The American Automobile Association has published data(Defensive Driving : Managing Time and Space, 1991) that looks at the relationship between the average stopping distance (y = distance, in feet) and the speed of a car (x = speed, in miles per hour).
carstop <- read.table("C:/Users/USER/Documents/carstopping.txt",header = TRUE)
attach(carstop)
carstop.model <- lm(Distance ~ Speed)
summary(carstop.model)
##
## Call:
## lm(formula = Distance ~ Speed)
##
## Residuals:
## Min 1Q Median 3Q Max
## -32.738 -22.351 -7.738 16.622 47.083
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -44.1667 22.0821 -2.00 0.0924 .
## Speed 5.6726 0.5279 10.75 3.84e-05 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 34.21 on 6 degrees of freedom
## Multiple R-squared: 0.9506, Adjusted R-squared: 0.9424
## F-statistic: 115.5 on 1 and 6 DF, p-value: 3.837e-05
plot(Speed, Distance)
abline(-44.167, 5.673)
anova(carstop.model)
## Analysis of Variance Table
##
## Response: Distance
## Df Sum Sq Mean Sq F value Pr(>F)
## Speed 1 135150 135150 115.48 3.837e-05 ***
## Residuals 6 7022 1170
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
The following questions illustrate the point : The large sample size results in a sample slope that is significantly different from 0, but not meaningfully different from 0.
pract <- read.table("C:/Users/USER/Documents/practical.txt",header = TRUE)
attach(pract)
pract.model <- lm(y ~ x)
summary(pract.model)
##
## Call:
## lm(formula = y ~ x)
##
## Residuals:
## Min 1Q Median 3Q Max
## -4.3623 -0.6559 0.0131 0.6818 3.1889
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 5.006235 0.061969 80.79 <2e-16 ***
## x 0.099798 0.005576 17.90 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.017 on 998 degrees of freedom
## Multiple R-squared: 0.243, Adjusted R-squared: 0.2422
## F-statistic: 320.3 on 1 and 998 DF, p-value: < 2.2e-16
plot(x, y)
abline(5.006, 0.1)
cor.test(~y + x)
##
## Pearson's product-moment correlation
##
## data: y and x
## t = 17.897, df = 998, p-value < 2.2e-16
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
## 0.4445046 0.5384542
## sample estimates:
## cor
## 0.4929148
pract.model2 <- lm(y ~ offset(x))
summary(pract.model2)
##
## Call:
## lm(formula = y ~ offset(x))
##
## Residuals:
## Min 1Q Median 3Q Max
## -10.3245 -4.4736 -0.1879 4.4886 11.5463
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -3.5457 0.1673 -21.19 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 5.292 on 999 degrees of freedom
plot(x, y)
abline(-3.546, 1)
pract.pred <- predict(pract.model, newdata = data.frame(x = pract$x), se.fit = T, interval = 'confidence')
pract.pred2 <- predict(pract.model, newdata = data.frame(x = pract$x), se.fit = T,interval = 'prediction')
plot(x, y)
abline(5.006, 0.1)
lines(pract$x, pract.pred$fit[ ,3], lty = 'dashed', col = 'red')
lines(pract$x, pract.pred$fit[ ,2], lty = 'dashed', col = 'red')
lines(pract$x, pract.pred2$fit[ ,3], lty = 'dashed', col = 'blue')
lines(pract$x, pract.pred2$fit[ ,2], lty = 'dashed', col = 'blue')
library(ggplot2)
powerNum <- numeric()
powerNum2 <- numeric()
myPower <- function(n, mu, mu0, sigma2, nrep){
ybar <- numeric(nrep)
s2 <- numeric(nrep)
power.mu <- logical(nrep)
set.seed(1234)
for(i in 1:nrep){
y <- rnorm(n, mean = mu, sd = sqrt(sigma2))
ybar[i] <- mean(y)
s2[i] <- var(y)
s <- sqrt(var(y))
power.mu[i] <- abs(ybar[i] - mu0) > qt(.975, n - 1) * s / sqrt(n)
}
return(sum(power.mu) / nrep)
}
for(i in 2:50){
powerNum[i-1] <- myPower(n = i, mu = 6.5, mu0 = 5, sigma2 = 4, nrep = 10000)
}
for(i in 2:50){
powtt <- power.t.test(n = i, delta = 1.5, sd = sqrt(4), strict = T, type = "one.sample")
powerNum2[i-1] <- powtt$power
}
ggplot(data.frame(x = powerNum), aes(x)) + stat_function(fun=sin)
ggplot(data.frame(x = powerNum2), aes(x)) + stat_function(fun=sin)