read.csv("D:\\Dropbox\\100_PROJECTS\\2019.1_PROJECT_SamFireFDI\\20190227_Flammability.csv")%>%
  tbl_df()%>%
  mutate(FWI_index=case_when(FWI>30~"Very Extreme",
                             FWI>25&FWI<=30~"Extreme",
                             FWI>13&FWI<=25~"High",
                             FWI>6&FWI<=13~"Moderate",
                             FWI>2&FWI<=6~"Low",
                             FWI<=2 ~ "Very Low"),
         FWI_index=factor(FWI_index,levels=rev(c("Very Low",
                                             "Low",
                                             "Moderate",
                                             "High",
                                             "Extreme",
                                             "Very Extreme"))))->
  dat

Data check

dat%>%
  ggplot(aes(FMC))+
  geom_histogram()+
  facet_wrap(~SPP)
## `stat_bin()` using `bins = 30`. Pick better value with `binwidth`.

1 Correlations

dat%>%
  ggplot(aes((FWI),(FMC)))+
  geom_point()+
  facet_wrap(~SPP)+
  geom_smooth(method="lm")

dat%>%
  group_by(SPP)%>%
  summarise(p=cor.test(x=FWI,y=FMC)$p.value,
            p=round(p,3),
            sig=ifelse(p<0.05,"*",""),
            r=cor(x=FWI,y=FMC),
            r=round(r,2),
            r2=cor(x=FWI,y=FMC)^2,
            r2=round(r2,2))%>%
  knitr::kable()
SPP p sig r r2
ACACYC 0.176 -0.31 0.09
ACAMEA 0.925 -0.02 0.00
ACAMEL 0.529 -0.15 0.02
ACASAL 0.469 -0.17 0.03
AGAOVA 0.207 -0.29 0.08
ASPSPI 0.405 -0.19 0.04
CALVIM 0.077 -0.39 0.16
CASPER 0.366 0.21 0.04
CESLAE 0.676 0.10 0.01
CLIERI 0.518 -0.15 0.02
CLIILI 0.754 -0.07 0.01
DIODIC 0.584 0.13 0.02
ERICAN 0.812 -0.06 0.00
ERIDIS 0.526 -0.15 0.02
EUCCAM 0.034 * -0.46 0.22
GYMBUX 0.044 * 0.44 0.20
LEPLAE 0.235 0.27 0.07
LEUEUC 0.224 0.28 0.08
METMUR 0.000 * 0.73 0.53
OSTMON 0.125 0.35 0.12
OSYCOM 0.101 0.37 0.14
PASRIG 0.248 -0.26 0.07
PHYAXI 0.348 0.22 0.05
PINPIN 0.256 -0.26 0.07
PINRAD 0.043 * -0.45 0.20
PTETRI 0.915 0.02 0.00
SCOZEY 0.362 0.21 0.04
SEALUC 0.137 -0.34 0.11
SIDINE 0.377 0.20 0.04
TARLIT 0.220 -0.28 0.08

Other correlations with FMC

dat%>%
  #arrange(desc(FWI_index))%>%
  ggplot(aes(FMC,BURNINTENSITY))+
  geom_point(aes(colour=FWI_index))+
  scale_colour_manual(values = cols)+
  facet_wrap(~SPP)+
  geom_smooth(method="lm")

dat%>%
  ggplot(aes(FMC,BIOMASSBURNT_PROP))+
  geom_point(aes(colour=FWI_index))+
  facet_wrap(~SPP)+
  scale_colour_manual(values = cols)+
  geom_smooth(method="lm")

dat%>%
  ggplot(aes(FMC,TIMETOIGNITION))+
  geom_point(aes(colour=FWI_index))+
  facet_wrap(~SPP)+
  scale_colour_manual(values = cols)+
  geom_smooth(method="lm")

