A company buys 100 lightbulbs, each of which has an exponential lifetime of 1000 hours. What is the expected time for the first of these bulbs to burn out?
sim.light = function(size=100, mean=1000, time=1000)
{
min.light = c()
for(i in 1:time)
{
exp = rexp(size,1/mean)
min.light[i] = min(exp)
}
return (mean(min.light))
}
print(paste("Expected time for the first of these bulbs to burn out = ", sim.light()))
## [1] "Expected time for the first of these bulbs to burn out = 10.4321567067354"
Assume that X1 and X2 are independent random variables, each having an exponential density with parameter lambda. Show that Z=X1-X2 has density fZ(z)=(1/2)e(-lambda X Z).
sim.exp = function(size=1000, lambda=5)
{
num = runif(size, min = -7, max = 10)
pos.num = num[num>=0]
neg.num = num[num < 0]
pos.num.den = lambda * (exp(-lambda*pos.num))
neg.num.den = rep(0, length(neg.num))
tot.den = append(pos.num.den,neg.num.den)
return(tot.den)
}
sim.diff.exp = function(size=1000, lambda=5)
{
num = runif(size, min = -7, max = 10)
pos.num = num[num>=0]
neg.num = num[num < 0]
pos.num.den = 0.5 * (exp(-lambda*pos.num))
neg.num.den = rep(0, length(neg.num))
tot.den = append(pos.num.den,neg.num.den)
return(tot.den)
}
1. Simulate exponential distribution with some value of lambda (here it is 5)
X1 = sim.exp()
X2 = sim.exp()
2. Calculate distribution of X1 - X2
Z = ifelse(X1 - X2 <0,0, X1-X2)
3. Plot the distribution density function for X1-X2
hist (Z, breaks=100, probability = 1)
4. Simulate the distribution density function of fZ(z)=(1/2)e(-lambda X Z) .
diff = sim.diff.exp()
5. Plot the distribution density function for fZ(z)=(1/2)e(-lambda X Z) .
hist(diff,breaks=100, probability = 1)
The distribution function plot of X1-X2 is similar to distribution function plot for fZ(z)=(1/2)e(-lambda X Z) . This proves that Z=X1-X2 has density fZ(z)=(1/2)e(-lambda X Z).
Let X be a continuous random variable with mean=10 and variance =100/3. Using Chebyshev’s Inequality, find an upper bound for the following probabilities.
a. P(abs(X-10)>= 2) b. P(abs(X-10)>= 5) c. P(abs(X-10)>= 9) d. P(abs(X-10)>= 20)
cheb.prob = function(mean = 10, var=100/3, k)
{
prob = ifelse((var/k^2) > 1, 1,var/k^2)
return(prob)
}
print(paste("P(abs(X-10)>= 2) = ",cheb.prob(k=2)))
## [1] "P(abs(X-10)>= 2) = 1"
print(paste("P(abs(X-10)>= 5) = ",cheb.prob(k=5)))
## [1] "P(abs(X-10)>= 5) = 1"
print(paste("P(abs(X-10)>= 9) = ",cheb.prob(k=9)))
## [1] "P(abs(X-10)>= 9) = 0.411522633744856"
print(paste("P(abs(X-10)>= 20) = ",cheb.prob(k=20)))
## [1] "P(abs(X-10)>= 20) = 0.0833333333333333"