study.No | 0.00 | ||
| ICC Study.No | 0.17 | ||
| Observations | 355 | ||
| Marginal R2 / Conditional R2 | 0.229 / 0.362 | ||