2 GAMs: Flam vs FWI + FMC

gam(BURNINTENSITY~s(FWI)+s(FMC),data=dat)%>%summary()
## 
## Family: gaussian 
## Link function: identity 
## 
## Formula:
## BURNINTENSITY ~ s(FWI) + s(FMC)
## 
## Parametric coefficients:
##             Estimate Std. Error t value Pr(>|t|)    
## (Intercept)  585.420      4.701   124.5   <2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Approximate significance of smooth terms:
##          edf Ref.df      F  p-value    
## s(FWI) 7.027  7.887  9.629 1.62e-12 ***
## s(FMC) 2.367  3.019 24.714 3.07e-15 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## R-sq.(adj) =  0.183   Deviance explained = 19.5%
## GCV =  14158  Scale est. = 13924     n = 630
gam(BURNINTENSITY~s(FWI)+s(FMC)+(SPP),data=dat)%>%summary()
## 
## Family: gaussian 
## Link function: identity 
## 
## Formula:
## BURNINTENSITY ~ s(FWI) + s(FMC) + (SPP)
## 
## Parametric coefficients:
##             Estimate Std. Error t value Pr(>|t|)    
## (Intercept)  626.767     21.566  29.063  < 2e-16 ***
## SPPACAMEA      6.174     30.391   0.203 0.839098    
## SPPACAMEL     66.537     30.628   2.172 0.030225 *  
## SPPACASAL    -88.395     32.605  -2.711 0.006902 ** 
## SPPAGAOVA    -73.792     30.916  -2.387 0.017309 *  
## SPPASPSPI   -113.180     30.906  -3.662 0.000273 ***
## SPPCALVIM    -22.667     31.714  -0.715 0.475052    
## SPPCASPER     72.889     30.785   2.368 0.018223 *  
## SPPCESLAE    -39.056     37.005  -1.055 0.291658    
## SPPCLIERI   -164.431     30.220  -5.441 7.79e-08 ***
## SPPCLIILI   -108.737     30.392  -3.578 0.000375 ***
## SPPDIODIC    -98.290     30.767  -3.195 0.001475 ** 
## SPPERICAN    -16.922     30.589  -0.553 0.580327    
## SPPERIDIS     -9.811     32.624  -0.301 0.763716    
## SPPEUCCAM     97.863     30.533   3.205 0.001423 ** 
## SPPGYMBUX   -161.848     30.511  -5.305 1.60e-07 ***
## SPPLEPLAE    -51.845     30.947  -1.675 0.094407 .  
## SPPLEUEUC    -72.997     30.715  -2.377 0.017792 *  
## SPPMETMUR    -45.393     30.434  -1.492 0.136355    
## SPPOSTMON   -198.572     39.201  -5.066 5.46e-07 ***
## SPPOSYCOM    -86.121     30.363  -2.836 0.004720 ** 
## SPPPASRIG    -21.907     30.543  -0.717 0.473500    
## SPPPHYAXI     36.984     34.227   1.081 0.280334    
## SPPPINPIN     30.989     31.113   0.996 0.319648    
## SPPPINRAD     38.732     30.273   1.279 0.201251    
## SPPPTETRI    -16.936     30.487  -0.556 0.578761    
## SPPSCOZEY   -152.295     30.384  -5.012 7.13e-07 ***
## SPPSEALUC     27.514     30.374   0.906 0.365402    
## SPPSIDINE    -69.563     31.478  -2.210 0.027497 *  
## SPPTARLIT     -5.337     30.453  -0.175 0.860937    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Approximate significance of smooth terms:
##          edf Ref.df      F p-value    
## s(FWI) 7.515  8.309 12.110  <2e-16 ***
## s(FMC) 6.122  7.370  1.667  0.0965 .  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## R-sq.(adj) =  0.438   Deviance explained = 47.6%
## GCV =  10289  Scale est. = 9576.6    n = 630
gam(BURNINTENSITY~s(FWI)+s(FMC)+(VEGTYPE),data=dat)%>%summary()
## 
## Family: gaussian 
## Link function: identity 
## 
## Formula:
## BURNINTENSITY ~ s(FWI) + s(FMC) + (VEGTYPE)
## 
## Parametric coefficients:
##             Estimate Std. Error t value Pr(>|t|)    
## (Intercept)  555.631      8.057  68.965  < 2e-16 ***
## VEGTYPEIAP    79.474     11.369   6.990 7.16e-12 ***
## VEGTYPEThi     9.895     11.598   0.853    0.394    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Approximate significance of smooth terms:
##          edf Ref.df     F  p-value    
## s(FWI) 7.118  7.969 10.21 1.74e-13 ***
## s(FMC) 5.491  6.692 15.09  < 2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## R-sq.(adj) =  0.257   Deviance explained = 27.4%
## GCV =  12990  Scale est. = 12668     n = 630
gam(BURNINTENSITY~s(FWI)+s(FMC)+(VEGTYPE)+(SPP),data=dat)%>%summary()
## 
## Family: gaussian 
## Link function: identity 
## 
## Formula:
## BURNINTENSITY ~ s(FWI) + s(FMC) + (VEGTYPE) + (SPP)
## 
## Parametric coefficients:
##             Estimate Std. Error t value Pr(>|t|)    
## (Intercept)  527.647      5.871  89.874  < 2e-16 ***
## VEGTYPEIAP    99.120     20.735   4.780 2.22e-06 ***
## VEGTYPEThi    27.513      8.369   3.287 0.001072 ** 
## SPPACAMEA      6.174     30.391   0.203 0.839098    
## SPPACAMEL     66.537     30.628   2.172 0.030225 *  
## SPPACASAL    -88.395     32.605  -2.711 0.006902 ** 
## SPPAGAOVA     25.328     20.853   1.215 0.225016    
## SPPASPSPI    -14.060     20.719  -0.679 0.497651    
## SPPCALVIM    -22.667     31.714  -0.715 0.475052    
## SPPCASPER    144.497     21.194   6.818 2.30e-11 ***
## SPPCESLAE    -39.056     37.005  -1.055 0.291658    
## SPPCLIERI    -65.311     20.786  -3.142 0.001762 ** 
## SPPCLIILI     -9.616     20.966  -0.459 0.646635    
## SPPDIODIC    -26.683     20.987  -1.271 0.204093    
## SPPERICAN     82.198     20.612   3.988 7.51e-05 ***
## SPPERIDIS     89.309     22.228   4.018 6.64e-05 ***
## SPPEUCCAM     97.863     30.533   3.205 0.001423 ** 
## SPPGYMBUX    -90.241     20.908  -4.316 1.86e-05 ***
## SPPLEPLAE    -51.845     30.947  -1.675 0.094407 .  
## SPPLEUEUC     26.123     21.772   1.200 0.230669    
## SPPMETMUR     53.727     20.605   2.608 0.009353 ** 
## SPPOSTMON   -126.965     30.420  -4.174 3.45e-05 ***
## SPPOSYCOM    -14.513     20.876  -0.695 0.487198    
## SPPPASRIG     77.213     20.712   3.728 0.000212 ***
## SPPPHYAXI    136.104     23.990   5.673 2.20e-08 ***
## SPPPINPIN     30.989     31.113   0.996 0.319648    
## SPPPINRAD     38.732     30.273   1.279 0.201251    
## SPPPTETRI     54.672     20.997   2.604 0.009452 ** 
## SPPSCOZEY    -80.688     20.753  -3.888 0.000113 ***
## SPPSEALUC     99.121     20.822   4.760 2.44e-06 ***
## SPPSIDINE      2.044     21.730   0.094 0.925087    
## SPPTARLIT     66.270     20.799   3.186 0.001518 ** 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Approximate significance of smooth terms:
##          edf Ref.df      F p-value    
## s(FWI) 7.515  8.309 12.110  <2e-16 ***
## s(FMC) 6.122  7.370  1.667  0.0965 .  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Rank: 48/50
## R-sq.(adj) =  0.438   Deviance explained = 47.6%
## GCV =  10289  Scale est. = 9576.6    n = 630
gam(TIMETOIGNITION~s(FWI)+s(FMC),data=dat)%>%summary()
## 
## Family: gaussian 
## Link function: identity 
## 
## Formula:
## TIMETOIGNITION ~ s(FWI) + s(FMC)
## 
## Parametric coefficients:
##             Estimate Std. Error t value Pr(>|t|)    
## (Intercept)   67.575      1.472   45.92   <2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Approximate significance of smooth terms:
##          edf Ref.df     F p-value    
## s(FWI) 8.742  8.974 13.72 < 2e-16 ***
## s(FMC) 2.295  2.929 12.64 7.3e-08 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## R-sq.(adj) =  0.198   Deviance explained = 21.2%
## GCV = 1390.8  Scale est. = 1364.2    n = 630
gam(TIMETOIGNITION~s(FWI)+s(FMC)+(SPP),data=dat)%>%summary()
## 
## Family: gaussian 
## Link function: identity 
## 
## Formula:
## TIMETOIGNITION ~ s(FWI) + s(FMC) + (SPP)
## 
## Parametric coefficients:
##             Estimate Std. Error t value Pr(>|t|)    
## (Intercept)  75.8417     6.1132  12.406  < 2e-16 ***
## SPPACAMEA   -30.8132     8.6665  -3.555 0.000408 ***
## SPPACAMEL   -14.9459     8.6782  -1.722 0.085552 .  
## SPPACASAL    26.4725     8.8981   2.975 0.003049 ** 
## SPPAGAOVA    -6.3183     8.7438  -0.723 0.470210    
## SPPASPSPI   -40.8412     8.6529  -4.720 2.95e-06 ***
## SPPCALVIM    -2.1808     8.7752  -0.249 0.803817    
## SPPCASPER    27.9884     8.7110   3.213 0.001385 ** 
## SPPCESLAE   -18.0441     9.5513  -1.889 0.059358 .  
## SPPCLIERI   -17.8065     8.6456  -2.060 0.039874 *  
## SPPCLIILI   -11.7100     8.6517  -1.353 0.176417    
## SPPDIODIC    14.5711     8.7049   1.674 0.094681 .  
## SPPERICAN   -50.4147     8.6994  -5.795 1.11e-08 ***
## SPPERIDIS   -24.8900     8.9524  -2.780 0.005605 ** 
## SPPEUCCAM   -13.9268     8.6939  -1.602 0.109710    
## SPPGYMBUX     0.7012     8.6635   0.081 0.935517    
## SPPLEPLAE    -5.3297     8.7317  -0.610 0.541844    
## SPPLEUEUC    -3.7462     8.6879  -0.431 0.666481    
## SPPMETMUR   -45.4672     8.6729  -5.242 2.21e-07 ***
## SPPOSTMON    23.8216     9.9183   2.402 0.016624 *  
## SPPOSYCOM    11.0075     8.6524   1.272 0.203807    
## SPPPASRIG   -51.5508     8.6689  -5.947 4.69e-09 ***
## SPPPHYAXI   -28.4868     9.0761  -3.139 0.001782 ** 
## SPPPINPIN    -3.9583     8.7059  -0.455 0.649514    
## SPPPINRAD   -55.1797     8.6514  -6.378 3.62e-10 ***
## SPPPTETRI    33.5521     8.6531   3.877 0.000117 ***
## SPPSCOZEY    39.3604     8.6696   4.540 6.82e-06 ***
## SPPSEALUC    -8.8318     8.6646  -1.019 0.308481    
## SPPSIDINE    28.9724     8.7465   3.312 0.000981 ***
## SPPTARLIT   -20.0167     8.6877  -2.304 0.021568 *  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Approximate significance of smooth terms:
##          edf Ref.df      F p-value    
## s(FWI) 8.837   8.99 24.051  <2e-16 ***
## s(FMC) 1.000   1.00  0.494   0.482    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## R-sq.(adj) =  0.539   Deviance explained = 56.7%
## GCV = 837.76  Scale est. = 784.79    n = 630
gam(TIMETOIGNITION~s(FWI)+s(FMC)+(VEGTYPE),data=dat)%>%summary()
## 
## Family: gaussian 
## Link function: identity 
## 
## Formula:
## TIMETOIGNITION ~ s(FWI) + s(FMC) + (VEGTYPE)
## 
## Parametric coefficients:
##             Estimate Std. Error t value Pr(>|t|)    
## (Intercept)   48.741      2.358  20.673  < 2e-16 ***
## VEGTYPEIAP    14.852      3.324   4.468  9.4e-06 ***
## VEGTYPEThi    41.649      3.392  12.278  < 2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Approximate significance of smooth terms:
##          edf Ref.df     F p-value    
## s(FWI) 8.806  8.985 17.59 < 2e-16 ***
## s(FMC) 4.414  5.496  2.95 0.00793 ** 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## R-sq.(adj) =  0.361   Deviance explained = 37.6%
## GCV = 1116.3  Scale est. = 1087.6    n = 630
gam(TIMETOIGNITION~s(FWI)+s(FMC)+(VEGTYPE)+(SPP),data=dat)%>%summary()
## 
## Family: gaussian 
## Link function: identity 
## 
## Formula:
## TIMETOIGNITION ~ s(FWI) + s(FMC) + (VEGTYPE) + (SPP)
## 
## Parametric coefficients:
##             Estimate Std. Error t value Pr(>|t|)    
## (Intercept)  49.2453     1.6701  29.486  < 2e-16 ***
## VEGTYPEIAP   26.5963     5.8647   4.535 6.98e-06 ***
## VEGTYPEThi   37.9172     2.3654  16.030  < 2e-16 ***
## SPPACAMEA   -30.8132     8.6665  -3.555 0.000408 ***
## SPPACAMEL   -14.9459     8.6782  -1.722 0.085552 .  
## SPPACASAL    26.4725     8.8981   2.975 0.003049 ** 
## SPPAGAOVA    20.2780     5.8828   3.447 0.000607 ***
## SPPASPSPI   -14.2449     5.8405  -2.439 0.015022 *  
## SPPCALVIM    -2.1808     8.7752  -0.249 0.803817    
## SPPCASPER    16.6675     5.9786   2.788 0.005477 ** 
## SPPCESLAE   -18.0441     9.5513  -1.889 0.059358 .  
## SPPCLIERI     8.7899     5.8713   1.497 0.134902    
## SPPCLIILI    14.8863     5.9066   2.520 0.011988 *  
## SPPDIODIC     3.2502     5.8396   0.557 0.578020    
## SPPERICAN   -23.8184     5.8500  -4.072 5.31e-05 ***
## SPPERIDIS     1.7064     6.0937   0.280 0.779559    
## SPPEUCCAM   -13.9268     8.6939  -1.602 0.109710    
## SPPGYMBUX   -10.6197     5.8067  -1.829 0.067924 .  
## SPPLEPLAE    -5.3297     8.7317  -0.610 0.541844    
## SPPLEUEUC    22.8501     6.0097   3.802 0.000158 ***
## SPPMETMUR   -18.8708     5.8378  -3.233 0.001295 ** 
## SPPOSTMON    12.5007     7.3390   1.703 0.089036 .  
## SPPOSYCOM    -0.3134     5.8478  -0.054 0.957278    
## SPPPASRIG   -24.9545     5.8370  -4.275 2.23e-05 ***
## SPPPHYAXI    -1.8905     6.2338  -0.303 0.761794    
## SPPPINPIN    -3.9583     8.7059  -0.455 0.649514    
## SPPPINRAD   -55.1797     8.6514  -6.378 3.62e-10 ***
## SPPPTETRI    22.2312     5.8035   3.831 0.000141 ***
## SPPSCOZEY    28.0395     5.8920   4.759 2.45e-06 ***
## SPPSEALUC   -20.1527     5.8803  -3.427 0.000652 ***
## SPPSIDINE    17.6515     5.8820   3.001 0.002805 ** 
## SPPTARLIT   -31.3376     5.9316  -5.283 1.79e-07 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Approximate significance of smooth terms:
##          edf Ref.df      F p-value    
## s(FWI) 8.837   8.99 24.051  <2e-16 ***
## s(FMC) 1.000   1.00  0.494   0.482    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Rank: 48/50
## R-sq.(adj) =  0.539   Deviance explained = 56.7%
## GCV = 837.76  Scale est. = 784.79    n = 630
gam(BIOMASSBURNT_PROP~s(FWI)+s(FMC),data=dat)%>%summary()
## 
## Family: gaussian 
## Link function: identity 
## 
## Formula:
## BIOMASSBURNT_PROP ~ s(FWI) + s(FMC)
## 
## Parametric coefficients:
##             Estimate Std. Error t value Pr(>|t|)    
## (Intercept)  0.53200    0.00691   76.99   <2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Approximate significance of smooth terms:
##          edf Ref.df      F  p-value    
## s(FWI) 8.916  8.997  8.619 2.44e-12 ***
## s(FMC) 1.000  1.000 33.607 1.06e-08 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## R-sq.(adj) =   0.14   Deviance explained = 15.4%
## GCV = 0.030613  Scale est. = 0.030083  n = 630
gam(BIOMASSBURNT_PROP~s(FWI)+s(FMC)+(SPP),data=dat)%>%summary()
## 
## Family: gaussian 
## Link function: identity 
## 
## Formula:
## BIOMASSBURNT_PROP ~ s(FWI) + s(FMC) + (SPP)
## 
## Parametric coefficients:
##              Estimate Std. Error t value Pr(>|t|)    
## (Intercept)  0.567534   0.033984  16.700  < 2e-16 ***
## SPPACAMEA    0.003330   0.047895   0.070  0.94459    
## SPPACAMEL    0.023608   0.048280   0.489  0.62503    
## SPPACASAL   -0.033049   0.051643  -0.640  0.52246    
## SPPAGAOVA   -0.038591   0.048747  -0.792  0.42888    
## SPPASPSPI   -0.078710   0.048755  -1.614  0.10698    
## SPPCALVIM   -0.081733   0.050014  -1.634  0.10275    
## SPPCASPER    0.041072   0.048591   0.845  0.39831    
## SPPCESLAE    0.048847   0.058885   0.830  0.40714    
## SPPCLIERI   -0.123800   0.047614  -2.600  0.00956 ** 
## SPPCLIILI   -0.003068   0.047918  -0.064  0.94898    
## SPPDIODIC   -0.084957   0.048568  -1.749  0.08078 .  
## SPPERICAN    0.090315   0.048219   1.873  0.06156 .  
## SPPERIDIS   -0.042934   0.051500  -0.834  0.40480    
## SPPEUCCAM    0.089599   0.048124   1.862  0.06313 .  
## SPPGYMBUX   -0.139554   0.048146  -2.899  0.00389 ** 
## SPPLEPLAE   -0.124204   0.048855  -2.542  0.01127 *  
## SPPLEUEUC   -0.152926   0.048493  -3.154  0.00170 ** 
## SPPMETMUR    0.037429   0.047981   0.780  0.43566    
## SPPOSTMON   -0.128645   0.061933  -2.077  0.03822 *  
## SPPOSYCOM   -0.126473   0.047865  -2.642  0.00846 ** 
## SPPPASRIG    0.066262   0.048157   1.376  0.16936    
## SPPPHYAXI    0.104180   0.054295   1.919  0.05550 .  
## SPPPINPIN    0.027645   0.049272   0.561  0.57497    
## SPPPINRAD    0.059222   0.047702   1.241  0.21492    
## SPPPTETRI   -0.143688   0.048124  -2.986  0.00295 ** 
## SPPSCOZEY   -0.225443   0.047882  -4.708 3.12e-06 ***
## SPPSEALUC   -0.005972   0.047866  -0.125  0.90075    
## SPPSIDINE   -0.147931   0.049837  -2.968  0.00312 ** 
## SPPTARLIT    0.024167   0.047992   0.504  0.61477    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Approximate significance of smooth terms:
##          edf Ref.df     F  p-value    
## s(FWI) 8.912  8.997 9.907 2.97e-14 ***
## s(FMC) 7.475  8.463 2.121   0.0371 *  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## R-sq.(adj) =  0.321   Deviance explained =   37%
## GCV = 0.025653  Scale est. = 0.023764  n = 630
gam(BIOMASSBURNT_PROP~s(FWI)+s(FMC)+(VEGTYPE),data=dat)%>%summary()
## 
## Family: gaussian 
## Link function: identity 
## 
## Formula:
## BIOMASSBURNT_PROP ~ s(FWI) + s(FMC) + (VEGTYPE)
## 
## Parametric coefficients:
##             Estimate Std. Error t value Pr(>|t|)    
## (Intercept)  0.54763    0.01211  45.233  < 2e-16 ***
## VEGTYPEIAP   0.02247    0.01710   1.314    0.189    
## VEGTYPEThi  -0.06935    0.01744  -3.977 7.82e-05 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Approximate significance of smooth terms:
##          edf Ref.df     F  p-value    
## s(FWI) 8.902  8.996 8.488 4.42e-12 ***
## s(FMC) 7.401  8.396 4.357 5.03e-05 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## R-sq.(adj) =  0.186   Deviance explained = 20.9%
## GCV = 0.029399  Scale est. = 0.028498  n = 630
gam(BIOMASSBURNT_PROP~s(FWI)+s(FMC)+(VEGTYPE)+(SPP),data=dat)%>%summary()
## 
## Family: gaussian 
## Link function: identity 
## 
## Formula:
## BIOMASSBURNT_PROP ~ s(FWI) + s(FMC) + (VEGTYPE) + (SPP)
## 
## Parametric coefficients:
##              Estimate Std. Error t value Pr(>|t|)    
## (Intercept)  0.505981   0.009269  54.588  < 2e-16 ***
## VEGTYPEIAP   0.061553   0.032678   1.884 0.060113 .  
## VEGTYPEThi  -0.029263   0.013219  -2.214 0.027238 *  
## SPPACAMEA    0.003330   0.047895   0.070 0.944587    
## SPPACAMEL    0.023608   0.048280   0.489 0.625033    
## SPPACASAL   -0.033049   0.051643  -0.640 0.522458    
## SPPAGAOVA    0.022963   0.032908   0.698 0.485598    
## SPPASPSPI   -0.017157   0.032710  -0.525 0.600119    
## SPPCALVIM   -0.081733   0.050014  -1.634 0.102752    
## SPPCASPER    0.131888   0.033492   3.938 9.21e-05 ***
## SPPCESLAE    0.048847   0.058885   0.830 0.407142    
## SPPCLIERI   -0.062247   0.032768  -1.900 0.057974 .  
## SPPCLIILI    0.058486   0.033076   1.768 0.077545 .  
## SPPDIODIC    0.005859   0.033163   0.177 0.859823    
## SPPERICAN    0.151868   0.032517   4.670 3.73e-06 ***
## SPPERIDIS    0.018619   0.035134   0.530 0.596351    
## SPPEUCCAM    0.089599   0.048124   1.862 0.063129 .  
## SPPGYMBUX   -0.048738   0.033052  -1.475 0.140870    
## SPPLEPLAE   -0.124204   0.048855  -2.542 0.011270 *  
## SPPLEUEUC   -0.091372   0.034446  -2.653 0.008204 ** 
## SPPMETMUR    0.098982   0.032518   3.044 0.002441 ** 
## SPPOSTMON   -0.037828   0.048129  -0.786 0.432200    
## SPPOSYCOM   -0.035656   0.032972  -1.081 0.279966    
## SPPPASRIG    0.127815   0.032702   3.909 0.000104 ***
## SPPPHYAXI    0.165733   0.038219   4.336 1.71e-05 ***
## SPPPINPIN    0.027645   0.049272   0.561 0.574971    
## SPPPINRAD    0.059222   0.047702   1.241 0.214921    
## SPPPTETRI   -0.052872   0.033250  -1.590 0.112344    
## SPPSCOZEY   -0.134627   0.032720  -4.115 4.44e-05 ***
## SPPSEALUC    0.084844   0.032850   2.583 0.010044 *  
## SPPSIDINE   -0.057115   0.034510  -1.655 0.098454 .  
## SPPTARLIT    0.114983   0.032805   3.505 0.000492 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Approximate significance of smooth terms:
##          edf Ref.df     F  p-value    
## s(FWI) 8.912  8.997 9.907 2.97e-14 ***
## s(FMC) 7.475  8.463 2.121   0.0371 *  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Rank: 48/50
## R-sq.(adj) =  0.321   Deviance explained =   37%
## GCV = 0.025653  Scale est. = 0.023764  n = 630

VegType Kruskal.Wallace

res <- matrix(NA,nrow=21,ncol=3)
colnames(res)<-c("BIOMASSBURNT_PROP","TIMETOIGNITION","BURNINTENSITY")
rownames(res) <- as.character(sort(unique(dat$FWI)))
for (i.FWI in sort(dat$FWI)){
  ftutu <- subset(dat,FWI==i.FWI)
  kruskal.test(BURNINTENSITY~VEGTYPE,data=ftutu)->kt.bi
  kt.bi$p.value%>%round(3)->res[as.character(i.FWI),"BURNINTENSITY"]
  kruskal.test(TIMETOIGNITION~VEGTYPE,data=ftutu)->kt.tti
  kt.tti$p.value%>%round(3)->res[as.character(i.FWI),"TIMETOIGNITION"]
  kruskal.test(BIOMASSBURNT_PROP~VEGTYPE,data=ftutu)->kt.bbp
  kt.bbp$p.value%>%round(3)->res[as.character(i.FWI),"BIOMASSBURNT_PROP"]
}
res2 <-as.data.frame(res)
colnames(res2) <- paste(colnames(res2),"_p",sep="")
res2$FWI<-rownames(res)%>%as.numeric()
res2$BBP_sig<- ifelse(res2$BIOMASSBURNT_PROP_p<0.05|res2$BIOMASSBURNT_PROP_p>0.95,"*","")   
res2$TTI_sig<- ifelse(res2$TIMETOIGNITION_p<0.05|res2$TIMETOIGNITION_p>0.95,"*","")   
res2$BI_sig<- ifelse(res2$BURNINTENSITY_p<0.05|res2$BURNINTENSITY_p>0.95,"*","")   
res2%>%select(FWI,BURNINTENSITY_p,BI_sig,BIOMASSBURNT_PROP_p,BBP_sig,TIMETOIGNITION_p,TTI_sig)->res2

knitr::kable(res2)
FWI BURNINTENSITY_p BI_sig BIOMASSBURNT_PROP_p BBP_sig TIMETOIGNITION_p TTI_sig
5.974422971 5.974423 0.152 0.130 0.841
11.98535478 11.985355 0.264 0.801 0.008 *
13.53526668 13.535267 0.917 0.588 0.184
14.22309147 14.223092 0.287 0.002 * 0.015 *
14.37820053 14.378201 0.774 0.165 0.043 *
15.52382668 15.523827 0.062 0.588 0.065
16.40149557 16.401496 0.185 0.590 0.032 *
16.82607625 16.826076 0.064 0.072 0.115
17.74736909 17.747369 0.118 0.745 0.053
17.87391472 17.873915 0.064 0.035 * 0.009 *
17.89486646 17.894866 0.619 0.279 0.005 *
17.91383597 17.913836 0.412 0.056 0.011 *
19.33126698 19.331267 0.028 * 0.001 * 0.005 *
20.53705301 20.537053 0.921 0.517 0.001 *
20.64195653 20.641956 0.416 0.044 * 0.001 *
21.53585892 21.535859 0.265 0.026 * 0.000 *
22.20818532 22.208185 0.070 0.968 * 0.000 *
24.78807203 24.788072 0.020 * 0.042 * 0.071
25.23025712 25.230257 0.687 0.246 0.003 *
31.25728048 31.257281 0.265 0.581 0.001 *
59.81397766 59.813978 0.637 0.119 0.000 *
dat%>%
  left_join(y=res2,by="FWI")%>%
  group_by(FWI)%>%
  mutate(pval = ifelse(BURNINTENSITY_p<0.05|BURNINTENSITY_p>0.95,"*SIG*",""),
        FWI_lab=paste(FWI,pval),
        FWI_lab=ifelse(FWI<10,paste("0",FWI_lab,sep=""),
                         FWI_lab))%>%
  ggplot(aes(VEGTYPE,BURNINTENSITY))+
  geom_boxplot()+
  facet_wrap(~FWI_lab)

dat%>%
  left_join(y=res2,by="FWI")%>%
  group_by(FWI)%>%
  mutate(pval = ifelse(TIMETOIGNITION_p<0.05|TIMETOIGNITION_p>0.95,"*SIG*",""),
        FWI_lab=paste(FWI,pval),
        FWI_lab=ifelse(FWI<10,paste("0",FWI_lab,sep=""),
                         FWI_lab))%>%
  ggplot(aes(VEGTYPE,TIMETOIGNITION))+
  geom_boxplot()+
  facet_wrap(~FWI_lab)

dat%>%
  left_join(y=res2,by="FWI")%>%
  group_by(FWI)%>%
  mutate(pval = ifelse(BIOMASSBURNT_PROP_p<0.05|BIOMASSBURNT_PROP_p>0.95,"*SIG*",""),
        FWI_lab=paste(FWI,pval),
        FWI_lab=ifelse(FWI<10,paste("0",FWI_lab,sep=""),
                         FWI_lab))%>%
  ggplot(aes(VEGTYPE,BIOMASSBURNT_PROP))+
  geom_boxplot()+
  facet_wrap(~FWI_lab)

dat%>%
  mutate(FWI_lab2=as.character(FWI),
         FWI_lab2=ifelse(FWI<10,paste("0",FWI_lab2,sep=""),
                         FWI_lab2))%>%
  ggplot(aes(FWI_lab2,BURNINTENSITY,fill=FWI_index))+
  geom_boxplot()+
  scale_fill_manual(values = cols)+
  facet_wrap(~VEGTYPE)+
  coord_flip()

dat%>%
  mutate(FWI_lab2=as.character(FWI),
         FWI_lab2=ifelse(FWI<10,paste("0",FWI_lab2,sep=""),
                         FWI_lab2))%>%
  ggplot(aes(FWI_lab2,TIMETOIGNITION,fill=FWI_index))+
  geom_boxplot()+
  scale_fill_manual(values = cols)+
  facet_wrap(~VEGTYPE)+
  coord_flip()

dat%>%
  mutate(FWI_lab2=as.character(FWI),
         FWI_lab2=ifelse(FWI<10,paste("0",FWI_lab2,sep=""),
                         FWI_lab2))%>%
  ggplot(aes(FWI_lab2,BIOMASSBURNT_PROP,fill=FWI_index))+
  geom_boxplot()+
  scale_fill_manual(values = cols)+
  facet_wrap(~VEGTYPE)+
  coord_flip()